УДК 544.65;621.355.9

НИЗКОТЕМПЕРАТУРНЫЙ СУПЕРКОНДЕНСАТОР С ЭЛЕКТРОЛИТОМ НА ОСНОВЕ ФТОРИСТОГО ВОДОРОДА И ИОННОЙ ЖИДКОСТИ

© 2022 г. Д. Ю. Грызлов^{*a*}, А. Ю. Рычагов^{*a*}, Т. Л. Кулова^{*a*}, А. М. Скундин^{*a*}, *, В. Н. Андреев^{*a*}, Ф. А. Ворошилов^{*b*}, **

^{*а*}Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Москва, 119071 Россия ^{*b*}Томский политехнический университет, Томск, 634050 Россия

> *e-mail: askundin@mail.ru **e-mail: k43@mail.ru Поступила в редакцию 19.10.2021 г. После доработки 22.02.2022 г. Принята к публикации 22.02.2022 г.

Методом циклической вольтамперометрии и импедансометрии изучено поведение симметричного суперконденсатора с электродами из активированной углеродной ткани в электролите на основе раствора ионной жидкости ($C_8H_{15}N_2PF_6$) в безводном HF в диапазоне температур от -65 до $+25^{\circ}$ С. Измерения проводились в герметичной тефлоновой ячейке. Показано, что емкость такого конденсатора существенно превышает емкость конденсаторов с традиционными органическими растворителями. При понижении температуры наблюдается незначительное снижение емкости и заметный рост рабочего окна потенциалов. Увеличение полного внутреннего сопротивления ячейки при низких температурах в основном определятся вкладом специфической адсорбции сольватированных F^- -ионов.

Ключевые слова: суперконденсатор, низкотемпературный растворитель, ионная жидкость, безводный HF

DOI: 10.31857/S0424857022090079

введение

В последнее время особенно актуальной стала проблема создания накопителей энергии, работоспособных при низких температурах. Наиболее привлекательными накопителями энергии являются суперконденсаторы, в частности, псевдоконденсаторы с электродами на основе углеродных материалов. Емкость таких устройств определяется как емкостью ионного двойного электрического слоя, так и псевдоемкостью, обусловленной редокс-превращениями функциональных групп на поверхности углерода [1-4]. Псевдоконденсаторы с водными электролитами работоспособны в температурном диапазоне примерно от -20 до +80°С. Максимальное рабочее напряжение таких псевдоконденсаторов не превышает 1.5 В, что определяется напряжением разложения воды. Именно поэтому большой интерес проявляется к псевдоконденсаторам с неводными электролитами, из которых особую группу составляют устройства с электролитами, содержащими ионные жидкости (ИЖ) [5-12]. В предыдущей работе [13] был исследован симметричный псевдоконденсатор, в котором в качестве электролита был использован раствор ИЖ (тетрафторборат 1-бутил-3-метилимидазолия) в хладоагенте (дифторхлорметане), а электроды были изготовлены из активированной углеродной ткани CH-900. Поскольку температура кипения дифторхлорметана составляет -40.85° C и упругость паров над электролитом даже при комнатной температуре достаточно высока, корпусом псевдоконденсатора, описанного в [13], был автоклав, рассчитанный на давление 600 атм. В настоящей работе исследована возможность использования безводного фтористого водорода в качестве растворителя ИЖ, что позволило отказаться от аппаратуры высокого давления (температура кипения фтористого водорода составляет 19.54°C).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для приготовления электролита ИЖ (тетрафторборат 1-бутил-3-метилимидазолия, Aldrich) во фторопластовой пробирке насыщали фтористым водородом при температуре 15°С. Затем полученный раствор нагревали до температуры 35°С для испарения части фтористого водорода. Окончательно электролит представлял из себя раствор ИЖ с концентрацией 53%. Для сравнения прово-

Рис. 1. ИК-спектр (на пропускание) ионной жидкости тетрафторборат 1-бутил-3-метилимидазолия. На врезке показано влияние HF на спектральную область тетрафторбората: *1* – чистая ионная жидкость; *2* – ионная жидкость в присутствии HF.

дили измерения с традиционным электролитом – раствором той же ИЖ в ацетонитриле.

Для оценки взаимодействия аниона тетрафторбората с фтористым водородом проводили ИК-исследование с использованием спектрометра FTIR-8101 компании Shimadzu (Япония).

Электрохимические измерения проводили в фторопластовой ячейке с одинаковыми электродами из активированной углеродной ткани СН-900 производства компании Курар, Япония (такой же, как в работе [10]). Основными преимуществами данных электродов является их беззольность и низкое содержание кислорода. Площадь удельной поверхности СН-900 составляет около 1500 м²/г и определяется, в основном, микропорами. В качестве сепаратора использовали гидрофильную пленку из пористого фторопласта толщиной 50 мкм. Токоподвод к электродам обеспечивался прижимом графитовых стержней. Конструкция ячейки подробно описана в [14]. Сборку ячейки проводили в перчаточном боксе (ООО "Спектроскопические системы", Россия), наполненном аргоном. Циклические вольтамперограммы снимали на потенциостате фирмы "Элинс" (Черноголовка, Россия). Импедансные и потенциодинамические измерения проводили с использованием потенциостата-гальваностата P-40X (Electrochemical Instruments, Россия). Измерения при пониженной температуре проводили с использованием климатической камеры КТХ-74-65/165 (ОАО "Смоленское СКТБ СПУ", Россия).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Фтористый водород является полярным растворителем, его лиэлектрическая постоянная составляет 84. Поэтому такая соль как ИЖ, имеющая крупные катионы, хорошо растворяется в HF, и возможно создание растворов с любой концентрацией. Безводный HF в чистом виде имеет относительно низкую степень диссоциации (близкую к степени диссоциации воды) и, как следствие, низкую собственную ионную проводимость. В отличие от воды НГ обладает значительным окном электрохимической стабильности, обусловленным высоким потенциалом (более 3 В) окисления HF до элементарного фтора. Однако еще до начала выделения элементарного фтора, на электродах на основе активированных углей может происходить процесс электрофторирования углерода, что будет ограничивать максимальное напряжение суперконденсаторов с таким растворителем.

На рис. 1 показан ИК-спектр чистого тетрафторбората 1-бутил-3-метилимидазолия и характерная область частот, для которой наблюдается заметное влияния HF на полосы, относящиеся к пропусканию тетрафторбората. Если для крупного органического иона имидазолия влиянием сольватации на характеристики спектра можно пренебречь, то область валентных колебаний тетрофторборат-иона показывает снижение интенсивности полос пропускания. По всей видимости сольватация тертафторбората молекулярным фтороводородом приводит к снижению интенсивности валентных колебаний связи B-F (около 1060 см⁻¹) и соответствующих ей обертонов. Сольватация должна приводить к повышению стабильности аниона и снижению вероятности гидролиза при попадании воды в электролит. Полоса (около 1170 см⁻¹), сохраняющая стабильность, вероятнее всего относится к деформационным колебаниям С-Н-связи в имидазольном кольце.

На рис. 2 приведено сравнение вольтфарадограмм, полученных с использованием растворов ИЖ в фтористом водороде и в ацетонитриле при скорости развертки напряжения 10 мВ/с и комнатной температуре. Вольтфарадограммы (зависимости удельной емкости C от потенциала E) получали пересчетом из обычных вольтамперограмм (зависимостей тока *i* от потенциала при линейной развертке потенциала со скоростью *v* на электроде с массой *m*) по уравнению:

C = i/vm.

Как видно, при использовании электролита на основе ацетонитрила вольтфарадограммы при всех диапазонах развертки напряжения отражают почти идеальные емкостные свойства без признаков фарадеевских процессов. Емкость суперкон-

Рис. 2. Циклические вольтфарадограммы суперконденсаторов с растворами ИЖ в безводном фтористом водороде (сплошные кривые) и в ацетонитриле (пунктир) при разных диапазонах развертки напряжения. Скорость развертки напряжения 10 мВ/с.

денсатора с электролитом на основе фтористого водорода заметно больше, и это превышение увеличивается с расширением диапазона развертки напряжения. Различие измеряемых емкостей может быть обусловлено как разными размерами сольватных оболочек ионов тетрафторбората, так и различиями в диэлектрических проницаемостях ацетонитрила (38.8) и фтористого водорода. Кроме того, окно рабочих напряжений при использовании фтороводорода оказывается ниже вследствие высокой специфической адсорбции HF и возможных процессов электрофторирования. Адсорбция HF и фторирование углерода могут иметь частично обратимый характер. Вклад псевдоемкости этих процессов хорошо заметен при напряжениях выше 1 В.

На рис. 3 приведены циклические вольтфарадограммы для суперконденсатора с электролитом на основе фтористого водорода при комнатной температуре и при изменении скорости развертки напряжения от 10 до 250 мВ/с.

Видно, что с ростом скорости развертки напряжения происходит сложная эволюция формы вольтфорадограмм — снижается вклад псевдоемкости (что связано с ограниченной скоростью адсорбции) и увеличивается резистивных характер кривой [15].

Рисунок 4 наглядно показывает, как влияет изменение температуры на характер вольтфарадограмм для конденсатора с электролитом на основе фтористого водорода.

Видно, что снижение температуры от комнатной до -65°С практически не сказалось на емкости ионного двойного слоя, но привело к замет-

ЭЛЕКТРОХИМИЯ том 58 № 9 2022

Рис. 3. Циклические вольтфарадограммы для конденсатора с электролитом на основе фтористого водорода при комнатной температуре и скоростях развертки напряжения, мВ/с: 1 - 10, 2 - 25, 3 - 50, 4 - 100, 5 - 250.

ному снижению псевдоемкости в связи с замедлением процессов адсорбции.

Очень показательно сопоставление низкотемпературных емкостных характеристик суперконденсаторов с электролитами на основе фтористого водорода и ацетонитрила (рис. 5).

Если при комнатной температуре емкость ионного двойного слоя в электролите на основе фтористого водорода превышает емкость в электролите на основе ацетонитрила всего в 1.5–2 раза, то при температуре –65°С емкость в электро-

Рис. 4. Циклические вольтфарадограммы суперконденсатора с электролитом на основе фтористого водорода при температурах $+20^{\circ}$ C (сплошные кривые) и -65° C (пунктир) и разных диапазонах развертки напряжения.

Рис. 5. Циклические вольтфарадограммы для суперконденсаторов с электролитами на основе фтористого водорода (сплошные кривые) и ацетонитрила (пунктир) при температуре -65°С и разных диапазонах развертки напряжения. Скорость развертки напряжения 10 мВ/с.

лите на основе фтористого водорода почти на порядок превышает емкость в электролите на основе ацетонитрила. Этот эффект, несомненно, связан с различием в диэлектрических свойствах фтористого водорода и ацетонитрила, и наглядно показывает преимущества суперконденсатора с электролитом на основе фтористого водорода при низких температурах.

Рис. 6. Диаграмма Найквиста (от 10 кГц до 50 мГц, с амплитудой 10 мВ) для ячейки при напряжении 0 В, с электролитом на основе ИЖ в безводном НF для разных температур, °C: 1 - 25; 2 - -10; 3 - -40; 4 - -65. На вкладке показана зависимость емкостной характеристики от температуры при 50 мГц.

На рис. 6 приведены импедансные диаграммы ячейки, полученные при напряжении 0 В и температурах от -65 до +25°С. Видно, что дифференциальная емкость (измеренная при амплитуде 10 мВ) демонстрирует резкое падение при снижении температуры. Учитывая, что емкости, полученные по данным циклической вольтамперометрии, мало зависят от температуры, можно сделать предположение о росте влияния специфических адсорбционных свойств сольватированных ионов на процессы перезарядки двойного слоя. В результате чего, для изменения плотности заряда двойного слоя требуются большие времена и амплитуды поляризации. Снижение температуры также может приводить к значительному транспортному торможению крупных катионов имидазолия в микропорах активированной углеродной ткани. Основным фактором, влияющим на снижение емкостной составляющей импеданса, является рост поляризационного сопротивления. выраженный в резком увеличении наклона диаграмм Найквиста (рис. 6). Для понимания механизма торможения перезарядки двойного слоя при низких температурах представляет интерес сравнение импеданса концентрированной плавиковой кислоты и электролита на основе ИЖ в безводном HF (рис. 7). Для высокочастотной области емкостные составляющие и величины поляризационных сопротивлений в этих электролитах практически не отличаются, показывая близкий наклон спектров импеданса. Однако уже при средних частотах емкость в плавиковой кислоте (находящейся на границе замерзания) оказывается значительно ниже исследуемого электроли-

Рис. 7. Сравнение зависимости емкости от частоты при температуре -65° С для: 1 - ИЖ в безводном HF; 2 - концентрированной плавиковой кислоты. На вкладке показано сравнение высокочастотной области спектров импеданса.

та. Такое поведение подтверждает предположение о преимущественном влиянии специфической адсорбции HF на процессы торможения перезарядки двойного слоя.

ЗАКЛЮЧЕНИЕ

Показано, что использование раствора ионной жидкости в безводном HF в качестве электролита в симметричном суперконденсаторе позволяет расширить как температурный интервал работоспособности суперконденсатора, так и увеличить рабочее окно напряжения по сравнению с плавиковой кислотой. В работе применен, в частности, 53%-ный раствор тетрафторбората 1-бутил-3-метилимидазолия в безводном HF в качестве электролита и электроды из активированной углеродной ткани СН-900. Методом циклической вольтамперометрии установлено, что с понижением температуры незначительно снижается емкостная составляющая. но расширяется рабочее окно напряжений. Отмечено, что при низких температурах возрастает резистивная составляющая суперконденсатора, определяемая специфическими адсорбционными свойствами HF.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы декларируют отсутствие конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Kumar, Y., Rawal, S., Joshi, B., and Hashmi, S.A., Background, fundamental understanding and progress in electrochemical capacitors, *J. Solid State Electrochem.*, 2019, vol. 23, p. 667.
- Xie, S., Liu, S., Cheng, P.F., and Lu, X., Recent Advances toward Achieving High-Performance Carbon-Fiber Materials for Supercapacitors, *ChemElectro-Chem*, 2018, vol. 5, p. 571.
- Liu, C.-F., Liu, Y.-C., Yi, T.-Y., and Hu, C.-C., Carbon materials for high-voltage supercapacitors, *Carbon*, 2019, vol. 145, p. 529.
- 4. Ciszewski, M., Koszorek, A., Radko, T., Szatkowski, P., and Janas, D., Review of the Selected Carbon-Based

Materials for Symmetric Supercapacitor Application, J. Electron. Mater., 2019, vol. 48, p. 717.

- McEwen, A.B., Ngo, H.L., LeCompte, K., and Goldman, J.L., Electrochemical Properties of Imidazolium Salt Electrolytes for Electrochemical Capacitor Applications, *J. Electrochem. Soc.*, 1999, vol. 146, p. 1687.
- 6. Balducci, A., Bardi, U., Caporali, S., Mastragostino, M., and Soavi, F., Ionic liquids for hybrid supercapacitors, *Electrochem. Commun.*, 2004, vol. 6, p. 566.
- 7. Sato, T., Masuda, G., and Takagi, K., Electrochemical properties of novel ionic liquids for electric double layer capacitor applications, *Electrochim. Acta*, 2004, vol. 49, p. 3603.
- Tee, E., Tallo, I., Thomberg, T., Jänes, A., and Lust, E., Supercapacitors Based on Activated Silicon Carbide-Derived Carbon Materials and Ionic Liquid, *J. Electrochem. Soc.*, 2016, vol. 163, p. A1317.
- 9. Salanne, M., Ionic Liquids for Supercapacitor Applications, *Top. Curr. Chem.*, 2017, vol. 375, article no. 63.
- Liu, W., Yan, X., Lang, J., and Xue, Q., Electrochemical behavior of graphene nanosheets in alkylimidazolium tetrafluoroborate ionic liquid electrolytes: influences of organic solvents and the alkyl chains, *J. Mat. Chem.*, 2011, vol. 21, p. 13205.
- 11. Frackowiak, E., Lota, G., and Pernak, J., Room-temperature phosphonium ionic liquids for supercapacitor application, *Appl. Phys. Lett.*, 2005, vol. 86, article no. 164104.
- Chen, Y., Zhang, X., Zhang, D., Yu, P., and Ma, Y., High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes, *Carbon*, 2011, vol. 49, p. 573.
- Грызлов, Д.Ю., Кулова, Т.Л., Скундин, А.М., Андреев, В.Н., Мельников, В.П., Калиниченко, В.Н. Двойнослойный суперконденсатор для широкого интервала температур. Электрохим. энергетика. 2019. Т. 19. С. 141.
- Рычагов, А.Ю., Вольфкович, Ю.М. Малообратимые процессы заряжения на высокодисперсных углеродных электродах. Электрохимия. 2009. Т. 45. С. 323. [Rychagov, A.Yu. and Volfkovich, Yu.M., Lowreversible charging processes on highly dispersed carbon electrodes, *Russ. J. Electrochem.*, 2009, vol. 45, p. 304.]
- 15. Кулова, Т.Л., Скундин, А.М. Циклическая вольтамперометрия суперконденсаторов с простейшей эквивалентной схемой. *Изв. Академии наук, сер. хим.* 2020. № 9. С. 1672. [Kulova, T.L. and Skundin, A.M., Cyclic voltammetry of supercapacitors with the simplest equivalent circuit, *Russ. Chem. Bull. Intern. Ed.*, 2020, vol. 69, p. 1672.]