УДК 547.822.3.541:138

УНИВЕРСАЛЬНАЯ ЭЛЕКТРОКАТАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ ПРЕВРАЩЕНИЯ СПИРТОВ В КАРБОНИЛЬНЫЕ СОЕДИНЕНИЯ И ФУНКЦИОНАЛЬНЫЕ ПРОИЗВОДНЫЕ КАРБОНОВЫХ КИСЛОТ¹

© 2023 г. В. П. Кашпарова^{*a*, *}, Е. Н. Шубина^{*a*, *b*}, Д. В. Токарев^{*a*}, Г. П. Антропов^{*b*}, И. Ю. Жукова^{*b*, **}

^аЮжно-Российский государственный политехнический университет (НПИ) им. М.И. Платова, ул. Просвещения, 132, Новочеркасск, 346428 Россия ^bДонской государственный технический университет, пл. Гагарина, 1, Ростов-на-Дону, 344000 Россия *e-mail: kashparova2013@mail.ru

***e-mail: iyuzh@mail.ru* Поступила в редакцию 18.01.2023 г. После доработки 16.02.2023 г. Принята к публикации 19.02.2023 г.

Разработана универсальная каталитическая система 4-ацетамидо-2,2,6,6-тетраметилпиперидин-1оксил/КІ/пиридиновое основание для непрямого электроокисления спиртов в карбонильные соединения и производные карбоновых кислот. Использование пиридина, 2,6-лутидина или коллидина позволило получить карбонильные соединения (выход до 100%) после пропускания 2–2.2 F. В присутствии пиридина спирты жирного и жирно-ароматического рядов превращены в симметричные сложные эфиры (выход до 35%) после пропускания 4 F. Ангидриды кислот (выход до 80%) образуются при использовании 2,6-лутидина или коллидина после пропускания 5–6 F. В присутствии 2,6-лутидина и источника азота получены нитрилы (выход до 99%) после пропускания 4–4.5 F.

Ключевые слова: электрокаталитическая система, пиридиновые основания, спирты, карбонильные соединения, сложные эфиры, ангидриды, нитрилы

DOI: 10.31857/S0424857023100079, EDN: YIZUEZ

введение

Ограничение ископаемых природных ресурсов и загрязнение природы промышленными отходами стимулирует поиск экономичных, надежных и простых в исполнении, оказывающих минимальное воздействие на окружающую среду, методов синтеза практически важных химических веществ [1]. Это определяет направление научных исследований в области органического синтеза и поиск новых удобных с точки зрения экономики и экологии способов получения разнообразных органических соединений. Усовершенствуются известные и разрабатываются новые синтетические методы получения востребованных химических соединений. С этой точки зрения электрокаталитическое преобразование субстратов привлекает особое внимание исследователей и представителей промышленности как экологически наиболее безопасный и экономичный метод. Электрохимические процессы органического синтеза относят к методам "зеленой химии", в которых электрический ток выступает либо в качестве непосредственного окислителя, либо с его помощью запускаются каталитические циклы окислительной трансформации, в которых используются минимальные количества посредников — медиаторов. Таким образом, популярность электроорганического синтеза в последние годы растет, и синтетическая органическая электрохимия переживает бурное возрождение [2–5].

Окисление спиртов до карбонильных соединений и функциональных производных карбоновых кислот является одним из привлекательных направлений органического электросинтеза. Получаемые целевые продукты имеют разнообразное техническое приложение, начиная от топливных элементов и заканчивая производством мономеров, полимеров и тонким органическим синтезом [6–8].

Нитроксильные радикалы (**HP**) ряда 2,2,6,6тетраметилпиперидин-1-оксила (**TEMPO**) достаточно давно и успешно применяются в качестве реагентов и/или катализаторов в различных процессах, в том числе в окислении спиртов и других

¹ По материалам XX Всероссийского Совещания "Электрохимия органических соединений" ЭХОС-2022, Новочеркасск, 18.10–22.10.2022.

органических соединений [9-11]. Успех использования НР обусловлен их уникальными окислительно-восстановительными свойствами [10, 12, 13]. Известно, что НР подвергаются обратимому одноэлектронному окислению до соответствующих оксоаммониевых катионов (ОК), которые являются эффективными окислителями органических субстратов [14, 15]. Разработаны каталитические системы на основе НР, способные превращать спирты в карбонильные соединения и различные производные кислот [10, 11, 15-17]. Один из наиболее важных подходов к управлению селективностью трансформации спиртов базируется на разработке и использовании медиаторных систем на основе НР, направляющих реакцию по пути образования альдегидов, кетонов. кислот, сложных эфиров, амидов и других целевых продуктов [11, 15-18]. В этом отношении электромедиаторные системы являются наиболее перспективными, так как их использование открывает быстрый и прямой доступ к новым структурам благодаря уникальной реакционной способности и селективному действию электрогенерируемых медиаторов [10, 13].

Альдегиды и кетоны являются востребованными веществами в различных отраслях промышленности, в том числе в производстве фармацевтических препаратов, пищевых добавок, красителей и других химических продуктов [8, 19, 20]. Однако, для первичных спиртов недостаточная селективность окисления является общей проблемой, связанной с тенденцией альдегидов к дальнейшему превращению в карбоновые кислоты [11, 21]. Поэтому разработка каталитических и/или медиаторных систем, позволяющих избирательно окислять спирты до альдегидов, продолжает привлекать пристальное внимание исследователей [20, 22].

Несмотря на самостоятельное использование ТЕМРО для каталитического окисления спиртов, широко исследуются системы ТЕМРО с различными добавками (сокатализаторами), позволяющими интенсифицировать процесс окисления. В качестве добавок чаще всего используют различные соединения меди [23], бромид-ионы [24, 25] и др. [10, 22, 26]. В нашей ранней работе [27] в качестве сокатализатора мы предложили использовать йодид-ион и разработали двухмедиаторную систему на основе НР ряда ТЕМРО – 4-ацетамидо-2,2,6,6-тетраметилпиперидин-1-оксила (4-AcNH-TEMPO) и йодида калия (KI) для электрокаталитического окисления спиртов до карбонильных соединений. В процессе исследований было замечено образование минорных количеств карбоновых кислот и/или их функциональных производных. Это обстоятельство побудило нас к детальному изучению возможностей предложенной нами каталитической системы в рамках непрямого электрохимического окисления (ЭХО) спиртов.

Цель данной работы заключалась в разработке универсальной каталитической системы на основе HP/KI и подтверждении возможности ее использования не только для электросинтеза карбонильных соединений, но и функциональных производных карбоновых кислот: сложных эфиров, ангидридов, нитрилов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

4-AcNH-TEMPO и другие реактивы были приобретены у Sigma-Aldrich и использовались без дополнительной очистки.

Газовую хромато-масс-спектрометрию (ГХ-МС) осуществляли на хроматографе Agilent 7890A, снабженном масс-селективным детектором Agilent 5975С (ЭУ, 70 эВ) и капиллярной колонкой HP-5MS. Для идентификации пиков полученных хроматограмм масс-спектры анализируемых веществ сравнивали с масс-спектрами библиотеки NIST. Управление прибором, сбор и обработку данных осуществляли при использовании пакета программ MSD ChemStation. Для количественного анализа использовали площади пиков анализируемых веществ, которые измеряли при помощи авто-интегратора в программe MSD ChemStation.

Высокоэффективную жидкостную хроматографию (**ВЭЖХ**) проводили с использованием системы Agilent 1260 Infinity LC, оборудованной колонкой Eclipse PAH с обращенной фазой (250 × × 4.6 мм) и длиной волны обнаружения 284 нм. Мобильная фаза состояла из ацетонитрила и воды (V: V = 70 : 30), скорость подачи – 0.5 мл мин⁻¹, температура в колонке 30°С. Хроматографические методы анализа подробно описаны в работах [28, 29].

Тонкослойную хроматографию (TCX) выполняли на оксиде алюминия второй степени активности по Брокману или пластинках Silufol UV-254, элюент — хлористый метилен, проявитель — пары йода.

ЯМР-спектры ¹Н и ¹³С регистрировали на приборе Bruker DRX 500 с частотой 500 и 125 МГц соответственно в CDCl₃ или DMSO.

ИК-спектры (ATR-IR) регистрировали на ИК-фурье-спектрометре "Varian 640" ("Varian", США) в интервале 650-4000 см⁻¹.

Температуры плавления определяли капиллярным методом на приборе ПТП.

Общая (базовая) методика окисления спиртов до карбонильных соединений

Электролиз проводили в бездиафрагменном электролизере емкостью 150 мл, снабженном водяной рубашкой охлаждения, механической мешалкой и термометром. Анод и катод платиновые пластинки, площадь анода — 20 см^2 , площадь катода — 10 см^2 . Температура электролита $20-25^{\circ}\text{C}$.

В электролизер помещали 0.04 моль спирта, 0.004 моль пирилинового основания (пирилин. 2,6-лутидин или коллидин), 0.004 моль (0.85 г) 4-AcNH-TEMPO, растворенных в 40 мл хлористого метилена и раствор 0.06 моль (5.0 г) гидрокарбоната натрия и 0.008 моль (1.37 г) КІ в 80 мл дистиллированной воды (рН водной фазы 8.6). Синтез проводили при плотности тока 0.05 A/см² (сила тока 1 А) и заканчивали после пропускания 2-2.2 F электричества в расчете на спирт. После окончания синтеза электролит обрабатывали насышенным раствором тиосульфата натрия (20 мл) для удаления избытка йода (йодкрахмальная проба). Водный и органический слои разделяли. Водный слой экстрагировали хлористым метиленом $(2 \times 20 \text{ мл})$, органические вытяжки объединяли, сушили безводным Na₂SO₄, далее анализировали на содержание карбонильного соединения методом ГХ-МС. Содержание 2,5-диформилфурана анализировали методом ВЭЖХ.

Для выделения альдегидов или кетонов органический слой обрабатывали двойным объемом свежеприготовленного раствора гидросульфита натрия, который готовили следующим образом: 0.1 моль (12.6 г) сульфита натрия, растворяли в 50 мл воды и добавляли 0.12 моль (7.1 мл) концентрированной уксусной кислоты. Полученную смесь перемешивали в течение 15 мин и оставляли на ночь. На следующий день смесь охлаждали (до +10°С), выпавшие кристаллы гидросульфитного производного отделяли фильтрованием и дополнительно промывали на фильтре эфиром $(2 \times 15 \text{ мл})$ и высушивали на воздухе. Выход карбонильных соединений в пересчете на гидросульфитное производное составлял 75-85%. Строение всех полученных соединений подтверждено данными ЯМР-спектроскопии. Спектральные характеристики полученных продуктов идентичны описанным в литературе [29].

Выделение 2,5-диформилфурана, полученноокислением 5-гидроксиметилфурфурола го (5-ГМФ), проводили без образования гидросульфитного производного. Для этого органические вытяжки объединяли, промывали разбавленным раствором HCl (3%) для удаления пиридинового основания, а затем водой (2 × 10 мл) и сушили безводным Na₂SO₄. Растворитель отгоняли, остаток перекристаллизовывали и получали 4.7 г светло-желтых кристаллов (выход 75%), Т_{пл.} 109-110°C (H₂O) [28, 29]. Спектр ЯМР ¹H (CDCl₃), δ, м.д.: 9.83 (с, 2Н, СНО); 7.33 (с, 2 Н, =СН). Спектр ЯМР ¹³С (CDCl₃), δ, м.д.: 179.21 (CHO), 154.15 (=C), 119.42 (=CH). Масс-спектр (ESI), *m/z*: 147.0045 [M + Na]⁺. С₆Н₄О₃. Вычислено: 147.0053, Δ = 5.4 м.д.

ЭЛЕКТРОХИМИЯ том 59 № 10 2023

Общая методика окисления спиртов до симметричных сложных эфиров

Синтез сложных эфиров проводили аналогично предыдущей "базовой" методике, в качестве пиридинового основания использовали пиридин (**Py**), количество пропущенного электричества увеличили до 4 F в зависимости от строения исходного спирта. После окончания синтеза электролит обрабатывали аналогично описанию в предыдущей "базовой" методике. Отделенный органический слой анализировали на содержание сложного эфира методом ГХ-МС.

Общая методика окисления спиртов до ангидридов кислот

Синтез ангидридов проводили аналогично "базовой" методике, но в качестве пиридинового основания использовали 2,6-лутидин и количество пропущенного электричества увеличили до 5—6 F в зависимости от строения исходного спирта. После окончания синтеза электролит обрабатывали аналогично описанию в "базовой" методике. Отделенный органический слой анализировали на содержание ангидрида методом ГХ-МС (см. табл. 4).

Количественно выход образующихся ангидридов дополнительно подтвердили косвенным путем, выделив их в виде амидов соответствующих кислот. Например, для выделения амида октановой кислоты к органическому слою добавляли 0.16 моль аммиака (20–25%-ный раствор). Реакционную смесь перемешивали в течение 30 мин и экстрагировали этилацетатом (4 × 20 мл). Объединенные органические вытяжки сушили безводным Na₂SO₄. Этилацетат упаривали в роторном испарителе, а остаток перекристаллизовывали, $T_{пл.}$ 105–107°С (H₂O) [30], выход октанамида – 70%. Структуру полученного амида октановой кислоты подтвердили с помощью метода ГХ-МС- и ЯМРспектроскопии.

Для обнаружения и выделения октановой кислоты водный слой электролита обрабатывали разбавленной соляной кислотой до pH 3–4 и экстрагировали эфиром (2 × 20 мл). Эфирные вытяжки объединяли, растворитель удаляли и при охлаждении получали кристаллы октановой кислоты $T_{\text{пл.}}$ 16–18°С ((C_2H_5)₂O); температура кипения октановой кислоты 237–239°С [30].

Общая методика окисления спиртов до нитрилов

Синтез нитрилов проводили аналогично "базовой" методике, в качестве пиридинового основания использовали 2,6-лутидин или коллидин, перед началом электролиза добавляли источник азота (соотношение спирт : источник азота равно 1:1.2), количество пропущенного электричества составляло 4—4.5 F в зависимости от строения исходного спирта. Лучшие результаты были получены при использовании в качестве источника азота йодида аммония. После окончания синтеза электролит обрабатывали аналогично описанию в "базовой" методике. Отделенный органический слой анализировали на содержание нитрилов методом ГХ-МС.

Для выделения нитрилов органический слой упаривали до 5 мл и подвергали очистке при помощи колоночной хроматографии. Колонку размером 20 × 200 мм заполняли силикагелем (Silica Gel 60 (фр. 40–60 мкм)), в качестве элюента использовали смесь этилацетата с гексаном (1 : 15). Полноту очистки контролировали методом TCX. Подтверждение строения полученных нитрилов проводили с помощью спектральных методов (ЯМР и ИК). Спектральные характеристики полученных продуктов идентичны описанным в литературе [30, 31].

Обнаружение и выделение кислот проводили как в описанной выше методике получения ангидридов кислот.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Непрямое электрокаталитическое превращение спиртов (1) в карбонильные соединения (4) и различные функциональные производные кислот (симметричные сложные эфиры (5), ангидриды (6), нитрилы (7)) в присутствии НР (2) и пиридиновых оснований (3) в общем виде представлено на схеме 1.

Схема 1. Однореакторное непрямое электроокисление спиртов.

Как показали наши исследования, состав продуктов окислительного превращения спиртов зависел от количества пропущенного электричества, используемого пиридинового основания и наличия или отсутствия источника азота.

Электроокисление спиртов (1) в двухфазной системе хлористый метилен-водный раствор гидрокарбоната натрия в присутствии каталитической системы 4-AcNH-TEMPO/KI (2) приводит к образованию соответствующих карбонильных соединений [27]. В предложенных условиях альдегиды и кетоны были получены с высоким выходом по веществу (80-95%) после пропускания 4 F электричества, однако выход по току не превышал 40-47%. В этой же работе [27] был описан предполагаемый механизм окисления спиртов до карбонильных соединений разработанной двухмедиаторной каталитической системой 4-AcNH-TEMPO/KI.

В более поздней работе [28] мы провели и описали ЦВА-исследования на Pt-электроде и установили, что потенциал окисления иодид-иона в растворе 0.1 М NaHCO₃ (pH 8.6) 0.35 В, а 4-AcNH-TEMPO 0.66 В (относительно Ag/Ag⁺). Следовательно, легче протекает окисление иодид-иона (I⁻) до йода (I₂), который далее окисляет 4-AcNH-TEMPO до 4-AcNH-TEMPO⁺. Последний в свою очередь окисляет спирт до карбонильного соединения, а сам восстанавливается до 4-AcNH-TEMPOH, который может превращаться в исходный 4-AcNH-TEMPO различными способами (реакция пропорционального распределения с 4-AcNH-TEMPO⁺, взаимодействие с активными формами йода и/или окисление на аноде). Йод является более мягким окислителем, чем хлор или бром, и не вызывает галогенирование и глубокое окисление чувствительных субстратов [32]. Благодаря этому повышается селективность как химического, так и непрямого ЭХО спиртов до карбонильных соединений [28, 29]; избыток йода, невступившего в реакцию, может быть легко удален тиосульфатом. Кроме того, при использовании разработанной каталитической системы первичные и вторичные спирты жирного ряда окислялись примерно с одинаковыми скоростями, в отличие от бромидсодержащих систем, где первичные спирты превращались в карбонильные соединения с большими скоростями [24]. Также нами было установлено, что в отсутствии КІ электрокаталитическое окисление спиртов в двухфазной системе только в присутствии НР протекало в 1.5-2 раза медленнее, например выход октаналя в препаративном электрохимическом синтезе, по данным ГХ-МС, после пропускания 2.2 F составил 31%, а в присутствии HP и KI – 64%. ЦВА-исследования также показали, что при добавлении KI к систе-

№ п/п	Спирт	Выход карбонильно после пропу	Выход по току, %	
		в отсутствие Ру	в присутствии Ру	
1	Бутанол-1	42	85	77
2	Пентанол-1	47	89	80
3	Гексанол-1	51	82	74
4	Гептанол-1	49	80	72
5	Октанол-1	64	96	86
6	Нонанол-1	51	81	73
7	2-Фенилэтанол	42	80	72
8	Бензиловый	68	100	90
9	4-Метоксибензиловый	53	91	82
10	4-Бромбензиловый	50	87	78
11	4-Изопропилбензиловый	51	93	84
12	3,4-Диметоксибензиловый	52	95	85
13	4-Нитробензиловый	49	83	73
14	4-Фторбензиловый	42	81	73
15	2-Гидроксиметилтиофен	62	89	80
16	5-Гидроксиметилфурфурол	54 ^в	75 ^в	68
17	Циклогексанол	46	86	77
18	Циклогептанол	48	87	79
19	1-Фенил-2-пропанол	43	83	75
20	Гептанол-2	39	80	72
21	Гексанол-2	42	78	70

Таблица 1. Непрямое электрохимическое окисление спиртов до карбонильных соединений каталитической системой 4-AcNH-TEMPO/иодид калия^а

^а Условия реакции приведены в общей методике окисления спиртов до карбонильных соединений.

⁶ Согласно данным ГХ-МС.

^в Согласно ланным ВЭЖХ.

ме, содержащей спирт и HP, каталитический ток возрастает в 10–12 раз [28]. Таким образом, двухмедиаторная система 4-АсNH-ТЕМРО/КІ показала большую эффективность по сравнению с мономедиаторными системами на основе только HP или KI. Тем не менее, при использовании этой системы для превращения спиртов в карбонильные соединения оставалась проблема низкого выхода продуктов по току [27, 28], которую предстояло решить.

Авторами [15] было показано, что на скорость и селективность реакции химического окисления спиртов в присутствии НР или ОК, образующихся из оксоаммониевых солей (OC), существенно влияет добавка основания, в том числе и пиридинового ряда. Основание либо способствует ионизации спирта с образованием алкоксида, который быстро взаимодействует непосредственно с окислителем — OK, либо участвует в образовании

ЭЛЕКТРОХИМИЯ том 59 № 10 2023

энергетически выгодного промежуточного комплекса с ОК, что ведет к ускорению процесса в целом. Проведенные нами предварительные ЦВА-исследования показали, что добавка Ру к предлагаемой двухмедиаторной системе 4-AcNH-TEMPO/KI также приводила к росту каталитических токов на ЦВА.

На основании вышесказанного представляло интерес системное исследование влияния пиридиновых оснований на скорость непрямого ЭХО спиртов до карбонильных соединений. Мы установили, что наличие Ру в электролите в количестве 10 мол. % повышает скорость процесса и соответственно увеличивает выход по току карбонильных соединений практически в 2 раза по сравнению с экспериментами без Ру (табл. 1). Альдегиды и кетоны образуются с выходом по веществу 75–100% и току 68–90% после пропускания 2–2.2 F электричества (табл. 1).

КАШПАРОВА и др.

Таблица 2. Влияние пиридиновых оснований на непрямое электрохимическое окисление модельных спиртов до карбонильных соединений каталитической системой 4-ацетамидо-2,2,6,6-тетраметилпиперидин-1-ок-сил/иодид калия^а

№ п/п	Пиридиновое основание	Выход карбонильного соединения, (%) ⁶ , после пропускания 2.2 F электричества					
		октанол-1	2-фенил- этанол	4-бром- бензиловый спирт	5-гидрокси- метилфур- фурол ^в	1-фенил-2- пропанол	
1	Пиридин	92	80	87	75	78	
2	2,6-Диметилпиридин (2,6-лутидин)	96	82	85	86	80	
3	4-Ацетилпиридин	91	77	83	72	75	
4	2-Метил-5-этилпиридин	90	78	81	80	76	
5	2,4,6-Триметилпиридин (коллидин)	98	85	86	96	84	

^а Условия реакции приведены в общей методике окисления спиртов до карбонильных соединений.

^б Согласно данным газовой ГХ-МС.

^в Согласно данным ВЭЖХ.

Далее была исследована эффективность воздействия других пиридиновых оснований (2,6диметилпиридин (2,6-лутидин); 4-ацетилпиридин; 2-метил-5-этилпиридин; 2,4,6-триметилпиридин (коллидин)) в сравнении с Ру на скорость непрямого ЭХО модельных спиртов. В результате было установлено промотирующее действие пиридиновых оснований (Ру; 2,6-лутидина; 4-ацетилпиридина; 2-метил-5-этилпиридина; коллидина) на медиаторное ЭХО спиртов различных рядов (алифатических, циклических, ароматических, гетероциклических) (табл. 2).

Существенных различий в промотирующем действии изученных пиридиновых оснований на окисление спиртов до карбонильных соединений не наблюдалось (табл. 2). За исключением "чувствительного" к окислению субстрата – 5-ГМФ, для которого лучшие результаты были получены в присутствии 2,6-лутидина или коллидина. Протекторное действие 2,6-лутидина или коллидина при электрохимическом окислении 5-ГМФ требует дальнейших исследований.

Промотирующее действие Ру и других пиридиновых оснований на химическое окисление спиртов в присутствии НР, согласно литературным данным, заключается в образовании промежуточного комплекса между пиридиновым основанием, ОК и спиртом [15]. Образование комплекса способствует быстрому переносу от спирта протона на пиридиновое основание с образованием катиона пиридиния и гидрид-иона на ОК с образованием соответствующего гидроксиламина. Авторами работы [33] при изучении механизма окисления спиртов стехиометрическим количеством ОС с помощью метода DFT показана принципиальная возможность реализации подобного механизма с переносом гидридного иона. Мы полагаем, что подобный механизм реализуется и в случае непрямого ЭХО спиртов в присутствии НР и пиридиновых оснований.

Предполагаемый механизм промотирующего действия пиридинового основания на ЭХО спиртов до карбонильных соединений каталитической системой НР/КІ представлен на схеме 2.

584

ЭЛЕКТРОХИМИЯ том 59 № 10 2023

Схема 2. Механизм промотирующего действия пиридинового основания на процесс непрямого ЭХО спиртов до карбонильных соединений.

Реакция протекает ступенчато. На аноде в результате окисления иодид-иона образуется молекулярный йод (вблизи анода могут существовать и другие формы йода (йод-радикал, ион-йодония)). Йод окисляет НР (2) до ОК (8), который в свою очередь образует промежуточный комплекс (9) со спиртом (1) и пиридиновым основанием (3). В результате распада (9) образуется карбонильное соединение (4), гидроксиламин (10) и соль пиридинового основания (11). При окислении (10) йодом регенерируется (8), таким образом каталитический цикл замыкается. Следует отметить, что в результате окисления (10) на аноде может регенерироваться исходный НР (2). Представленный на схеме 2 предполагаемый механизм превращения спиртов в карбонильные соединения объясняет роль йода, НР и пиридинового основания в окислительной трансформации спиртов в карбонильные соединения.

Таким образом, в результате проведенных исследований нами установлено, что добавка каталитического количества пиридинового основания (10 мол. %) к реакционной среде ускоряет не-

ЭЛЕКТРОХИМИЯ том 59 № 10 2023

прямое ЭХО спиртов различных рядов и при пропускании практически теоретического количества электричества (2–2.2 F) в расчете на исходный субстрат основными продуктами являются карбонильные соединения с выходом до 98% (табл. 2).

Как сказано выше, при ЭХО спиртов жирного ряда было замечено образование минорных количеств соответствующих симметричных сложных эфиров (5-7% по данным ГХ-МС). Известна ранняя работа [34] по непрямому ЭХО спиртов до карбонильных соединений в водно-органической среде в присутствии двухмедиаторной каталитической системы, содержащей 1 мол. % НР ряда ТЕМРО и 25 мол. % бромида калия. Но при снижении количества НР до 0.2 мол. % были получены симметричные сложные эфиры с выходом по веществу до 75%. Современные работы по ЭХО спиртов до сложных эфиров практически отсутствуют. В то же время имеются исследования по химическому превращению активированных спиртов в симметричные сложные эфиры под действием ОС в присутствии Ру [14, 15, 17].

Однако, нами установлено, что химическое окисление не только активированных спиртов каталитической системой 4-AcNH-TEMPO/I₂/Ру приводит к образованию соответствующих симметричных сложных эфиров с выходом до 70% [35]. Но при использовании разработанной каталитической системы 4-AcNH-TEMPO/KI/Ру в условиях ЭХО спиртов варьирование количества катализатора (1-10 мол. %), количества пропущенного электричества (3-4 F) и Ру (до 50 мас. %) не привело к существенному повышению выхода симметричных сложных эфиров. Последние были получены только из спиртов жирного и жирно-ароматического ряда с выходом по веществу 15-35%. Возможно, низкий выход эфиров связан с их гидролизом в реакционной среде и последующими превращениями образующихся кислот, например, в соответствующие ангидриды. Известно, что окисление спиртов ОС сопровождается образованием соответствующих кислот даже при незначительном изменении условий реакции [11]. Следует отметить, что при длительном электролизе (4-6 F) минорные количества кислот (3-5 мас. %) были также зарегистрированы и выделены из водного слоя электролита при получении нитрилов и ангидридов кислот с помощью предложенной нами системы.

Однореакторное превращение спиртов или альдегидов в ангидриды соответствующих кислот

несомненно представляет синтетический интерес. Известно окислительное превращение только альдегидов в смешанные ангидриды в ацетонитриле в присутствии HP, пивалиновой кислоты и Ру [36]. Описано получение симметричных ангидридов, но только из ароматических альдегидов под действием гидропероксида *трет*-бутила в присутствии четвертичных солей аммония в органическом растворителе [37]. Сведения о прямом превращении спиртов в присутствии HP или ОС в симметричные ангидриды кислот отсутствуют.

Мы осуществили однореакторное непрямое ЭХО спиртов жирного ряда в ангидриды соответствующих кислот с выходом до 80% в двухфазной системе хлористый метилен-водный раствор гидрокарбоната натрия с помощью каталитической системы 4-AcNH-TEMPO/KI/пиридиновое основание (схемы 1 и 3) [38]. Насколько известно, предложенный нами метод – это первый случай электрокаталитического превращения спиртов в ангидриды кислот. Состав продуктов реакции зависел от количества пропущенного электричества и природы пиридинового основания (табл. 3). На примере модельного спирта было показано, что лучшим сокатализатором в реакции непрямого ЭХО октанола-1 до ангидрида октановой кислоты является 2,6-лутидин (табл. 3).

Схема 3. Предполагаемый механизм образования из альдегидов симметричных сложных эфиров и ангидридов кислот с участием электрогенерируемого йода.

С помощью предложенной каталитической системы 4-AcNH-TEMPO/KI в присутствии 2,6лутидина были превращены в соответствующие ангидриды кислот различные спирты жирного и жирно-ароматического ряда (табл. 4).

Относительным недостатком предложенного метода является отсутствие ангидридов при окислении ароматических и гетероароматических спиртов (табл. 4). Возможно, реакция идет через стадию образования сложных эфиров, а как было отмечено выше, именно ароматические и гетероциклические спирты в предлагаемых нами условиях сложных эфиров не образуют.

Более длительное окисление (больше 6–6.5 F электричества) приводит к снижению выхода ангидрида кислоты и появлению в реакционной среде продуктов деструкции и осмоления.

Механизм превращения спиртов в функциональные производные карбоновых кислот требует дополнительного изучения. Достоверно известно только то, что реакция проходит через превращение спиртов в альдегиды (по данным ГХ-МС). Предположительно существенный

ЭЛЕКТРОХИМИЯ том 59 № 10 2023

Таблица 3. Влияние пиридиновых оснований на непрямое электрохимическое окисление октанола-1 до ангидрида октановой кислоты каталитической системой 4-ацетамидо-2,2,6,6-тетраметилпиперидин-1-оксил/иодид калия^а

Пирилиновое основание	ΟF	Выход, % ⁶			
пиридиновое основание	Q, 1	альдегид	сложный эфир	ангидрид	кислота ^в
	2	96	4	0	—
2,6-Диметилпиридин	3	81	4	15	—
(2,6-лутидин)	4	57	5	38	—
	6	17	2	80	1
	2	96	4	0	—
2,4,6-Триметилпиридин	3	82	5	12	—
(коллидин)	4	58	6	36	1
	6	16	7	75	2
	2	89	11	0	—
2 Mary 5 ary run un	3	88	7	5	—
2-тистил-3-этилпиридин	4	80	6	14	2
	6	43	7	46	4

^а Условия реакции приведены в общей методике окисления спиртов до ангидридов кислот.

⁶ Согласно данным ГХ-МС.

^в Выход по выделению.

Таблица 4. Непрямое электрохимическое окисление спиртов до ангидридов кислот 4-ацетамидо-2,2,6,6-тетраметилпиперидин-1-оксил/иодид калия в присутствии 2,6-диметилпиридина^а

Спирт	Состав продуктов реакции после пропускания 6 F, % ⁶				
Chinpi	альдегид	сложный эфир	ангидрид		
Гексанол-1	26	6	68		
Гептанол-1	25	4	71		
Октанол-1	15	5	80		
Нонанол-1	22	6	72		
2-Фенилэтанол	79	11	10		
4-Метоксифенилметанол	98 ^в	0	0		
4-Изопропилфенилметанол	99 ^в	0	0		
Тиофеновый	97 ^в	0	0		
5-Гидроксиметилфурфурол	75 ^r	0	0		

^а Условия реакции приведены в общей методике окисления спиртов до ангидридов кислот.

⁶ Согласно данным ГХ-МС.

^в Выход по выделению.

^г После пропускания 4 F электричества 25% – продукты конденсации.

вклад в образование симметричных сложных эфиров и ангидридов кислот вносит химическая реакция альдегидов, образовавшихся на первой стадии каталитического окисления, с молекулярным йодом, электрогенерируемым на аноде из иодид-аниона (схема 3). Вероятно, в водном растворе альдегид переходит в гидратированную форму, которая может взаимодействовать как с молекулярным иодом, так и с другими его формами, например с ионом иодония, который может быть стабилизирован в виде комплекса с пиридиновым основанием [39]. Расход достаточно большого количества йода (~2 экв.) для превращения спирта в сложный эфир или ангидрид, по-видимому, и объясняет необходимость дополнительного количества электричества (4–6 F, по сравнению с 2–2.2 F, расходуемыми на образование альдегида). Следует отметить, что образование

Реагенты		Выход нитрила (%) после пропускания 4 F ⁶		
источник азота	пиридиновое основание	нитрил	альдегид	
		30	70	
Гидроксиламин соляно-	Пиридин	63	37	
кислый	2,6-Диметилпиридин	70	30	
	2,4,6-Триметилпиридин	68	32	
	_	24	76	
Фтория он и сония	Пиридин	74	26	
Фторид аммония	2,6-Диметилпиридин	88	12	
	2,4,6-Триметилпиридин	87	13	
	_	17	83	
V	Пиридин	58	42	
хлорид аммония	2,6-Диметилпиридин	70	30	
	2,4,6-Триметилпиридин	65	35	
	_	62	38	
й в	Пиридин	95	_	
иодид аммония"	2,6-Диметилпиридин	99	_	
	2,4,6-Триметилпиридин	97	—	

Таблица 5. Влияние структуры пиридинового основания и источника азота на превращение октанола-1 в октанитрил^а

^а Условия реакции приведены в общей методике окисления спиртов до нитрилов кислот.

⁶ Согласно данным ГХ-МС.

^в Используется только NH₄I (0.04 моль) без KI.

сложных эфиров из спиртов под действием молекулярного йода достаточно хорошо изучено [40]. Но в отличие от работы [40], где йод используется в избытке (1.2—3 экв.), в предложенном нами способе йод генерируется на аноде из каталитического количества йодида калия.

Органокаталитическое получение нитрилов из спиртов или альдегидов является альтернативным направлением по отношению к традиционным синтезам, протекающим в достаточно жестких условиях. Известно, что для получения нитрилов из спиртов или альдегидов можно использовать стехиометрическое количество ОС [41] или каталитическое количество НР при наличии источника азота, например ацетата аммония, аммиака, солей аммония или др. [42-44]. Наибольшее количество работ посвящено химическим методам трансформации спиртов или альдегидов в нитрилы [44, 45]. Особый интерес как более экологичный метод представляет электрокаталитическое преврашение [18, 46-48], но практически все работы по электрохимическому получению нитрилов посвящены превращению ароматических субстратов [47, 48]. Ароматические нитрилы были получены с хорошими выходами (62-95%). Примеры получения нитрилов из спиртов жирного и жирно-ароматического ряда практически отсутствуют [48].

В предлагаемом нами электрохимическом способе получения нитрилов из спиртов за основу взята та же разработанная ранее каталитическая система 4-AcNH-TEMPO/KI [27]. Важным отличием предлагаемой системы является использование источников азота — солянокислого гидроксиламина [49] или солей аммония. Данный метод синтеза нитрилов не требует применения токсичных реагентов, позволяет избежать использования NH₃, молекулярного йода и агрессивных окислителей, выполняется в мягких условиях в одном реакторе без выделения промежуточных продуктов и позволяет получать нитрилы из спиртов различных рядов с хорошим или отличным выходом.

Насколько нам известно, однореакторное ЭХО спиртов в нитрилы в водно-органической среде ранее не описывалось. В качестве модельного субстрата мы использовали октанол-1 и изучили влияние структуры пиридиновых оснований и разных источников азота на непрямое ЭХО субстрата в октанитрил (табл. 5). Состав продуктов реакции менялся в зависимости от источника азота и количества пропущенного электричества. Природа пиридинового основания не оказывала существенного влияния на выход нитрила. Согласно полученным данным, после пропускания 4 F электричества при использовании в качестве источника азота иодида аммония (NH_4I) и в качестве сокатализатора любого из изученных пиридиновых оснований основным продуктом непрямого ЭХО октанола-1 являлся октанитрил с высоким выходом по веществу (до 99%) (табл. 5).

Предположительно образование нитрила происходит в объеме электролита из соответствующего имина (в случае соли аммония) или оксима (в случае $NH_2OH \cdot HCl$), которые в свою очередь получаются в результате взаимодействия альдегида (4) и источника азота. Альдегид (4) образуется в электролите вблизи поверхности анода при окислении спирта OK (8), который является продуктом взаимодействия 4-AcNH-TEMPO (2) с йодом, генерируемым на аноде (схема 2). Использование двухфазной системы способствует переходу промежуточных соединений и продукта реакции в органическую фазу и препятствует процессу быстрого окисления альдегида до карбоновой кислоты.

Следует отметить, что образование нитрила из имина происходит более эффективно, чем из оксима, вследствие того, что предложенная каталитическая система, содержащая HP и пиридиновое основание, обладает более высокой дегидрирующей, чем дегидратирующей способностью. Поэтому галогениды аммония, используемые в качестве источников азота, позволяют получать нитрилы с более высоким выходом. Кроме того, NH₄I легко доступен и подходит для получения *in situ* как NH₃ в результате гидролиза в щелочной среде, так и йода на аноде, вместо использования раствора аммиака или насыщенного аммиаком органического растворителя и молекулярного I₂ [48].

Предложенный нами электрохимический метод получения нитрилов оказался очень эффективным, поскольку позволил избежать использования токсичных реагентов, металлсодержащих катализаторов и опасных окислителей. Метод однореакторного непрямого ЭХО спиртов до нитрилов был апробирован на примере спиртов жирного, жирно-ароматического, ароматического и гетероциклического рядов (табл. 6).

Наилучшие результаты достигнуты при окислении спиртов жирного ряда в присутствии NH_4I и 2,6-лутидина (табл. 6). В водной фазе электролита обнаружено незначительное количество соответствующих карбоновых кислот (3–5%). В большинстве случаев максимальное количество нитрила зафиксировано после пропускания 4 F и в зависимости от структуры исходного спирта составляет 17–70% (в присутствии $NH_2OH \cdot HCI$) [49] и 80–99% (в присутствии NH_4I). Ароматические и жирно-ароматические спирты в исследованных условиях превращаются в нитрилы несколько медленнее (после пропускания 4.5 F), чем спирты жирного ряда (табл. 6). Следует отметить, что 5-ГМФ вследствие своей неустойчиво-

ЭЛЕКТРОХИМИЯ том 59 № 10 2023

Таблица 6. Непрямое электрохимическое окисление спиртов до нитрилов системой 4-ацетамидо-2,2,6,6-тетраметилпиперидин-1-оксил/иодид аммония в при-сутствии 2,6-лутидина^а

Спирт	Состав продуктов реакции после пропускания 4 F, (%) ⁶		
	альдегид	нитрил	
Гексанол-1	_	98	
Гептанол-1	—	96	
Октанол-1	—	99	
Нонанол-1	—	95	
2-Фенилэтанол	10	90 ^в	
Бензиловый	_	95	
п-Метоксибензиловый	19	81 ^в	
п-Бромбензиловый	16	84 ^в	
Тиофеновый	41	58 ^в	
5-Гидроксиметилфур- фурол	50	15 ^r	

^а Условия реакции приведены в общей методике окисления спиртов до нитрилов кислот.

⁶ Согласно данным ГХ-МС.

^в После пропускания 4.5 F электричества.

^г Остальное 35% — неидентифицированные продукты окисления.

сти к действию йода и к длительному электролизу в предлагаемых условиях частично подвергался полимеризации, что привело к низкому выходу соответствующего нитрила (табл. 6).

ЗАКЛЮЧЕНИЕ

Таким образом, в результате проведенных исследований разработана эффективная универкаталитическая система 4-AcNHсальная ТЕМРО/КІ/пиридиновое основание для непрямого ЭХО спиртов. Использование в качестве сокатализатора – пиридина, 2,6-лутидина или коллидина позволило после пропускания 2-2.2 F получить из спиртов жирного, жирно-ароматического, ароматического и гетероциклического рядов карбонильные соединения с высоким выходом по веществу и току (до 90-100%). В присутствии пиридина, но при увеличении количества пропущенного электричества до 4 F удалось превратить спирты жирного и жирно-ароматического ряда в сложные эфиры с выходом по веществу до 35%. Замена пиридина на 2,6-лутидин или коллидин привела после пропускания 5-6 F к получению ангидридов кислот с выходом до 80%. В присутствии 2,6-лутидина и источника азота – иодида аммония спирты различных рядов были преврашены после пропускания 4-4.5 F в нитрилы с высоким выходом по веществу (до 99%).

БЛАГОДАРНОСТИ

Данную статью мы посвящаем памяти нашего научного руководителя и коллеги доктора химических наук, профессора Кагана Ефима Шоломовича.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена на оборудовании Центра коллективного пользования "Нанотехнологии" Южно-Российского государственного политехнического университета (НПИ) им. М.И. Платова при финансовой поддержке Российского научного фонда (проект № 21-13-00177).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Cernansky, R., Chemistry: green refill., *Nature*, 2015, vol. 519, no. 7543, p. 379. https://doi.org/10.1038/NJ7543-379A
- Kärkäs, M.D., Electrochemical strategies for C–H functionalization and C–N bond formation, *Chem. Soc. Rev.*, 2018, vol. 47, no. 15, p. 5786. https://doi.org/10.1039/c7cs00619e
- Waldvogel, S.R. and Janza, B., Renaissance of electrosynthetic methods for the construction of complex molecules, *Angew. Chem. Int. Ed. Engl.*, 2014, vol. 53, no. 28, p. 7122. https://doi.org/10.1002/anie.201405082
- 4. Wiebe, A., Gieshoff, T., Möhle, S., Rodrigo, E., Zirbes, M., and Waldvogel, S.R., Electrifying Organic Synthesis, *Angew. Chem., Int. Ed. Engl.*, 2018, vol. 57, no. 20, p. 5594.
 - https://doi.org/10.1002/anie.201711060
- 5. Yan, M., Kawamata, Y., and Baran, P.S., Synthetic organic electrochemical methods since 2000: on the verge of a renaissance, *Chem. Rev.*, 2017, vol. 117, no. 21, p. 13230.

https://doi.org/10.1021/acs.chemrev.7b00397

 Trincado, M., Banerjee, D., and Gruetzmacher, H., Molecular catalysts for hydrogen production from alcohols, *Energy & Environmental Sci.*, 2014, vol. 7, no. 8, p. 2464.

https://doi.org/10.1038/ncomms7859

- Cha, H.G. and Choi, K.-S., Combined biomass valorization and hydrogen production in a photoelectrochemical cell, *Nature chem.*, 2015, vol. 7, no. 4, p. 328. https://doi.org/0.1038/nchem.2194
- 8. Cantillo, D., Synthesis of active pharmaceutical ingredients using electrochemical methods: keys to improve sustainabilit, *Chem. Commun.*, 2022, vol. 58, no. 5, p. 619.

https://doi.org/10.1039/d1cc06296d

 Rafiee, M., Miles, K.C., and Stahl, S.S., Electrocatalytic Alcohol Oxidation with TEMPO and Bicyclic Nitroxyl Derivatives: Driving Force Trumps Steric Effects, J. Amer. Chem. Soc., 2015, vol. 137, no. 46, p. 14751.

https://doi.org/10.1021/jacs.5b09672

- Nutting, J.E., Rafiee, M., and Stahl, S.S., Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions, *Chem. Rev.*, 2018, vol. 118, no. 9, p. 4834. https://doi.org/10.1021/acs.chemrev.7b00763
- Rafiee, M., Konz, Z.M., Graaf, M.D., Koolman, H.F., and Stahl, S.S., Electrochemical oxidation of alcohols and aldehydes to carboxylic acids catalyzed by 4-acetamido-TEMPO: An alternative to "Anelli" and "Pinnick" oxidations, *ACS Catalysis*, 2018, vol. 8, no. 7, p. 6738. https://doi.org/10.1021/acscatal.8b01640
- Ciriminna, R., Ghahremani, M., Karimi, B., and Pagliaro, M., Electrochemical alcohol oxidation mediated by TEMPO-like nitroxyl radicals, *Chem. Open*, 2017, vol. 6, no. 1, p. 5. https://doi.org/10.1002/open.201600086
- Manda, S., Nakanishi, I., Ohkubo, K., Yakumaru, H., Matsumoto, K., Ozawa, T., Ikota, N., Fukuzumi, Sh., and Anzai, K., Nitroxyl radicals: electrochemical redox behaviour and structure–activity relationships, *Organic & biomolec. chem.*, 2007, vol. 5, no. 24, p. 3951. https://doi.org/10.1039/b714765a
- Bobbitt, J.M., Brückner, C., and Merbouh, N., Oxoammonium—Nitroxide-Catalyzed Oxidations of Alcohols, Org. Reactions, 2004, p. 103. https://doi.org/10.1002/0471264180.or074.02
- Bobbitt, J.M., Bartelson, A.L., Bailey, W.F., Hamlin, T.A., and Kelly, Ch.B., Oxoammonium Salt Oxidations of Alcohols in the Presence of Pyridine Bases, *J. Org. Chem.*, 2014, vol. 79, no. 3, p. 1055. https://doi.org/10.1021/jo402519m
- Sheldon, R.A. and Arends, I.W., Organocatalytic oxidations mediated by nitroxyl radicals, *Advanced Synthe*sis & Catalysis, 2004, vol. 346, no. 9–10, p. 1051. https://doi.org/10.1002/adsc.200404110
- Merbouh, N., Bobbitt, J.M., and Brückner, C., Oxoammonium Salts. 9. Oxidative Dimerization of Polyfunctional Primary Alcohols to Esters. An Interesting β Oxygen Effect, *J. Org. Chem.*, 2004, vol. 69, no. 15, p. 5116. https://doi.org/10.1021/jo049461j
- Chen, Q., Fang, Ch., Shen, Zh., and Li, M., Electrochemical synthesis of nitriles from aldehydes using TEMPO as a mediator, *Electrochem. Commun.*, 2016, vol. 64, p. 51. https://doi.org/10.1016/j.elecom.2016.01.011
- Cha, H.G. and Choi, K.-S., Combined biomass valorization and hydrogen production in a photoelectrochemical cell, *Nat Chem.*, 2015, vol. 7, no. 4, p. 328. https://doi.org/10.1038/nchem.2194
- Ciriminna, R., Pagliaro, M., and Luque, R., Heterogeneous catalysis under flow for the 21st century fine chemical industry, *Green Energy & Environment*, 2021, vol. 6, no. 2, p. 161. https://doi.org/10.1016/j.gee.2020.09.013
- 21. Tojo, G. and Fernández, M., Oxidation of primary alcohols to carboxylic acids. Springer New York: Science +

ЭЛЕКТРОХИМИЯ том 59 № 10 2023

Business Media LLC, 2007. 124 p. https://doi.org/10.1007/0-387-35432-8

- Kopylovich, M.N., Ribeiro, A.P., Alegria, E.C., Martins, N.M., Martins, L.M., and Pombeiro, A.J.L., *Advances in Organometallic Chemistry*. Chapter Three Catalytic Oxidation of Alcohols: Recent Advances, Massachusetts: Acad. Press, 2015. p. 91–174. https://doi.org/10.1016/bs.adomc.2015.02.004
- Badalyan, A. and Stahl, S.S., Cooperative Electrocatalytic Alcohol Oxidation with Electron-Proton-Transfer Mediators, *Nature*, 2016, vol. 535, p. 406. https://doi.org/10.1038/nature18008
- 24. Inokuchi, T., Matsumoto, S., and Torii, S., Indirect Electrooxidation of Alcohols by a Double Mediatory System with Two Redox Couples of [R2N+=O]/R2-NO• and [Br• or Br⁺]/Br⁻ in an Organic-Aqueous Two-Phase Solution, *J. Org. Chem.*, 1991, vol. 56, p. 2416.

https://doi.org/10.1021/jo00007a031

- Inokuchi, T., Liu, P., and Torii, S., Oxidations of Dihydroxyalkanoates to Vicinal Tricarbonyl Compounds with a 4-BzoTEMPO-Sodium Bromite System or by Indirect Electrolysis Using 4-BzoTEMPO and Bromide Ion, *Chem. Lett.*, 1994, vol. 23, p. 1411. https://doi.org/10.1002/chin.199507075
- Tebben, L. and Studer, A., Nitroxides: Applications in Synthesis and in Polymer Chemistry, *Angewandte Chemie*, 2011, vol. 50, p. 5034. https://doi.org/10.1002/anie.201002547
- Каган, Е.Ш., Кашпарова, В.П., Жукова, И.Ю., Кашпаров, И.И. Окисление спиртов электрохимически генерируемым иодом в присутствии нитроксильных радикалов. *Журн. прикл.. химии.* 2010. Т.83. Вып. 4. С. 693. [Kagan, E.S., Kashparova, V.P., Zhukova, I.Yu., and Kashparov, I.I., Oxidation of alcohols by iodine in the presence of nitroxyl radicals generated electrochemically, *Russ. J. Appl. Chem.*, 2010, vol. 83,

no. 4, p. 745.] https://doi.org/10.1134/S1070427210040324

- Kashparova, V.P., Klushin, V.A., Leontyeva, D.V., Smirnova, N.V., Chernyshev, V.M., and Ananikov, V.P., Selective Synthesis of 2,5-Diformylfuran by Sustainable 4-acetamido-TEMPO/Halogen-Mediated Electrooxidation of 5-Hydroxymethylfurfural, *Chem. Asian J.*, 2016, vol. 11, no. 18, p. 2578. https://doi.org/10.1002/asia.201600801
- 29. Kashparova, V.P., Klushin, V.A., Zhukova, I.Yu., Kashparov, I.S., Chernysheva, D.V., Il'chibaeva, I.B., Smirnova, N.V., Kagan, E.Sh., and Chernyshev, V.M., A TEMPO-like nitroxide combined with an alkyl-substituted pyridine: An efficient catalytic system for the selective oxidation of alcohols with iodine, *Tetrahedron Letters*, 2017, vol. 58, no. 36, p. 3517. https://doi.org/10.1016/J.TETLET.2017.07.088
- Hayness, W.M., Lide, D.R., and Bruno, T.J., *Handbook of chemistry and physics*, USA: CRC Press Taylor & Francis Group, 2014. 2666 p. http://www.crcpress.com
- Kim, J. and Stahl, S.S., Cu/nitroxyl-catalyzed aerobic oxidation of primary amines into nitriles at room temperature, *ACS catalysis*, 2013, vol. 3. no. 7, p. 1652. https://doi.org/10.1021/cs400360e
- 32. Miller, R.A. and Hoerrner, R.S., Iodine as a Chemoselective Reoxidant of TEMPO: Application to the Oxi-

ЭЛЕКТРОХИМИЯ том 59 № 10 2023

dation of Alcohols to Aldehydes and Ketones, *Organic Letters*, 2003, vol. 5, no. 3, p. 285. https://doi.org/10.1021/ol0272444

- 33. Hamlin, T.A., Kelly, Ch.B., Ovian, J.M., Wiles, R.J., Tilley, L.J., and Leadbeater, N.E., Toward a Unified Mechanism for Oxoammonium Salt-Mediated Oxidation Reactions: A Theoretical and Experimental Study Using a Hydride Transfer Model, *J. Org. Chem.*, 2015, vol. 80, no. 16, p. 8150. https://doi.org/10.1021/acs.joc.5b01240
- 34. Inokuchi, T., Matsumoto, S., Fukushima, M., and Torii, S., A New Oxidizing System for Aromatic Alcohols by the Combination of N-Oxoammonium Salt and Electrosynthesized Tetraalkylammonium Tribromide, *Bull. Chem. Soc. Japan.*, 1991, vol. 64, no. 3, p. 796. https://doi.org/10.1246/BCS.J.64.796
- 35. Кашпарова, В.П., Кашпаров, И.С., Жукова, И.Ю., Астахов, А.В., Ильчибаева, И.Б., Каган, Е.Ш. Окислительная димеризация спиртов в присутствии каталитической системы нитроксильный радикал-йод. *Журн. общей химии.* 2016. Т. 86. Вып. 11. С. 1779. [Kashparova, V.P., Kashparov, I.S., Zhukova, I.Yu., Astakhov, A.V., Ilchibaeva, I.B., and Kagan, E.Sh., Oxidative dimerization of alcohols in the presence of nitroxyl radical-iodine catalytic system, *Russ. J. General Chem.*, 2016, vol. 86, no 11, p. 2423.] https://doi.org/10.1134/S1070363216110049
- 36. Toledo, H., Pisarevsky, E., Abramovich, A., and Szpilman, A.M., Organocatalytic oxidation of aldehydes to mixed anhydrides, *Chem. Commun.*, 2013, vol. 49, no. 39. p. 4367. https://doi.org/10.1039/C2CC35220F
- 37. Singha, R., Ghosh, M., Nuree, Ya., and Ray, J.K., TBHP-Promoted and Iodide-Catalyzed Synthesis of Anhydrides via Cross Dehydrogenative Coupling (CDC) of Aldehydes, *Tetrahedron Letters*, 2016, vol. 57, no. 12, p. 1325. https://doi.org/10.1016/j.,tetlet.2016.02.036

38. Кашпарова, В.П., Папина, Е.Н., Кашпаров, И.И.,

- Кашпарова, Б.П., Папипа, Е.П., Кашпаров, П.П., Жукова, И.Ю., Ильчибаева, И.Б., Каган, Е.Ш. Однореакторный электрохимический синтез ангидридов кислот из спиртов. *Журн. общей химии.* 2017. Т. 87. Вып. 11. С. 1911. [Kashparova, V.P., Papina, E.N., Kashparov, I.I., Ilchibaeva, I.B., Zhukova, I.Y., and Kagan, E.S., One-pot electrochemical synthesis of acid anhydrides from alcohols, *Russ. J. General Chem.*, 2017, vol. 87, no. 11, p. 2733.] https://doi.org/10.1134/S1070363217110330
- 39. Brayer, G.D. and James, M.N.G., A charge-transfer complex: bis(2,4,6-trimethyl-1-pyridyl)iodonium perchlorate, *Acta Crystallographica*, *Section B*, 1982, no. 38(2). p. 654. https://doi.org/10.1107/S0567740882003689
- Mori, N. and Togo, H., Facile oxidative conversion of alcohols to esters using molecular iodine, *Tetrahedron*, 2005, vol. 61, no. 24, p. 5915. https://doi.org/10.1016/j.tet.2005.03.097
- Kelly, C.B., Lambert, K.M., Mercadante, M.A., John, M., Ovian, J.M., Bailey, W.F., and Leadbeater, N.E., Access to Nitriles from Aldehydes Mediated by an Oxoammonium Salt. *Angewandte Chemie*, 2015, vol. 54, no. 14, p. 4241. https://doi.org/10.1002/anie.201412256

- 42. Vatèle, J.-M., One-pot oxidative conversion of alcohols into nitriles by using a TEMPO/PhI (OAc) 2/NH₄OAc system, *Synlett.*, 2014, vol. 25, no. 9, p. 1275. https://doi.org/10.1055/s-0033-1341124
- Talukdar, S., Hsu, J.-L., Chou, T.-Ch., and Fang, J.-M., Direct transformation of aldehydes to nitriles using iodine in ammonia wate, *Tetrahedron Lett.*, 2001, vol. 42, no. 6, p. 1103. https://doi.org/10.1016/S0040-4039(00)02195-X
- 44. Dighe, S.U., Chowdhury, D., and Batra, S., Iron Nitrate/TEMPO: a superior homogeneous catalyst for oxidation of primary alcohols to nitriles in air, *Advanced Synthesis & Catalysis*, 2014, vol. 356, no. 18, p. 3892. https://doi.org/10.1002/adsc.201400718
- 45. Jagadeesh, R., Junge, H., and Beller, M., Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts, *Nature Commun.*, 2014, vol. 5, p. 4123. https://doi.org/10.1038/ncomms5123
- 46. Fan, Z., Yang, X., Chen, Ch., Shen, Zh., and Li M., One-pot electrochemical oxidation of alcohols to nitriles mediated by TEMPO, *J. Electrochem. Soc.*, 2017, vol. 164, no. 4, p. G54. https://doi.org/10.1149/2.1561704jes

- Yang, X., Fan, Zh., Shen, Zh., and Li, M., Electrocatalytic synthesis of nitriles from aldehydes with ammonium acetate as the nitrogen source, *Electrochim. Acta*, 2017, vol. 226, p. 53. https://doi.org/10.1016/i.electacta.2016.12.168
- Rodrigues, R.M., Thadathil, D.A., Ponmudi, K., George, A., and Varghese, A., Recent Advances in Electrochemical Synthesis of Nitriles: A Sustainable Approach, *ChemistrySelect*, 2022, vol. 7, no. 12, p. e202200081. https://doi.org/10.1002/slct.202200081
- Кашпарова, В.П., Шубина, Е.Н., Ильчибаева, И.Б., Кашпаров, И.И., Жукова, И.Ю., Каган, Е.Ш. Превращение спиртов в нитрилы в условиях электрокаталитического окисления. Электрохимия. 2020. Т. 56. С. 446. Doi [Kashparova, V.P., Shubina, E.N., Il'chibaeva, I.B., Kashparov, I.I., Zhukova, I.Yu., and Kagan, E.Sh., Transformation of Alcohols into Nitriles under Electrocatalytic Oxidation Conditions, *Russ. J. Electrochem.*, 2020, vol. 56, p. 422.] https://doi.org/10.1134/S1023193520050055 https://doi.org/10.31857/S0424857020050059