УДК 551.46

ДИНАМИКА НЕСТАЦИОНАРНЫХ ЦИЛИНДРИЧЕСКИХ УЕДИНЕННЫХ ВНУТРЕННИХ ВОЛН

© 2021 г. К. А. Горшков^а, Л. А. Островский^а, И. А. Соустова^{а, *}

^аИнститут прикладной физики Российской академии наук, ул. Ульянова, 46, Нижний Новгород, 603950 Россия *e-mail: soustovai@mail.ru

> Поступила в редакцию 07.07.2020 г. После доработки 21.10.2020 г. Принята к публикации 09.12.2020 г.

Дано приближенное аналитическое описание нестационарной эволюции цилиндрических нелинейных уединенных волн со сложной структурой. Анализируется модифицированное уравнение Гарднера с граничным условием в виде "широкого" солитона, близкого к предельному. Проведенный анализ показывает качественное различие в поведении сходящихся и расходящихся волн, а также отличие от квазистационарной динамики цилиндрических солитонов.

Ключевые слова: внутренние волны, солитоны, кинки, цилиндрическая сходимость, расходимость **DOI:** 10.31857/S000235152102005X

введение

Как показывают спутниковые наблюдения, внутренние гравитационные волны, повсеместно наблюдаемые в Мировом океане, часто имеют криволинейные фронты [1-3]. Такая картина типична для внутренних волн, генерируемых локальными возмущениями в шельфовых областях морей и океанов. В литературе подробно изучено влияние цилиндрической расходимости на распространение длинных слабонелинейных волн в рамках интегрируемого цилиндрического уравнения Кортевега-де Вриза (КдВ) [4–10]. В частности, полученный в квазистационарном приближении закон изменения амплитуды цилиндрического солитона КдВ $(r/r_0)^{-2/3}$, где r_0 – начальная координа-та солитона, подтверждается многочисленными численными и лабораторными экспериментами [6-10]. Вместе с тем, во многих случаях амплитуда наблюдаемых уединенных внутренних волн не мала, и их ширина значительно больше предсказываемой в рамках КдВ модели [11–14]. В этом случае неплохим приближением может служить уравнение Гарднера, содержащее квадратичную и кубичную нелинейности и также часто используемое для моделирования нелинейных волновых процессов в стратифицированной жидкости [11-20]. В работах [14, 15] было получено лучевое урав-

нение Гарднера, позволяющее учесть неодномерность волновых фронтов нелинейных внутренних волн в океане с переменными глубиной и гидрологией, а в [16] численно, а также в рамках приближенной квазистационарной теории изучалось

влияние слабой цилиндрической расходимости на трансформацию уединенных внутренних волн различных типов, существующих при разных знаках коэффициентов нелинейности и дисперсии уравнения Гарднера. Для весьма распространенной модели двухслойной жидкости характерно существование солитонов предельной амплитуды [17]. Солитоны, близкие к предельным (назовем их широкими), имеют вид прямоугольных импульсов и могут трактоваться как составные структуры, образованные более "элементарными" стационарными волнами - кинками (перепадами поля). Подобые солитоны с составной структурой были также обнаружены при численном исследовании уравнений Эйлера в плавно стратифицированной жидкости [18]. Как установлено в [16], динамика цилиндрически расходящегося широкого солитона в квазистационарном приближении качественно отличается от аналогичной динамики солитона КдВ: вначале такой солитон сохраняет почти предельную амплитуду, становится более узким и лишь затем начинает спадать по амплитуде в соответствии с квазистационарным законом $(r/r_0)^{-2/3}$, характер-ным для КдВ солитонов, и, соответственно, расширяться как $(r/r_0)^{2/3}$. Вместе с тем, для широких солитонов был разработан приближенный подход [21-24], дающий аналитическое описание существенно нестационарной эволюции таких уединенных волн, которые уже не близки по форме к солитонам. При этом форма первоначальной уединенной волны может существенно искажаться,

вплоть до рождения новых солитонов. Ключевым моментом в этом подходе является переход от традиционного описания эволюции солитонов как целостных образований к описанию динамики составляющих их кинков и нестационарных полей вне кинков. Использование этого подхода позволяет исследовать нестационарные процессы, возникающие при взаимодействии солитонов [12, 21] и при их распространении в средах с переменными параметрами [22-24], когда масштабы возмущающих факторов становятся сравнимыми и даже существенно меньше масштабов уединенных волн. В частности, с помощью данного подхода удалось рассчитать параметры уединенных внутренних волн в так называемых критических точках. связанных с изменением знака квалратичной нелинейности уравнения Гарднера [24, 28]. Такие ситуации характерны, в частности, для уединенных внутренних волн в шельфовой зоне океанов и морей [25-28].

В настоящей работе на основании указанного подхода изучается принципиально нестационарное поведение цилиндрически расходящихся и сходящихся локализованных волн в уравнении Гарднера. Для краткости будем называть их квазисолитонами. Сходящиеся (фокусируемые) волны рассматриваются не только из-за нетривиальных особенностей их эволюции, но и потому, что такие волны могут наблюдаться в реальном океане, например при отражении расходящейся волны от крутого берега вогнутой формы.

ШИРОКИЕ СОЛИТОНЫ КАК СОСТАВНЫЕ ОБРАЗОВАНИЯ

Будем исходить из уравнения Гарднера, дополненного слагаемым, ответственным за цилиндрическую геометрию задачи вдали от центра [16, 25, 26]:

$$\tilde{\Phi}_r + \tilde{\Phi} \left(\alpha_0 - \mu_0 \tilde{\Phi} \right) \tilde{\Phi}_m + \beta \tilde{\Phi}_{mmm} = -\frac{\widetilde{\Phi}}{2r}.$$
 (1)

Согласно [25, 26], при модовом подходе переменнная $\tilde{\Phi}$ связана со смещением частиц на горизонте максимума соответствующей моды, $T = \frac{r}{c_0} \pm t$ — время в сопровождающей системе координат; знаки (±) относятся соответственно к сходящимся и расходящимся волнам. Для внут-

ренних волн параметры α_0 , μ_0 , β и скорость длинных линейных волн c_0 определяются стратификацией жидкости. Пределы применимости уравнения (1) обсуждались, например, в [29].

Замена переменной $\tilde{\Phi} = \Phi \sqrt{\frac{r_0}{r}}$ сводит уравнение (1) к уравнению с переменными коэффициентами:

$$\Phi_r + \Phi(\alpha(r) - \mu(r)\Phi)\Phi_T + \beta\Phi_{TTT} = 0, \qquad (2)$$

где

$$\alpha(r) = \frac{\alpha_0}{\sqrt{r/r_0}}, \quad \mu(r) = \frac{\mu_0}{r/r_0}.$$

Уравнение Гарднера (1) с нулевой правой частью хорошо описывает эволюцию солитонов внутренних волн умеренной амплитуды в двухслойной жидкости; обобщение (1) на случай медленно меняющихся в горизонтальном направлении параметров дано в [14, 15]. В эволюционной по переменной *r* задаче (2) растущим значениям $r > r_0$ соответствуют цилиндрически расходящиеся фронты, а убывающим значениям $r < r_0$ – сходящиеся.

При постоянных коэффициентах α , β и $\mu > 0$, уравнение (2) имеет семейство солитонных решений:

$$\phi_s = \overline{\phi} + \frac{A}{2} [th((T - sr + \Delta/2)/\tau) - (3a) - th((T - sr - \Delta/2)/\tau)],$$

зависящее от произвольного пьедестала $\overline{\phi}$ = const и безразмерного параметра $b = \Delta/\tau$. При этом все остальные параметры, входящие в выражение (3а), можно выразить через $\overline{\phi}$ и *b*:

$$A = \phi_m thb, \ \tau = \frac{\tau_m}{thb}, \ \Delta = b\tau_m cthb,$$

$$s = s_0 + (s - s_0)th^2b, \phi_m = (\alpha/\mu) - 2\overline{\phi},$$

$$s_m = (\alpha^2/6\mu) + \frac{s_0}{3}, \ s_0 = \overline{\phi}(\alpha - \mu\overline{\phi}), \ \tau_m^{-1} = \phi_m \sqrt{\frac{\mu}{6\beta}}.$$
(36)

Амплитуда солитона $\phi_{\max} = \max(|\phi_s - \overline{\phi}|)$ и его длительность T_s на уровне $\frac{1}{2}\phi_{\max}$ также выражаются через *b*:

$$\phi_{\max} = \phi_m \left(1 - ch^{-1}b \right), \quad ch \left(T_s / \tau \right) = 2 + chb. \tag{3c}$$

Параметры *s*, *s*_m, *s*₀, входящие в (3а), (3б), (3с), имеют размерность, обратную скорости. Для краткости в дальнейшем будем называть их "медленностями". Заметим однако, что в физических переменных (*r*, *t*), величина *s* пропорциональна добавке к скорости c_0 .

Кроме солитонных решений, уравнение (2) при постоянных параметрах имеет однопараметрическое семейство решений в виде перепадов поля — кинков:

$$\phi_k = \overline{\phi} + \frac{\phi_m}{2} [1 \pm th ((T - rs_m)/\tau_m)], \qquad (4)$$

где знаки \pm соответствуют кинкам разных полярностей (кинкам и антикинкам).

Структура и характеристики солитонов (3а) существенно зависят от величины параметра *b*.

ИЗВЕСТИЯ РАН. ФИЗИКА АТМОСФЕРЫ И ОКЕАНА том 57 № 2 2021

При $b \ll 1$ амплитуда солитона мала ($\phi_{\text{max}} \approx \phi_m b^2$) и решение ((3а) – (3с)) близко к солитонному решению КдВ. В другом предельном случае, когда $b \ge 1$, амплитуда солитона стремится к предельной ($\phi_{\text{max}} = \phi_m$), и уединенная волна приобретает прямоугольную форму в виде протяженного плато длительностью $\Delta = b\tau_m$, ограниченного относительно узкими перепадами поля, близкими к кинкам (4). В общем случае солитоны (3а) можно рассматривать как составные образования, сформированные кинками (4) разной полярности. Наиболее очевидным образом это свойство проявляется у солитонов при $b \ge 1$, когда, как показано в [22–24], решение (3) имеет вид суперпозиции кинков (4):

$$\begin{split} \phi_{s}\left(T-sr\right)_{b\geq1} &= \phi_{k}\left(T-T_{f}\left(r\right)\right) + \phi_{k}\left(T-T_{c}\left(r\right)\right) - \\ &- \overline{\phi} - \phi_{m} = \overline{\phi} + \frac{\phi_{m}}{2} \times \\ &\times \left[th\left(\left(T-T_{f}\left(r\right)\right)/\tau_{m}\right) - th\left(\left(T-T_{c}\left(r\right)\right)/\tau_{m}\right)\right], \end{split}$$
(5)

где изменения временных координат фронта $T_{
m d}\left(r
ight)$ и спада $T_{
m c}\left(r
ight)$ определяются уравнениями:

$$\frac{dT_f}{dr} = \frac{dT_c}{dr} = s_m - 4\left(s_m - s_0\right) \exp\left[-\frac{\left(T_f - T_c\right)}{\tau_m}\right].$$
 (6)

Решения (5), (6) описывают стационарный составной солитон, длительность которого $T_f - T_c$ связана с параметрами кинка $\frac{dT_{f,c}}{dr}$ уравнением (6), согласующимся с точным соотношением для медленности *s* из (3а). Действительно, при $b \ge 1$ получаем из (3а):

$$s = s_0 + (s_m - s_0)th^2b \approx s_m - 4(s_m - s_0) \times \\ \times \exp\left[-\frac{(T_f - T_c)}{\tau_m}\right].$$

При наличии возмущений, обусловленных плавным изменением параметров $\alpha(r)$ и $\mu(r)$ в (2), эволюция составного солитона может быть описана как динамика составляющих его кинков, согласованная с медленным изменением поля вне кинков. Такой подход включает в себя, как частный случай, рассмотренную ранее квазистационарную эволюцию солитона как целого, когда его пространственно-временные масштабы в процессе распространения остаются малыми по сравнению с масштабами возмущающих факторов [16]. Обсудим кратко эту задачу для широких солитонов, используя развитый здесь подход. В данном случае форма широкого солитона остается близкой к прямоугольной, его амплитуда близка к предельной $\phi_m = (\alpha/\mu) - 2\phi$, а длительность $\Delta = (T_f(r) - T_c(r))$ определяется уравнениями (6). Последнюю зависимость проще, однако, определить из сохранения интеграла в урав-

нении (2):
$$\int_{-\infty}^{+\infty} \phi_s^2 dt = P_0 = \text{const} [13, 25].$$

Учитывая прямоугольную форму волны и полагая $\overline{\phi} = 0$, отсюда сразу получаем $\Delta(r)\phi_m^2 = \text{const}$, и для широкого цилиндрического солитона отсюда следует:

$$\Delta(r) = \Delta(r_0) \frac{r_0}{r}.$$
(7)

Отметим, что амплитуда цилиндрического солитона для исходной переменной $\tilde{\Phi}$, также как и его обратная скорость s_m , не зависят от r и равны соответственно $\frac{\alpha_0}{\mu_0}$ и $\frac{\alpha_0^2}{6\mu_0}$. В отличие от известных результатов [см, например, 16], соотношение (7) в явной форме описывает изменение единственного параметра составного цилиндрического солитона – его ширины $\Delta(r)$. Отметим, что зависимость (7) следует и из общего выражения для приведенного выше интеграла, которое справедливо для солитонов с любым $0 < b < \infty$:

$$b - thb = B\alpha(r)^{-1}\mu(r)^{\frac{3}{2}}\beta^{-\frac{1}{2}} = C\frac{r_0}{r}\alpha_0^{-1}\mu_0^{\frac{3}{2}}\beta^{-\frac{1}{2}}, \quad (8)$$

где константы *B* и *C* определяются условием при $r = r_0$. При $b \ge 1$ выражение (8) сводится к (7), а при $b \ll 1$ из (8) следует упомянутый выше закон изменения амплитуды цилиндрического солитона КдВ.

ПОСТРОЕНИЕ НЕСТАЦИОНАРНОГО РЕШЕНИЯ

Перейдем к основному случаю, когда импульс теряет форму, близкую к стационарному солитону, и приобретает составную структуру (квазисолитон), состоящую из плавно меняющейся вершины, ограниченной резкими перепадами поля - кинками, которые изменяются квазистационарным образом. В соответствии с методом сращиваемых асимптотических разложений в форме, предложенной в [21-24], сначала решение строится отдельно для кинков и для существенно более протяженных областей межлу ними. а затем эти решения сшиваются. Здесь предполагается, что масштаб возмущающего фактора, в данном случае радиус r, существенно превышает ширину кинков. Такое соотношение масштабов позволяет считать эволюцию каждого кинка квазистационарной, т.е. описываемой в соответствии с (4), а медленное изменение поля вне кинков опреде-

Рис. 1. Схема эволюции (а) – расходящегося и (б) – сходящегося широкого солитона (пунктир – форма солитона в начальной точке, при $r = r_0$; сплошная линия – форма солитона при $r > r_0$ (а) и $r < r_0$ (б). $T_f(r_0)$ – момент прохождения фронта через точку r_0 , $T_c(r_0)$ – момент прохождения спада через точку r_0 . $\Phi_{f,c}^+$ – значения поля при $T > T_{f,c}$ и $\Phi_{f,c}^-$ значение поля при $T < T_{f,c}$ для фронта и спада соответственно. Здесь и далее в данной системе отсчета сходящаяся волна смещается влево, а расходящаяся – вправо по оси T.

ляется уравнением (2) в бездисперсионном приближении:

$$\Phi_r + \Phi\left(\frac{\alpha_0}{\sqrt{r/r_0}} - \frac{\mu_0}{r/r_0}\Phi\right)\Phi_T = 0, \qquad (9)$$

т.е. уравнением простой волны с переменными параметрами. Параметры α_0 , μ_0 . β будем в дальнейшем считать для простоты равными единице.

Решение уравнения (9) хорошо известно: оно сводится к решению характеристической системы уравнений в обыкновенных производных:

$$\frac{dT}{dr} = \Phi\left(\sqrt{r_0/r} - \frac{r_0}{r}\Phi\right), \quad \frac{d\Phi}{dr} = 0, \tag{10}$$

которая определяет характеристические линии на плоскости (r,T), вдоль которых поле $\Phi(r,T)$ переносится без изменения его величины.

Для определения начальных и граничных условий (9) воспользуемся сделанным выше предположением о квазистационарном характере эволюции кинков. Это позволяет связать медленно меняющиеся поля, примыкающие к данному кинку, находящемуся в момент $T_k(r)$ на радиусе r. Обозначим это поле при $T > T_k(r)$ через $\Phi_{\kappa}^+(r)$ и поле при $T < T_k(r)$ через $\Phi_{\kappa}^-(r)$, как показано на рис. 1. Здесь k = f для переднего кинка (фронта) и k = c для заднего кинка (спада). Заметим, что, по-

скольку характеристики (10) переносят возмущения от фронта к спаду, волна перед фронтальным кинком распространяется независимо от поля за ним, хотя и влияет на это поле. В частности, если это поле в начальной точке равно нулю, то оно остается равным нулю в процессе эволюции.

Связь между полями непосредственно вблизи кинка (аналог граничного условия на слабонелинейной ударной волне в сжимаемой среде) имеет вид:

$$\Phi_{\kappa}^{+}(r) = \sqrt{r/r_{0}} - \Phi_{\kappa}^{-}(r), \quad \kappa = f, c.$$
 (11)

Это соотношение следует из выражений для асимптотик кинка (4), которые равны соответственно $\Phi^+ = \overline{\phi} + \phi_m$, $\Phi^- = \overline{\phi} - для$ кинка и $\Phi^+ = \overline{\phi}$, $\Phi^- = \overline{\phi} + \phi_m - для$ антикинка, и исключения $\overline{\phi}$ с использованием определения ϕ_m из (3а).

Траектории кинков $T_k(r)$ определяются квазистационарным выражением для s_m , следующим из (3a):

$$\frac{dT_k}{dr} = \frac{1}{6} + \frac{\overline{\Phi}}{3} \left(\sqrt{r_0/r} - \frac{r_0}{r} \overline{\Phi} \right).$$
(12)

В качестве медленно меняющегося пьедестала ϕ в (12) может быть использована как величина $\Phi_k^+(r)$, так и $\Phi_k^-(r)$, поскольку с учетом (11) выполняется равенство "характеристических медленно-

ИЗВЕСТИЯ РАН. ФИЗИКА АТМОСФЕРЫ И ОКЕАНА том 57 № 2 2021

стей" — правых частей в первом уравнении (10): $\Phi_{\kappa}^{+}\left(\sqrt{r_{0}/r} - \frac{r_{0}}{r}\Phi_{\kappa}^{+}\right) = \Phi_{\kappa}^{-}\left(\sqrt{r_{0}/r} - \frac{r_{0}}{r}\Phi_{\kappa}^{-}\right), \text{ которые, в}$ dT

свою очередь, оказываются меньше величин $\frac{dT_k}{dt_k}$

из (12). Последнее обстоятельство означает, что. как уже отмечалось, возмушения, порожлаемые кинком, отстают от него и не влияют на поле перед ним. Поэтому в качестве линии начальных данных для решения (9) следует взять траекторию кинка (например, фронта) $T_f(r)$ с распределением поля $\Phi_{f}^{+}(r)$ на ней для сходящихся фронтов и $\Phi_{f}^{-}(r)$ – для расходящихся. В результате уравнение (12) определяет медленно меняющееся поле $\Phi(r,T)$ в области между кинками, т.е. при всех $T > T_f(r)$ для сходящихся и $T < T_f(r)$ для расходящихся фронтов, включая поле вблизи траектории следующего кинка, при $T = T_c(r)$, которая находится из уравнения (12) с использованием полученного решения $\Phi(T,r)$ при $T = T_c(r)$. Далее, добавляя к найденной зависимости $T_c(r)$ распределение поля непосредственно за спадом из соотношения (11), получаем начальные условия для определения медленного поля в следующей за спадом солитона области. Таким образом, построение общего решения с помощью предложенного алгоритма состоит в последовательном нахождении полей $\Phi(T,r)$ и траекторий кинков и антикинков $T_{f,c}(r)$, начиная с области перед первым кинком, отвечающей фронту.

Рассмотрим более подробно ситуацию, когда возмущения перед солитоном в начальной точке $r = r_0$ отсутствуют и, следовательно, в соответствии со сказанным выше, будут отсутствовать и в дальнейшем. Это позволяет сразу же определить из ((10)–(12)) величину поля вблизи фронта квазисолитона со стороны вершины $\Phi^+(r) = \Phi_f(r)$ и траекторию этого фронта $T_f(r)$:

$$\Phi_f(r) = \sqrt{r/r_0},\tag{12}$$

$$T_{f}(r) = r_{0}/6\left(\frac{r}{r_{0}} - 1\right) + T_{f}(r_{0}).$$
(13)

Линию начальных данных в (13) следует дополнить отрезком:

$$\Phi(r_0, t) = 1, \quad T_c(r_0) < T < T_f(r_0), \quad (14)$$

остающимся от плоской вершины начального солитона при $r = r_0$ (см. рис. 1). Поскольку любое значение Φ = const удовлетворяет уравнению (9), этот участок остается плоским с величиной поля $\Phi(T, r) = 1$, а его эволюция сводится к изменению его длины. Постоянство этой величины позволяет определить "медленности" граничных точек этого участка: $\frac{dT}{dr} = (\sqrt{r_0/r} - r_0/r)$ со стороны фронта и

 $\frac{dT}{dr} = \frac{1}{6} + \frac{1}{3} \left(\sqrt{r_0/r} - r_0/r \right) -$ со стороны спада. В результате длительность плоского участка вершины изменяется как

$$\Delta_{\rm mn}(r) = \Delta(r_0) - 1/6 \left| \int_{r_0}^r (1 - 2\sqrt{r_0/r})^2 dr' \right|.$$
(15)

Эта величина уменьшается вдоль трассы распространения и исчезает при некотором $r = r_*$, определяемом из (15) при $\Delta_{nn}(r_*) = 0$. В то же время, начиная с $r = r_0$, непосредственно за фронтом возникает и расширяется участок вершины с неоднородным и нестационарным распределением поля $\Phi(r, t)$, порождаемый движением фронта. Это поле определяется решением уравнения (10) с условиями (13) и имеет вид:

$$T - T_{f}(r_{f}(\Phi)) = r_{0}\Phi(2(\sqrt{r/r_{0}} - \sqrt{r_{f}(\Phi)/r_{0}}) - \Phi \ln(r/r_{f}(\Phi))),$$
(16)

где $r_f = r_0 \Phi^2$.

СХОДЯЩИЕСЯ И РАСХОДЯЩИЕСЯ ВОЛНЫ

Рассмотрим теперь примеры применения развитой приближенной теории и сравнение с результатами прямого численного моделирования исходного уравнения (2). На рис. 2 показаны траектории фронта, спада и соответствующие характеристики для цилиндрически сходящегося квазисолитона.

Выражение (16) в неявном виде описывает поле на части вершины квазисолитона от фронта до начала плоского участка (пока этот участок существует) и на всем протяжении импульса от фронта до спада, когда плоская часть вершины исчезает.

Область с неоднородным и нестационарным распределением поля возникает и за спадом. Это распределение также описывается выражением (16), с заменой траектории фронта $T_f(r_f(\Phi))$ на траекторию спада $T_c(r_c(\Phi))$ и зависимости $r_f(\Phi)$ на $r_c(\Phi)$, которые находятся из соотношений:

$$\sqrt{r/r_{0}} - \Phi_{c}^{-}(r) = \Phi_{c}^{+}(r) = \Phi_{f}(r) - \Phi_{c}^{-}(r),$$

$$\frac{dT_{c}}{dr} = \frac{1}{6} + \frac{\Phi_{c}^{\pm}(r)}{3} \left(\sqrt{r_{0}/r} - \frac{r_{0}\Phi_{c}^{\pm}(r)}{r}\right).$$
(17)

Для сходящихся волн необходимо использовать зависимость $r_c(\Phi) = r_c(\Phi_c^+)$, а для расходящихся $-r_c(\Phi) = r_c(\Phi_c^-)$. Отметим, что пока суще-

Рис. 2. Сплошные линии – траектории фронта и спада сходящегося солитона, пунктир – характеристики, рассчитанные по уравнениям (10)–(12), точки – результаты численного расчета уравнения (2).

ствует плоская часть вершины, зависимости $r_c(\Phi)$ и $T_c(r_c(\Phi))$ известны, поскольку вблизи спада со стороны вершины поле постоянно и равно единице (см. рис. 1), и все величины в (17) определены. После того, как плоская часть вершины исчезает, величина поля вблизи спада со стороны вершины изменяется. Она находится из выражения (16) при $T = T_c(r_c(\Phi))$ как для сходящихся $(\Phi_c^-(r))$, так и для расходящихся $(\Phi_c^+(r))$ уединенных волн:

$$T_{c}(r) - T_{f}\left(r_{f}\left(\Phi_{c}^{\pm}(r)\right)\right) = r_{0}\Phi_{c}^{\pm}\left(2\left(\sqrt{r/r_{0}} - \Phi_{c}^{\pm}\right) - \Phi_{c}^{\pm}\ln\left(r/r_{f}\left(\Phi_{c}^{\pm}\right)\right)\right).$$
(18)

Дифференцируя (18) по *r* и исключая $\frac{dT_c}{dr}$ с по-

мощью (17), получим уравнение для Φ_c^{\pm} :

$$2r_0 \left[6\sqrt{r/r_0} - 5\Phi_c^{\pm} + 12\Phi_c^{\pm} \ln\left(\frac{\Phi_c^{\pm}}{\sqrt{r/r_0}}\right) \right] \frac{d\Phi_c^{\pm}}{dr} = \\ = \left(1 - \frac{2\Phi_c^{\pm}}{\sqrt{r/r_0}^2} \right).$$
(19)

Таким образом, полное описание медленно меняющегося поля сводится к решению единственного уравнения в обыкновенных производных (19) для величины $\Phi_c^{\pm}(r)$, решение которого можно представить в параметрической форме.

Переходя от переменных $\Phi_c^+(r)$, *r* к переменным $p = \Phi_c^+/R$, $R = \sqrt{r/r_0}$, нетрудно привести (18)

ИЗВЕСТИЯ РАН. ФИЗИКА АТМОСФЕРЫ И ОКЕАНА то

к уравнению с разделяющимися переменными, решение которого имеет вид

$$R(p) = R(p_*) \times \\ \times \exp\left[\int_{p_*}^{p} \frac{6 - 5p' + 12p' \ln p'}{1 - 10p' + 9(p')^2 - 12(p')^2 \ln p'} dp'\right],$$
(20)

где $p^* = \sqrt{r_0/r_*}, p_* \le p \le +\infty, p_* > 1$ для сходящихся фронтов и $0 \le p \le p_*, p_* < 1$ для расходящихся фронтов.

Соответствующие зависимости для спада импульса, Φ_c^{\pm} и T_c также могут быть выражены через *р* в параметрической форме:

$$\Phi_{c}^{+}(p) = pR(p), \ \Phi_{c}^{-}(p) = R(p)(1-p), T_{c}(R) = T(r_{0}) - (21) - r_{0} \Big[\frac{1}{6} - R^{2} p^{2} \Big[\ln p^{2} + \frac{2}{p} - \frac{11}{6} \Big].$$

Имея в виду, что R(p) как функция р известна, для любой пары ($\Phi_c^{\pm}(p), R(p)$) и ($T_c(p), R(p)$) получаем параметрическую зависимость от R и, следовательно, от *r*. Наконец, приведем выражение для распределения поля за спадом в параметрической форме:

$$\Phi(p) = R(p)(1-p), \quad T(p,r) - T_c(p) =$$

= $2r_0(1-p)R(p)(\sqrt{r/r_0} - R(p)) -$ (22)
 $- R(p)^2(1-p)^2 \ln[r/r_0 R(p)^2].$

том 57 № 2 2021

Рис. 3 Эволюция цилиндрически сходящегося квазисолитона с начальной длительностью $\Delta(r_0) = 60$ при различных значениях *r* (*r* = $r_0 = 600$, *r* = 300, 200, 100, 50, 5). Пунктир соответствует расчетам по приближенной модели, сплошные линии – численный расчет уравнения (2).

Полученные решения имеют, вообще говоря, ограниченную область применимости по *r*, *T*, поскольку медленный ход эволюции поля $\Phi(r,T)$ может нарушаться появлением особенностей, обусловленных пересечением характеристик (16) и приводящих к образованию сингулярностей в виде участков с бесконечной крутизной и последующей неоднозначностью поля (что типично для простых волн). Дифференцируя выражение (16) по Φ , получаем условие возникновения этих особенностей $\left(\frac{dT}{d\Phi} = 0\right)$ в виде трансцендентного уравнения

$$6y - 5 - 12 \ln y = 0, \quad y = \sqrt{r/r_0}/\Phi,$$
 (23)

имеющего два действительных корня, больших единицы: $y_1 = 1.2$, $y_2 = 3.09$. Поскольку поле вершины квазисолитона формируется возмущениями, переносимыми вдоль характеристик от фронта к спаду, то для сходящихся волн величина $y = \Phi_f / \Phi(r, T)$ всегда меньше единицы. Следовательно, особенности в распределении между кинками не возникают, хотя они возможны позади квазисолитона (см. рис. 3). Кроме того, поскольку характеристики (16) расходятся, поле между кинками монотонно увеличивается от фронта к спаду. При этом монотонно растет и временной интервал между спадом и фронтом:

$$\Delta(r) = \Delta(r_0) + 1/3 \int_{r_0}^{r} \Phi_c^-(r') \left(\sqrt{r/r_0} - \Phi_c^-(r')\right) \frac{r'}{r_0} dr'.$$
(24)

Общая картина эволюции сходящегося солитона показана на рис. 2, 3. Фронт солитона с постоянной скоростью движется к точке $T_f(r \rightarrow 0) =$ $= T_{f}(r_{0}) + r_{0}/6$, а спад квазисолитона, двигаюшийся в начале в том же направлении, что и фронт, замедляется и останавливается при $r \sim 200$, и затем начинает двигаться в противоположном направлении с увеличивающейся скоростью $\frac{dTc}{dr} \sim p^2 \sim r_0/r$. Характерный масштаб перепада поля т_т для фронта оказывается постоянным, а для спада стремится к нулю как $p \sim \sqrt{r/r_0}$. Наконец, отметим, что в исходных полевых переменных $\tilde{\Phi}(r,t)$ перепад поля на фронте квазисолитона остается постоянным и равным единице, а поле на спаде растет как $\sqrt{r_0/r}$ (рис. 3). Примечательно, что да-же при r = 5, когда масштаб перепада поля на фронте (6 $\sqrt{6}$) уже превышает расстояние до центра, преобладающая часть импульса (значительная часть вершины и спад хорошо описывается

приближенной теорией. Поскольку процесс трансформации поля идет в направлении от фронта к спаду, относительно сильные отличия при r = 5имеют место лишь вблизи фронта, в частности, его положение $T_f(r=5) \cong -125$ больше численного значения примерно на 20 единиц Т. Это обусловлено действием дисперсии, приводящей к расплыванию как самого фронта, так и части вершины, где нелинейные эффекты сильно "укручают" распределение поля (см. рис. 3). Наконец, отметим, что приближенный подход правильно описывает величину и распределение поля на участке порядка 50 единиц Т в области за спадом вплоть до точки r = 1. С другой стороны этого почти плоского участка при *r* ≈ 300 возникает пакет растущих по амплитуде осцилляций, образующихся из-за опрокидывания медленно меняющегося поля за спадом квазисолитона. С ростом r лидирующие осцилляции трансформируются в последовательность солитонов с амплитудой, близкой к предельной, т.е. приблизительно равной скачку поля на спаде.

Для цилиндрически расходящихся волн ($r > r_0$) перепад поля на фронте растет по мере распространения ($\Phi_{\rm f}(r) = \sqrt{r/r_0}$), поэтому величина поля в любой точке вершины меньше величины поля на фронте (y > 1), и образование особенности в виде участка поля с большим градиентом оказывается возможным внутри квазисолитона. В случае возникновения такой особенности дисперсионные эффекты приводят к появлению осцилляций, последующий рост которых приводит к распаду исходного солитона на последовательность более коротких уединенных волн. Регулярная (без особенностей) эволюция реализуется только для относительно коротких квазисолитонов. При этом начальная длительность солитона $\Delta_{r_0}(r_0)$, меньше которой реализуется регулярная эволюция уединенной волны, находится из условия совпадения координаты образования особенности $r_{\rm kb}$ и координаты r_* исчезновения плоского участка вершины. Поскольку значение поля в точке совпадения равно единице, из (18) получа-

ем величину $r_{\rm kp} = y_1^2 r_0 \approx 1.44 r_0$, а из условия (15) $\Delta_{\rm nn}(r_{\rm kp}, r_0, \Delta(r_0)) = 0$ имеем:

$$\Delta_{\rm kp}, (r_0) = \frac{r_0}{6} \left(y_1^2 - 8y_1 + 8\ln y_1 \right) \approx 0.07 r_0.$$
 (25)

При регулярной эволюции импульс монотонно сжимается:

$$\Delta(r) = \Delta(r_0) - 1/3 \int_{r_0}^{r} \Phi_c^+(r') \left(\sqrt{r/r_0} - \Phi_c^+(r')\right) \frac{r'}{r_0} dr',$$
(26)

вплоть до образования короткой уединенной волны, дальнейшая эволюция которой протекает по сценарию, близкому к эволюции солитона КдВ. Несмотря на монотонное изменение $\Delta(r)$, распределение поля на вершине квазисолитона изменяется немонотонно: пока существует плоский

участок вершины, отношение $\frac{\Phi_f}{\Phi_c^+}$ полей на фрон-

те и спаде растет, а после исчезновения плоского участка это отношение убывает, оставаясь больше единицы. Аналогичным образом изменяется поле за спадом, имеющее ту же полярность, что и сам квазисолитон: вначале амплитуда поля растет, а после исчезновения плоского участка вершины начинает убывать (рис. 4а). Эти особенности эволюции расходящегося квазисолитона прослеживаются и для достаточно узких солитонов, рассмотренных в [16].

Для распадающегося широкого квазисолитона, при $\Delta(r_0) > \Delta_{\kappa p}$, аналогичный процесс приводит к формированию на спаде новых импульсов. Вначале первый из них имеет масштаб, зависящий только от *r*_{кр}. Однако в дальнейшем темп сжатия этого импульса в существенной мере определяется величиной $\Delta(r_0)$. Поскольку с ростом $\Delta(r_0)$ увеличивается число более коротких уединенных волн, появляющихся за лидирующим импульсом, то увеличивается и расстояние, на котором эти уединенные волны отделяются от лидера. Указанные эффекты можно видеть, сравнивая эволюцию расходящихся квазисолитонов с разными $\Delta(r_0)$ на рис. 4а и 4б. Заметим, что в данном случае приближенная теория хорошо описывает весь процесс только до сравнительно небольших расстояний, $r \simeq 1000$, хотя и в дальнейшем она правильно определяет положение и амплитуду импульса.

Наконец, отметим, что качественные отличия в поведении сходящихся и расходящихся широких импульсов обусловлены различным соотношением характеристических медленностей точек

вершины
$$\frac{dT}{dr}$$
 и медленности его фронта $\frac{dT_f}{dr}$. В сходящихся волнах величина $\frac{dT}{dr}$ для любых точек вершины имеет противоположный знак по отно-
шению к $\frac{dT_f}{dr}$, поэтому возмущения сносятся в на-
правлении от фронта к спаду в любом месте вер-
шины, и особенностей в распределении поля на
вершине квазисолитона не возникает. Для расхо-
дящихся волн величина характеристической мед-
ленности в любой точке вершины положительна,
т.е. эти точки двигаются в том же направлении,
что и фронт. При этом медленность каждой точки
вершины возрастает от нуля вблизи фронта до ве-
личины, в полтора раза превышающей медлен-
ность фронта. При достаточной длительности им-
пульса возмущения от фронта не достигают спада

ИЗВЕСТИЯ РАН. ФИЗИКА АТМОСФЕРЫ И ОКЕАНА том 57 № 2 2021

Рис. 4. (а) — Эволюция узкого ($\Delta(r_0) = 60$) расходящегося составного квазисолитона при различных радиусах *r* ($r = r_0 = 600, r = 900, r = 1500$), (б) — то же самое для широкого солитона ($\Delta(r_0) = 100$). Сплошные линии — численный рассчет уравнения (2). Пунктир соответствует расчетам по приближенной модели.

и скапливаются, что и приводит возникновению особенностей поля.

ЗАКЛЮЧЕНИЕ

Проведенный анализ позволяет описать эволюцию локализованных нелинейных цилиндрических волн в модифицированном уравнении Гарднера, за рамками квазистационарной ситуации. Начальное условие здесь соответствует "широкому" солитону, однако в процессе эволюции импульс становится существенно нестационарным, и его приближенное описание достигается сшивкой квазистационарных кинков с слабодисперсионным полем внутри и снаружи импульса (квазисолитона).

Для цилиндрически сходящихся уединенных волн их эволюция, как и в квазистационарном случае, протекает с увеличением их длительности (эта тенденция понятна уже из условия сохранения энергии). При этом, однако, их форма сильно отличается от прямоугольной, а различие в величинах перепадов поля и скоростей фронта и спада столь велики, что не позволяют характеризовать процесс как квазистационарный. В случае цилиндрически расходящихся солитонов нестационарность процесса не столь явно выражена по сравнению со случаем сходящейся волны. В частности, отличие величин полей и скоростей фронта и спада не превышает значения 1, 2. Как и ожидалось, и в нестационарном, и в квазистационарном случаях длительность уединенной волны сокращается, но регулярный характер эволюции оказывается возможным только для достаточно коротких начальных солитонов. Для уединенных волн с большой длительностью на их вершине возникает особенность, порождающая осцилляции поля, рост которых, в свою очередь, приводит к распаду солитона на относительно короткие уединенные волны. Предлагаемый нами подход позволил определить критическое значение длительности $\Delta = \Delta_{\rm кр}$ исходной уединенной волны, начиная с которой она распадается: $\Delta_{\rm кр}$ (r_0) $\approx 0.07r_0$ (см. (22)). Соответствующая критическая ширина солито-

$$\operatorname{Ha} L_{\mathrm{Kp}} = \frac{\Delta_{\mathrm{Kp}}}{s_m} \approx 0.42r_0.$$

Относительно внутренних волн, наблюдаемых в океане, заметим здесь, что, во-первых, как отмечалось во Введении, широкие (по сравнению с КдВ солитонами) уединенные волны и их группы повсеместно наблюдаются в океане (см. также обзор [30]), и во-вторых, такие волны не всегда распространяются как стационарные или квазистационарные образования (напр., [31]). В частности, сделанная выше оценка условий перехода от квазистационарного к существенно нестационарному режиму и описание послелнего лля волн с криволинейными фронтами могут быть полезны для интерпретации океанических наблюдений. Более детальное приложение теории к конкретным океаническим ситуациям должно быть предметом отдельного исследования.

Работа выполнена в рамках государственного задания ИПФ РАН по теме НИР № 0030-2021-0007, а также при частичной поддержке проектов РФФИ №№ 18-05-00292 и 20-05-00776.

СПИСОК ЛИТЕРАТУРЫ

- Jason C.R., DaSilva J.C., Jeans G.A., Alpers W., Caruso M.J. Nonlinear internal waves in synthetic aperture radar imagery // Oceanography. 2013. V. 26. P. 68–79.
- Kropfli R.A., Ostrovsky L.A., Stanton T.P., Skirta E.A., Keane A.N., Irisov V. Relationships between strong internal waves in the coastal zone and their radar and radiometric signatures // J. Geophys. Res. 1999. № C2. P. 3133–3148.
- Farmer D.M., Armi L. The flow of Atlantic water through the Strait of Gibraltar // Prog. Oceanogr. 1988. V. 21. P. 1–105.
- Maxon S., Viecelli J. Cylindrical solitons // Phys. Fluids. 1974. V. 17. P. 1614–1616.
- Johnson R.S. Water waves and Korteweg-de Vries equations // J. Fluid Mech. 1980. V. 97. P. 701–719.
- 6. Dorfman A.A., Pelinovskii E.N., Stepanyants Yu.A. Finite-amplitude cylindrical and spherical waves in weakly dispersive media // Sov. Phys. J. Appl. Mech. Tech. Phys. 1981. № 2. P. 206–211.
- 7. *Stepanyants Yu.A.* Experimental investigation of cylindrically diverging solitons in an electric lattice // Wave Motion. 1981. № 3. P. 335–341.

- Weidman P.D., Zakhem R. Cylindrical solitary waves // J. Fluid Mech. 1988. V. 191. P. 557–573.
- Johnson R.S. Ring waves on the surface of shear flows: a linear and nonlinear theory // J. Fluid. Mech. 1990. V. 215. P. 145–160.
- Степанянц Ю.А. О затухании солитонов внутренних волн из-за цилиндрической расходимости // Известия РАН. Физика атмосферы и океана. 1981. Т. 17. № 8. С. 886–888.
- 11. *Stanton T.R., Ostrovsky L.A.* Observations of highly nonlinear internal solitons over the continental shelf // Geophys. Res. Lett. 1998. V. 25. № 14. P. 2695–2698.
- Gorshkov K.A., Ostrovsky L.A., Soustova I.A., Irisov V.G. Perturbation theory for kinks and application for multisoliton interactions in hydrodynamics // Phys. Rev. E. 2004. V. 69. P. 1–10.
- Grimshaw R., Pelinovsky E., Talipova T. Solitary wave transformation in a medium with sign-variable quadratic nonlinearity and cubic nonlinearity // Physica D. 1999. V. 132. P. 40–62.
- Grimshaw R., Pelinovsky E., Talipova T. Modelling Internal Solitary Waves in the Coastal Ocean // Surv. Geophys. 2007. V. 28. P. 273–287.
- Nakoulima O., Zahybo N., Pelynovsky E., Talipova T., Slunyaev A., Kurkin. Analytical and numerical studies of the variable-coefficient Gardner equation // Appl. Math. Comput. 2004. V. 152. P. 449–471.
- Полухина О.Е., Самарина Н.М. Цилиндрическая расходимость уединенных внутренних волн в рамках обобщенного уравнения Гарднера // Изв. РАН. Физика атмосферы и океана. 2007. Т. 43.№ 6. С. 818–825.
- Amick C.J., Turner R.E.L. A global theory of internal solitary in two-fluid system // Trans. Am. Math. Soc. 1986. V. 298. P. 431–484.
- Vlasenko V.I., Brandt P., Rubino A. On the structure of large-amplitude internal solitary waves // J. Phys. Oceanogr. 2000. V. 30. P. 2172–2185.
- Khusnutdinova K.R., Zhang X. Long ring waves in stratified fluid over a shear flow // J. Fluid Mech. 2016. V. 79. P. 27–44.
- 20. *Khusnutdinova K.R., Zhang X.* Nonlinear ring waves in two-layer fluid // Physica D. 2016. V. 333. P. 208–220.
- 21. Горшков К.А., Соустова И.А., Взаимодействие солитонов как составных структур в модели Гарднера // Изв. вузов. Радиофизика. 2001. V. XLIV. № 5. С. 502–510.
- Горшков К.А., Соустова И.А., Ермошкин А.В., Зайцева Н.В. Эволюция составного солитона уравнения Гарднера с переменными коэффициентами // Изв. вузов. Радиофизика. 2012. XLV. № 5. С. 324–337.
- Горшков К.А., Соустова И.А., Ермошкин А.В., Зайцева Н.В. О приближенном описании неквазистационарной эволюции солитонов внутренних волн, близких к предельным, в рамках уравнения Гарднера с переменными коэффициентами // Фундаментальная и прикладная гидрофизика. 2013. Т. 6. № 3. С. 54–62.

2021

ИЗВЕСТИЯ РАН. ФИЗИКА АТМОСФЕРЫ И ОКЕАНА том 57 № 2

- Горшков К.А., Соустова И.А., Ермошкин А.В. Структура поля квазисолитона при приближении к критической точке // Изв. ВУЗов. Радиофизика. 2015. Т. 58. № 10. С. 821–828.
- Grimshaw R., Pelinovsky E., Talipova T., Kurkin A. Simulation of the transformation of internal solitarywaves on oceanic shelves // J. Physic. Oceanogr. 2004. V. 34. P. 2774–2791.
- Holloway P., Pelinovsky E., Talipova T. A Generalized-Korteweg – de Vries Model of Internal Tide Transformation in the Coastal Zone // J. Geophys. Res. 1999.
- 27. Серебряный А.Н. Проявление свойств солитонов во внутренних волнах на шельфе // Изв. РАН. Физика атмосферы и океана. 1993. Т. 29. № 2. С. 244–252 // Bound. Lay. Meteor. 2006. Spec. Iss. 56 p.

- 28. Сабинин К.Д., Серебряный А.Н. Горячие точки" в поле внутренних волн в океане // Акустический журн. 2007. Т. 53. № 3. С. 410–436.
- 29. *Grimshaw R*. Initial conditions for the cylindrical Korteweg-de Vries equation // Stud. Appl. Math. 2019. P. 1–16.
- Apel J.R., Ostrovsky L.A., Stepanyants Yu.A., Lynch J.F. Internal solitons in the ocean and their effect on underwater sound // J. Acoust. Soc. Am. 2007. № 2. P. 695– 722.
- Mou J.N., Farmer D.M., Smyth W.D., Armi L., Vagley S. Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf // J. Phys. Oceanogr. 2003. V. 33. P. 2093–2112.

Dynamics of Non-Stationary Cylindrical Internal Solitary Waves

K. A. Gorshkov¹, L. A. Ostrovsky¹, and I. A. Soustova^{1, *}

¹Institute of Applied Physics of the Russian Academy of Sciences, Ulyanov str., 46, Nizhni Novgorod, 603950 Russia *e-mail: soustovai@mail.ru

An approximate analytical description of the nonstationary evolution of cylindrical nonlinear solitary waves with a complex structure is given. A modified Gardner equation with a boundary condition in the form of a "wide" soliton close to the limiting one is analyzed. The analysis performed shows a qualitative difference in the behavior of converging and diverging waves, as well as a difference from the quasi-stationary dynamics of cylindrical solitons.

Keywords: internal waves, solitons, kinks, cylindrical convergence, divergence