_____ КОЛЛОИДНАЯ ХИМИЯ _ И ЭЛЕКТРОХИМИЯ _

УДК 546.682.3,221.1;546.682.3,231.1

РАВНОВЕСИЯ В СИСТЕМЕ ZnCl₂-H₂O-NaOH ПО ДАННЫМ ПОТЕНЦИОМЕТРИЧЕСКОГО ТИТРОВАНИЯ И ВЫБОР УСЛОВИЙ ГИДРОХИМИЧЕСКОГО СИНТЕЗА ПЛЕНОК ZnS И ZnSe

© 2019 г. Е. А. Федорова^{*a*}, Л. Н. Маскаева^{*a,b,**}, В. Ф. Марков^{*a,b*}, С. А. Бахтеев^{*c*}, Р. А. Юсупов^{*c*}

^аУральский федеральный университет имени первого Президента России Б.Н. Ельцина, Екатеринбург, Россия ^bУральский институт ГПС МЧС России, Екатеринбург, Россия ^cКазанский национальный исследовательский технологический университет, Казань, Россия

*e-mail: mln@ural.ru

Поступила в редакцию 19.02.2018 г.

Методом потенциометрического титрования хлорида цинка в диапазоне концентраций 0.00006– 1.01 моль/л изучены равновесные процессы в системе $ZnCl_2-H_2O-NaOH$. На основе математического моделирования в данной системе выявлен ряд полиядерных структур и малорастворимых фаз цинка. Рассчитаны значения констант нестойкости комплексных форм и динамического равновесия труднорастворимых соединений цинка, а также их стехиометрические составы и области устойчивого существования. Расчетным путем определены уточненные граничные условия и области образования ZnSe и ZnS при осаждении селеносульфатом натрия и тиокарбамидом соответственно. Гидрохимическим осаждением на ситалловых подложках получены слои ZnSe и ZnS толщиной ~1000 нм и ~200 нм. На основании данных электронной микроскопии сделан вывод, что слои состоят из агрегатов шаровидной формы со средними размерами для ZnSe (~350–450 нм) и ZnS (50–200 нм), сформированных из первичных частиц ~20–60 нм и ~20–30 нм.

Ключевые слова: хлорид цинка, комплексообразование, потенциометрическое титрование, равновесные процессы, тонкие пленки, сульфид и селенид цинка

DOI: 10.1134/S0044453718120117

Пленки широкозонных бинарных полупроводников группы А^{II}В^{VI}, прозрачны в видимой и ИК-областях спектра: сульфид ZnS до 12.5 мкм и селенил ZnSe до 22 мкм с низким коэффициентом отражения, высокой химической стойкостью и термостабильностью - привлекают повышенное внимание исследователей. Сочетание этих свойств обеспечивает применение пленкам ZnS в лазерной технике в качестве активного и пассивного элементов, в наноэлектронике и нанофотонике [1-3], а слоев ZnSe в тепловизионных системах переднего обзора (FLIR-системы), в оптоэлектронных устройствах, лазерных диодах, для изготовления фокусирующей и проходной оптики в системах СО₂-лазеров высокой мощности [4-7]. Оба халькогенида цинка востребованы в качестве прекурсорных слоев для синтеза соединений с кестеритной структурой Cu₂ZnSnSe₄, $Cu_2ZnSn(S_xSe_{1-x})_4$ и Cu_2ZnSnS_4 [8–11].

Ряд исследователей предпочитает низкотемпературный метод получения пленок сульфида и селенида цинка — химическое осаждение из водных сред (CBD) [1, 10–18]. Наиболее распространенными являются щелочные реакционные смеси, в которых в качестве халькогенизатора выступают тио-, селенокарбамид или тио-селеносульфат натрия. В качестве солей цинка используют хлорид [13], нитрат [14], сульфат [15], ацетат [16–18].

Состояние цинка в водных растворах различных солей изучено различными методами весьма подробно в широком интервале концентраций [19–21]. Однако в обзорах, посвященных исследованию гидролиза солей цинка, практически отсутствуют сведения о моноядерных комплексных ионах с координационными числами 5 и 6, а также о полиядерных гидроксокомплексах и малорастворимых соединениях цинка.

Проведенные нами ранее исследования [21, 22] показали, что игнорирование возможности образования полиядерных комплексных форм и малорастворимых соединений металлов снижает надежность прогнозирования концентрационных областей образования их халькогенидов при гидрохимическом осаждении. Отсюда для обоснованного выбора условий осаждения пленок ZnS и ZnSe актуальным является получение более полной информации о "поведении" цинка в водных растворах.

Рис. 1. Зависимости долевых концентраций ионов Zn^{2+} и моноядерных комплексных форм металла от рН среды в системе $Zn^{2+}-H_2O-OH^-$ при аналитической концентрации цинка в растворе 0.1 моль/л. Температура 298 К.

В настоящей работе продемонстрирована необходимость учета полиядерных комплексных форм и твердофазных соединений цинка при определении концентрационных областей гидрохимического осаждения пленок его сульфида и селенида. В основу были положены результаты анализа ионных равновесий и потенциометрического титрования хлорида ZnCl₂, используемого в составе реакционных смесей, для их получения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Экспериментальный массив данных потенциометрического титрования растворов ZnCl₂ (0.00006 - 1.01)гидроксидом NaOH моль/л) (0.001-9.60 моль/л) получен с использованием рН-метра марки "рН-121". Обработку результатов титрования осуществляли с помощью программного пакета EO-5, предложенного в работе [23]. Экспериментальную проверку установленных концентрационных областей осаждения твердой фазы проводили путем конденсации пленок ZnSe (ZnS) на предварительно обезжиренные ситалловые подложки марки СТ-50-1. Реакционная смесь для получения пленок селенида цинка содержала хлорид цинка ZnCl₂, гидроксид натрия NaOH, селеносульфат натрия Na₂SeSO₃. При формировании пленок сульфида цинка использовали аналогичную реакционную ванну, заменив в ней селеносульфат натрия на тиокарбамид N_2H_4CS , играющий роль халькогенизатора. Процесс проводили при 343 К в реакторах из молибденового стекла, которые помещали в термостат ТС-ТБ-10. Продолжительность осаждения пленок составляла 120 мин.

Оценку толщины пленок халькогенидов цинка проводили с помощью микроинтерферометра Линника МИИ–4М.

Для изучения структурно-морфологических характеристик полученных пленок использовали метод растровой электронной микроскопии с использованием микроскопа MIRA3LMV.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

По справочным данным [24–26] в разбавленных водных растворах цинк образует моноядерные гидроксокомплексы с координационным числом от 1 до 4. В работе был проведен анализ ионных равновесий по методике [27]. При количественной оценке концентраций комплексов

ZnOH⁺, Zn(OH)₂, Zn(OH)₃⁻, Zn(OH)₄²⁻ были использованы численные значения показателей констант нестойкости, приведенные в [24]. Графические зависимости долевых концентраций ионных форм в системе Zn²⁺–H₂O–OH⁻ от pH представлены на рис. 1. Из рисунка видно, что активный гидролиз цинка начинается при pH > 5, что приводит к преобладанию в растворе ZnOH⁺. Далее с ростом щелочности среды в диапазоне pH 7.0–13.7 максимальной становится доля комплексной формы Zn(OH)₂. Гидроксокомплексы

 $Zn(OH)_{3}^{-}$ и $Zn(OH)_{4}^{2-}$ начинают образовываться при pH ≈ 9.7 и 11.0 соответственно. Комплекс

 $Zn(OH)_4^{2-}$ становится преобладающим в более щелочных растворах. Заметим, что авторы работы [28] провели успешное химическое осаждение пленок ZnSe из растворов с pH 13.01 ± 0.01, полагая, что образующийся в этих условиях гидроксоком-

плекс $Zn(OH)_4^{2-}$, предотвратит быстрое выпадение цинка в осадок.

Проанализировав публикации, посвященные исследованию водных растворов солей цинка, мы обнаружили единственную работу [29], в которой упоминается об образовании полиядерных комплексов металла, в частности, Zn₂(OH)₆²⁻. Причем эти комплексы авторы определили как промежуточные кинетические продукты при переходе растворимых форм металла в твердофазные соединения. Несомненно, что формирование полиядерных структур цинка в пограничной с образованием осадков области рН является закономерной тенденцией. При этом вклад этих структур в развитие процесса химического осаждения твердофазных пленок может быть определяющим. Более полную информацию о комплексных формах цинка в растворе могли бы дать результаты потенциометрического титрования соли металла.

Экспериментальный массив данных потенциометрического титрования, проведенного в

Рис. 2. Зависимости функции образования по гидроксид-иону n_{OH^-} от pH по результатам обработки экспериментальных (крестики) и теоретических (сплошные линии) кривых потенциометрического титрования раствора хлорида цинка при 298 К. Исходные концентрации соли цинка и гидроксида натрия, моль/л: $C_{Zn(II)} = 0.00006$, $C_{NaOH} = 0.001$ (a); $C_{Zn(II)} = 0.001$, $C_{NaOH} = 0.010$ (b); $C_{Zn(II)} = 0.01$, $C_{NaOH} = 0.11$ (b); $C_{Zn(II)} = 0.11$, $C_{NaOH} = 1.00$ (г); $C_{Zn(II)} = 1.00$, $C_{NaOH} = 9.60$ (д).

системе ZnCl₂–H₂O–NaOH при исходных концентрациях ZnCl₂ (0.00006–1.01 моль/л) и NaOH (0.001–9.60 моль/л), представлен на рис. 2 в координатах $n_{OH^-} = f(pH)$, где n_{OH^-} – функция образования или лигандное число по гидроксид-иону. На рисунке видно смещение кривых титрования в сторону меньших значений pH с ростом исходной концентрации хлорида цинка в растворе. Так, при содержании соли в рассматриваемой системе 0.00006 моль/л (рис. 2а) величина pH, соответствующая началу процесса гидролиза, составила 5.6, в то время как с повышением концентрации цинка до 1.00 моль/л (рис. 2д) ее значение снизилось до 3.0, что вполне объяснимо.

Если обратить внимание на наклонную часть кривых титрования (рис. 2а–в), то можно заметить незначительное увеличение угла их наклона, что может свидетельствовать о возрастании значения стехиометрического коэффициента по иону металла в образующихся гидроксокомплексах. Например, значительный наклон при концентрации соли 0.00006 моль/л (рис. 2а) связан с последовательным образованием целого ряда как моноядерных, так и полиядерных комплексных форм металла. С увеличением содержания металла до 0.01 моль/л (рис. 26, в) происходит некоторое "выпрямление" наклонной части кривой титрования за счет формирования в растворе меньшего количества полиядерных комплексов. Концентрации соли цинка в анализируемом растворе выше 0.11 моль/л (рис. 2г, д) вновь приводят к изменению угла наклона кривой за счет появления в системе новой полиядерной комплексной формы цинка с большей нуклеарностью.

По проекции плато на ось ординат можно более точно оценить состав формирующейся твердой фазы. Из рис. 2 видно, что для исследуемой системы характерно выделение из раствора соединения $Zn_x(OH)_{2xS}$, о чем свидетельствует функция образования по гидроксид иону n_{OH^-} , равная двум. Диапазон pH формирования фазы $Zn_x(OH)_{2xS}$ заметно увеличивается для более концентрированных растворов. Так, если при содержании соли 0.001 моль/л (рис. 2б) он ограничен пределами 7.7–9.8, то при $C_{Zn(II)} = 1.00$ моль/л (рис. 2д) происходит его расширение от 6.6 до 11.3.

Поскольку на теоретической кривой, описывающей экспериментальную кривую потенциометрического титрования соли с минимальной концентрацией 0.00006 моль/л (рис. 2а), отсутствуют утолщенные линии, то можно сказать, что формирование каких-либо твердофазных соединений в этих условиях не происходит. Отметим, что на кривых титрования при pH > 9.8 (рис. 26-д) появляется дополнительная ступень с функцией образования $n_{OH^-} = 2.125$, что свидетельствует о формировании фазы состава $Na_{0.125x}[Zn_x(OH)_{2.125x}]_S$. Причем увеличение концентрации цинка в растворе приводит к сужению рН области ее существования с 9.8-11.3 при содержании ZnCl₂ 0.001 моль/л (рис. 2б) до 11.3-11.4 при максимальной используемой концентрации (рис. 2д). При pH > 11 на кривых титрования (рис. 2 г и д) можно увидеть также ступень с функцией образования по гидроксид-иону, равной 2.25, которая соответствует области образования труднорастворимого соединения $Na_{0.25x}[Zn_x(OH)_{2.25x}]_S$.

Для концентраций хлорида цинка 0.11 и 1.00 моль/л (рис. 2 г и д) при рH < 6.8 на кривых потенциометрического титрования появляется ступень, соответствующая функции образования по гидроксид-иону $n_{OH^-} = 1.75$, что характеризует выделение из раствора гидроксидсодержащей соли металла $Zn_x(OH)_{1.75x}Cl_{0.25xS}$, причем начало ее образования с увеличением содержания цинка в системе смещается в более кислую область. Обработка кривых потенциометрического титрования позволила составить базовые уравнения для основных равновесных процессов в системе ZnCl₂– H₂O–NaOH:

$$[ZnOH^{+}] \cdot k_{H1} = [Zn^{2+}] \cdot [OH^{-}], \qquad (1)$$

$$[\operatorname{Zn}(\operatorname{OH})_2] \cdot k_{H^2} = [\operatorname{ZnOH}^+] \cdot [\operatorname{OH}^-], \qquad (2)$$

$$[\operatorname{Zn}(\operatorname{OH})_{3}^{-}] \cdot k_{\mathrm{H}3} = [\operatorname{Zn}(\operatorname{OH})_{2}] \cdot [\operatorname{OH}^{-}], \qquad (3)$$

$$[Zn(OH)_4^{2-}] \cdot k_{H4} = [Zn(OH)_3^{-}] \cdot [OH^{-}], \qquad (4)$$

$$[Zn(OH)_{5}^{3-}] \cdot k_{H5} = [Zn(OH)_{4}^{2-}] \cdot [OH^{-}], \qquad (5)$$

$$[Zn(OH)_{6}^{4-}] \cdot k_{H6} = [Zn(OH)_{5}^{3-}] \cdot [OH^{-}], \qquad (6)$$

$$[Zn_{3}(OH)^{5^{+}}] \cdot k_{H7} = [Zn^{2^{+}}]^{2} \cdot [Zn(OH)^{+}], \qquad (7)$$

$$[Zn_2(OH)^{3+}] \cdot k_{H8} = [Zn^{2+}] \cdot [Zn(OH)^{+}], \qquad (8)$$

$$[Zn_4(OH)_6^{2+}] \cdot k_{H9} = [Zn(OH)^+]^2 \cdot [Zn(OH)_2]^2, \quad (9)$$

$$[Zn_8(OH)_{14}^{2+}] \cdot k_{H10} = [Zn(OH)_2]^6 \cdot [Zn(OH)^+]^2, (10)$$

$$[Zn_8(OH)_{16}] \cdot k_{H11} = [Zn(OH)_2]^8, \qquad (11)$$

$$[Zn_8(OH)_{17}] \cdot k_{H12} = [Zn(OH)_2]^8 \cdot [OH^-], \quad (12)$$

$$[Zn_8(OH)_{18}^{2-}] \cdot k_{H13} = [Zn(OH)_2]^8 \cdot [OH^-]^2, \quad (13)$$

где $k_{\rm H1} - k_{\rm H13}$ – константы динамического равновесия соответствующих процессов, характеризующие константы нестойкости.

В изучаемой системе возможно формирование как моно-, так и полиядерных труднорастворимых соединений: $Zn(OH)_2$ (k_{H2S}), $Zn_8(OH)_{14}Cl_2$ (k_{H10S}), $NaZn_8(OH)_{17}$ (k_{H12S}), $Na_2Zn_8(OH)_{18}$ (k_{H13S}), где k_{H2S} , $k_{H10S}-k_{H12S}$ – константы равновесия процессов образования соответствующих соединений.

В таблице 1 приведены рассчитанные нами и справочные значения показателей констант нестойкости рассмотренных выше процессов. Наблюдаются значительные различия не только между расчетными и справочными показателями констант нестойкости комплексных ионов и соединений цинка, но и между самими справочными значениями, что связано, вероятно, с использованием различных методов и условий их определения.

Долевое распределение комплексных форм и малорастворимых соединений, образующихся в системе $ZnCl_2-H_2O-NaOH$ в зависимости от pH и исходных концентраций реагентов, представлены на рис. 3. Из рис. За видно, что при минимальной концентрации цинка в растворе (0.00006 моль/л) формирование труднорастворимых соединений не происходит, что подтверждают данные, полученные из графической зави-

симости функции образования по гидроксидиону от pH (рис. 2а). Однако в растворе возникает большое количество полиядерных гидроксокомплексов металла вида $Zn_2(OH)^{3+}$, $Zn_4(OH)_6^{2+}$, $Zn_8(OH)_{16}$ и $Zn_8(OH)_{17}^{-}$. Отсюда сложно согласиться с выводами авторов [29], утверждающих, что в разбавленных растворах полиядерные гидроксокомплексы присутствуют лишь в незначительном количестве.

Ранее отмечалось, что при концентрации хлорида цинка выше 0.001 моль/л характерно выделение из раствора труднорастворимой фазы $Zn_x(OH)_{2xS}$, в частности, $Zn(OH)_{2S}$ и расширение области ее существования с ростом содержания металла, что четко прослеживается на рис. 36–д.

При потенциометрическом титровании соли цинка в диапазоне концентраций от 0.001 до 0.010 моль/л (рис. 3б и в) и рН > 9.8 происходит формирование фазы октогидроксоцинката Na[Zn₈(OH)₁₇]_S, описываемого общей формулой Na_{0.125x}[Zn_x(OH)_{2.125x}]_S. С увеличением содержания соли металла до 1.00 моль/л при рН > 11 происходит образование еще одного труднорастворимого соединения Na₂[Zn₈(OH)₁₈]_S. Отметим также, что на начальной стадии титрования (рН < < 6.8) при концентрации цинка больше 0.11 моль/л (рис. 3г) возникает твердая фаза Zn₈(OH)₁₄Cl_{2S}.

В сильнощелочной среде (pH > 11.5), образованные ранее труднорастворимые соединения, подвергаются гидролитическому разложению до моноядерных форм $Zn(OH)_3^-$, $Zn(OH)_5^{3-}$ и $Zn(OH)_6^{4-}$. Обратим внимание, что в литературе отсутствуют сведения о моноядерных ионах цинка с координационным числом пять и шесть.

На примере селенида и гидроксида цинка проведем сравнительный анализ ионных равновесий и определение граничных условий их образования в системе $ZnCl_2-H_2O-NaOH-Na_2SeSO_3$ с учетом только базисных гидроксокомплексов цинка [25], а также, принимая во внимание полиядерные формы и соединения, установленные потенциометрическим титрованием.

Механизм разложения селеносульфата натрия с образованием селенидов металлов был описан ранее в [30, 31]. Для определения граничных условий осаждения ZnSe и $Zn(OH)_2$ в рассматриваемой системе была использована методика, приведенная нами в [32]. Для расчета использовались константы и значения величин, взятые в [12, 24, 30], а также приведенные выше в таблице 1.

Графическая зависимость в координатах р $C_{\rm H} = f({\rm pH})$, построенная для реакционной смеси, содержащей [Na₂SeSO₃] = 0.1 моль/л, характеризующая равновесие между твердыми фазами ZnSe,

Таблица 1. Рассчитанные по данным потенциометрического титрования значения показателей констант нестойкости гидроксокомплексов цинка и констант динамического равновесия малорастворимых соединений

Показатели констант нестойкости	Расчетное значение	Справочное значение		
		[25]	[26]	[27]
pk_{H1}	5.8 ± 0.5	6.04	6.31	5.04
рk _{н2}	11.0 ± 0.2	11.1	11.19	12.90
рk _{н3}	15.3 ± 0.5	13.6	14.31	15.00
pk_{H4}	18.5 ± 0.2	14.8	17.70	16.63
pk_{H5}	21.1 ± 0.9	_	_	—
р $k_{ m H6}$	23.3 ± 0.8	_	_	—
pk_{H7}	2.9 ± 0.6	—	_	_
р <i>k</i> _{н8}	4.0 ± 0.5	_	_	—
р $k_{\rm H9}$	14.5 ± 0.5	_	_	—
pk_{H10}	19.0 ± 0.8	_	_	—
pk_{H11}	33.5 ± 0.5	_	_	—
р <i>k</i> _{н12}	41.0 ± 0.3	_	_	—
pk_{H13}	46.0 ± 0.2	_	_	—
pk_{H2S}	-5.2 ± 0.4	_	_	—
pk_{H10S}	-1.6 ± 0.3	—	—	—
pk_{H12S}	-10.5 ± 0.5	—	—	—
pk_{H13S}	-8.0	—	—	—

Примечание. Для сравнения приведены справочные значения показателей констант нестойкости.

Zn(OH)₂ и комплексными формами цинка, приведена на рис. 4. Расчетная концентрация $C_{\rm H}$ в ней определяет минимально необходимое содержание соли цинка, обеспечивающее образование твердой фазы в системе.

Из рис. 4 видно, что осаждение ZnSe при учете только моноядерных комплексов цинка (рис. 4а) возможно практически во всем диапазоне pH от 1 до 14. Формирование селенида цинка с одновременным образованием его гидроксида происходит при pH больше 5.8 (в области, ниже кривой 2).

В отличие от вышеприведенных результатов учет полиядерных гидроксокомплексов и труднорастворимых соединений цинка показал, что образование твердой фазы ZnSe происходит в более узком диапазоне pH: от 7.5 до 12.8, а примесной фазы Zn(OH)₂ только в диапазоне pH от 11 до 12 (рис. 4б). Приведенные зависимости свидетельствуют о том, что учет выявленных полиядерных комплексных форм и труднорастворимых соединений цинка снижает показатель минимально необходимой концентрации хлорида цинка p $C_{\rm H}$, примерно на шесть порядков по сравнению с расчетными данными на основе только моноядер-

Рис. 3. Расчетные перекрывающиеся области образования Zn^{2+} (*1*), гидроксокомплексов $Zn_2(OH)^{3+}$ (*2*), $Zn_4(OH)_6^{2+}$ (*3*), $ZnOH^+$ (*4*), $Zn_8(OH)_{16}$ (*5*), $Zn(OH)_2$ (*6*), $Zn_8(OH)_{17}^-$ (*7*), $Zn(OH)_3^-$ (*8*), $Zn(OH)_4^{2-}$ (*9*), $Zn(OH)_5^{3-}$ (*10*), $Zn(OH)_6^{4-}$ (*11*), $Zn_8(OH)_{18}^{2-}$ (*14*), $Zn_3(OH)^{5+}$ (*15*), $Zn_8(OH)_{14}^{2+}$ (*16*) и малорастворимых соединений $Zn(OH)_{2S}$ (*12*), $Na[Zn_8(OH)_{17}]_S$ (*13*), $Zn_8(OH)_{14}Cl_{2S}$ (*17*), $Na_2[Zn_8(OH)_{18}]_S$ (*18*) в растворе при следующих исходных концентрациях соли цинка и гидроксида натрия, моль/л: $C_{Zn(II)} = 0.00006$, $C_{NaOH} = 0.001$ (a); $C_{Zn(II)} = 0.001$, $C_{NaOH} = 0.010$ (б); $C_{Zn(II)} = 0.01$, $C_{NaOH} = 0.011$ (в); $C_{Zn(II)} = 0.11$, $C_{NaOH} = 1.00$ (г); $C_{Zn(II)} = 1.00$, $C_{NaOH} = 9.60$ (д); T = 298 K.

ных комплексов металла (рис. 4а). Аналогичные расчеты по определению условий образования сульфида и гидроксида цинка в системе $ZnCl_2$ – H_2O –NaOH– N_2H_4CS также показывают, что учет полиядерных комплексов и труднорастворимых соединений металла значительно (на пять порядков) снижает требуемое значений р $C_{\rm H}$ образования сульфида металла. Таким образом, в обоих случаях за счет учета всех комплексных форм

цинка удалось обеспечить более точное прогнозирование условий образования, как селенида, так и сульфида цинка и выбрать оптимальную область pH их получения.

Микроизображения пленок ZnSe и ZnS, осажденных соответственно селеносульфатом и тиокарбамидом в рассчитанных с использованием результатов потенциометрического титрования условиях, приведены на рис. 5 а, б. Толщины пле-

Рис. 4. Граничные условия образования ZnSe (1) и Zn(OH)₂ (2) в системе ZnCl₂–H₂O–NaOH–Na₂SeSO₃ при [ZnCl₂] = = 0.1 моль/л, [Na₂SeSO₃] = 0.1 моль/л и T = 298 K с использованием: а – справочных значений констант нестойкости [24]; 6 – значений констант, полученных по результатам потенциометрического титрования.

Рис. 5. Электронно-микроскопические изображения пленок ZnSe (a) и ZnS (б), полученных химическим осаждением на ситалловых подложках в течение 120 минут из реакционных систем $ZnCl_2-H_2O-NaOH-Na_2SeSO_3$ (a) и $ZnCl_2-H_2O-NaOH-N_2H_4CS$ (б).

нок соответственно составили ~1000 нм и ~200 нм.

Анализ микроструктуры пленки ZnSe показал, что наблюдаемый средний размер зерен составляет ~350—450 нм, которые являются агломератами глобульных наночастиц диаметром ~20—60 нм (рис. 5а).

Основными структурными элементами пленки ZnS (рис. 5б) являются преимущественно неоднородные по размерам шарообразные глобулы (50–200 нм), неплотно прилегающие друг к другу и представляющие собой совокупность первичных частиц диаметром ~20–30 нм. Таким образом, потенциометрическим титрованием растворов хлорида цинка установлено, что повышение его концентрации сопровождается увеличением количества образующихся полиядерных структур и малорастворимых соединений металла.

Рассчитанные по данным титрования значения констант нестойкости полиядерных гидроксокомплексов цинка и величины констант равновесия малорастворимых соединений были использованы для определения концентрационных областей образования ZnS и ZnSe, а также Zn(OH)₂. Химическим осаждением селеносульфатом натрия и тиокарбамидом на ситалловых подложках получены пленки сульфида и селенида цинка толщиной ~1000 и ~200 нм. По результатам электронно-микроскопических исследований слои состоят из агрегатов шаровидной формы со средними размерами ~350—450 нм для ZnSe и 50— 200 нм для ZnS, сформированных, в свою очередь, из первичных частиц диаметром ~20—60 нм и ~20—30 нм соответственно.

Работа выполнена при финансовой поддержке программы 211 Правительства Российской Федерации № 02.А03.21.0006.

СПИСОК ЛИТЕРАТУРЫ

- 1. Lokhande C.D., Patil P.S., Tributsch H., Ennaoui A. // Energy Mater. Sol. Cells. 1998. V. 55. P. 379.
- Omran Al-khayatt A.H., Jaafer M.D. // J. of Appl. Phys. 2014. V. 6. Iss. 1. P. 27.
- 3. Santos Cruz J., Santos Cruz D., ArenaS-Arrocena M.C. et al. // Chalcog. Lett. 2015. V. 12. № 5. P. 277.
- Bacaksız E., Aksu S., Polat I. et al. // J. Alloys and Compd. 2009. V. 87. P. 280.
- Mitzi D.B., Gunawan O., Todorov T.K. et al. // Sol. Ener. Mater. & Sol. Cells. 2011. V. 95. P. 1421.
- Shin S.W., Pawar S.M., Park C.Y. et al. // Ibid. 2011.
 V. 95. № 12. P. 3202.
- Кульчицкий Н.А., Наумов А.В., Семенов В.С. // Фотоника. 2015. Т. 54. В. 6. С. 90.
- Todorov T.K., Tang J., Bag S. et al. // Adv. Ener. Mater. 2013. V. 3. № 1. P. 34.
- Vigil-Galán O., Espíndola-Rodríguez M., Courel M. et al. // Sol. Ener. Mater. & Sol. Cells. 2013. V. 117. № 1. P. 246.
- Redinger A., Groiss H., Sendler J. et al. // Thin Solid Films. 2015. V. 582. P. 193.
- Demircioğlu Ö., Salas J.F. L., Rey G. et al. // Optics express. 2017.V. 25. № 5. P. 5327.
- 12. *Марков В.Ф., Маскаева Л.Н., Иванов П.Н.* Гидрохимическое осаждение пленок сульфидов металлов: моделирование и эксперимент. Екатеринбург: УрО РАН, 2006. 218 с.

- Маскаева Л.Н., Шемякина А.И., Марков В.Ф., Сарыева Р.Х. // Журн. прикл. химии. 2015. Т. 88. Вып. 9. С. 115.
- Okereke N.A., Ekpunobi A.J. // J. of Non-Oxide Glasses. 2011. V. 3. № 1. P. 31.
- 15. *Yildirim E., Gubur H.M., Alpdogan S. et al.* // Ind. J. Phys. 2016. V. 90. № 7. P. 793.
- 16. *Shikha D., Sharma J.K., Sharma J.* // Sch. J. Eng. Tech. 2014. V. 2. № 5B. P. 761.
- 17. *Ho Soonmin* // Amer. Chem. Sci. J. 2016. V. 14. № 4. P. 1.
- 18. *Kavitha M., Saroja M., Jenifer G. //* Intern. J. of Mater. Sci. and Eng. 2017. V. 5. № 3. P. 110.
- 19. *Назаренко В.А., Антонович В.П., Невская Е.М.* Гидролиз ионов металлов в разбавленных растворах. М.: Атомиздат, 1979. 192 с.
- 20. Ваганова Ю.В., Миролюбов В.Р., Николаенко И.В. // Журн. неорган. химии. 2014. № 2. С. 1.
- 21. Туленин С.С., Бахтеев С.А., Юсупов Р.А. и др. // Журн. физ. химии. 2013. Т. 87. № 10. С. 1791.
- 22. Федорова Е.А., Бахтеев С.А., Маскаева Л.Н. и др. // Там же. 2016. Т. 90. № 6. С. 944.
- 23. *Yusupov R.A., Bakhteev S.A.* // Russ. J. Phys Chem. A. 2009. V. 83. № 12. P. 2188.
- 24. *Лурье Ю.Ю*. Справочник по аналитической химии М.: Химия, 1989. 448 с.
- 25. *Гусева А.Ф., Закс Е.В.* Справочник по общей и неорганической химии. Екатеринбург: УрГУ, 2001. 39 с.
- 26. Лидин Р.А., Андреева Л.Л., Молочко В.А. Справочник по неорганической химии. Константы неорганических веществ М.: Дрофа, 2006. 685 с.
- 27. Батлер Дж.Н. Ионные равновесия. Л.: Химия, 1973. 448 с.
- Mehta C., Saini G.S.S., Abbas J.M., Tripathi S.K. // Appl. Surf. Sci. 2009. V. 256. P. 608.
- Krężela A., Maret W. // Arch. of Biochem. and Biophys. 2016. P. 1.
- Китаев Г.А., Хворенкова А.Ж. // Журн. прикл. химии. 1999. Т. 71. № 8. С. 1261.
- 31. Тимина А.А., Маскаева Л.Н., Марков В.Ф. и др.// Бутлер. сообщения. 2017. Т. 52. № 11. С. 79.
- Марков В.Ф., Маскаева Л.Н. // Журн. физ. химии. 2010. Т. 86. № 8. С. 1421.