_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 541.123

О ПЛОСКОСТНОСТИ СОСТАВОВ МНОГОКРАТНО НАСЫЩЕННЫХ ВОДНЫХ РАСТВОРОВ РАЗЛИЧНОГО ТИПА

© 2019 г. С. А. Мазунин^{а,*}, В. Л. Чечулин^{а,**}

^аПермский государственный национальный исследовательский университет, Пермь, Россия *e-mail: smazunin@psu.ru **e-mail: chechulinv@mail.ru

Поступила в редакцию 23.01.2018 г.

Статистическая обработка данных многокомпонентных водных систем с молекулярным характером растворов подтвердила свойство плоскостности составов насыщенных растворов, выраженных в мас. %, на линиях моновариантных равновесий и в нонвариантных точках для систем со всеми типами растворов (ионных, ионно-молекулярных, молекулярных), что доказывает наличие коллигативного свойства растворов, насыщенных двумя или более твердыми фазами.

Ключевые слова: многокомпонентные водные системы, молекулярные растворы, свойство плоскостности составов растворов насыщенных двумя и более твердыми фазами (многократно насыщенных растворов), преимущественно физический характер взаимодействия частиц в растворах

DOI: 10.1134/S0044453718120300

Свойство плоскостности составов насыщенных растворов, находящихся в нонвариантных и моновариантных равновесиях с двумя и более твердыми фазами в многокомпонентных водных системах, выраженных в мас. %, описано в [1], тщательно проверено на данных по системам с исключительно ионными растворами [2–4], ионно-молекулярными растворами [5]. Показано, что свойство плоскостности сохраняется при добавлении к этим составам данных по физическим параметрам растворов (плотность, показатель преломления, вязкости, pH) [6, 7]. Свойство плоскостности использовано для прогнозирования составов эвтонических растворов многокомпонентных водных систем [4, с. 91–105].

Под понятием "*плокостность*" подразумевается расположение составов растворов вблизи одной плоскости. В данной работе такими являются только составы, находящиеся в нонвариантных и моновариантных равновесиях с двумя и более твердыми фазами в многокомпонентных водных системах.

Количественно свойство плоскостности выражается мерой неплоскостности набора соответствующих экспериментальных данных, выраженной относительной долей дисперсии, полученной статистическим методом главных компонент. Такой статистический подход к обработке экспериментальных результатов исследований многокомпонентных водных систем применен авторами впервые. Работа завершает цикл статистических исследований составов насыщенных растворов, выраженных в мас. %, находящихся в нонвариантных и моновариантных равновесиях с двумя и более твердыми фазами в многокомпонентных водных системах, с растворами различного типа. В доступной литературе сведений о применении подобных статистических подходов к обработке экспериментальных данных не обнаружено. Целью данной работы является проверка указанной закономерности для систем с растворами молекулярного характера и обобщение выявленных закономерностей.

Способ обработки данных и изображения систем

Для обработки данных применяется "метод главных компонент¹" [8], обычно применяемый для сокращения размерности анализируемых массивов данных, схематично заключающийся в следующем. Пусть дана исходная матрица R данных о составах насыщенных растворов, участвующих в нонвариантных и моновариантных равновесиях с двумя и более твердыми фазами, в многокомпонентной системе S, матрица R размерности $n \times m$, где n - число компонентов ифизических параметров (столбцов) в многокомпонентной системе S, *m* – число (строк) точек

¹ В данном случае "компонент" – это математический термин, не путать с химическими компонентами системы.

Рис. 1. Аксонометрическая проекция изотермы растворимости системы Сахароза–Фруктоза–Глюкоза– H_2O при 30°С на плоскость; Е – эвтоника, Δ – эвтоническая совокупность точек, Р – перитоника, ∇ – перитоническая совокупность точек.

нон- и моновариантных равновесий, подлежащих анализу.

Для матрицы R строится корреляционная матрица K, размерности $n \times n$, корреляции столбцов между собой вычисляются стандартным методом [9], или методом не требующим вычисления средних [10]. Для матрицы K стандартными вычислительными методами находятся собственные значения λ_i (i = 1, n), а также соответствующие им собственные вектора \mathbf{v}_i (i = 1, n) [11]².

Собственные вектора – это новые ортогональные координаты точек исходной системы S, такие, что вдоль первого вектора \mathbf{v}_1 располагается наибольший по величине разброс (дисперсия) точек системы S (по относительной величине равный отношению первого собственного значения матрицы K к сумме всех (*n*) собственных значений $q_1 = \lambda_1 / \sum_{j=1,n} \lambda_j$), и так далее для всех остальных векторов. Первые два собственных вектора по определению образуют плоскость P, относительная неплоскостность кординат R системы S определяется как сумма остальных относительных разбросов

$$q_{\text{Henn.R}}(\%) = \sum_{i=3,n} \left(\lambda_i / \sum_{j=1,n} \lambda_j \right) \times 100, \quad (1)$$

называется коэффициентом неплоскостности системы.

В новых координатах можно построить на плоскости вид системы S такой, что плоскость первых двух собственных векторов P видна с торца (т.е. вырождена в прямую линию). Таким образом, систему S строят в новых координатах 1-й и 3-й или 2-й и 3-й главных компонент (g_1-g_3) пересчитываемых из исходной матрицы R по формулам, представляющим собой суммы произведений элементов строк старых координат $r_{k, i}$ на соответствующие значения координат собственных векторов $\mathbf{v}_{1,i}$, $\mathbf{v}_{2,i}$, $\mathbf{v}_{3,i}$.

Для улучшения восприятия результатов предложено вычислять координаты вершин исходных компонентов. Матрица R дополняется снизу строками с координатами исходных компонентов, получается расширенная матрица R*, содержащая m + n строк, для матрицы R* и ее столбцов g_1-g_3 формулы таковы:

$$g_{1,k} = \sum_{i=1,n} r_{k,i}^* \mathbf{v}_{1,i},$$

$$g_{2,k} = \sum_{i=1,n} r_{k,i}^* \mathbf{v}_{2,i},$$

$$g_{3,k} = \sum r_{k,i}^* \mathbf{v}_{3,i},$$
(2)

где k — номер строки данных матрицы $\mathbb{R}^*, k = 1, (n + m).$

Таким образом, для новых координат проекции системы S, включая координаты вершин, получаются три изображения, для построения которых берутся столбцы данных g_1 и g_2 (вид сверху на плоскость P, координаты x-y), g_1 и g_3 (вид сбоку на плоскость P, координаты x-z) или g_2 и g_3 (вид сбоку на плоскость P, координаты y-z).

Для удобства восприятия, также предложено поворачивать рисунок для получения горизонтальности одной из сторон фигуры состава. Пусть эта сторона A–B, точка A имеет координаты на плоскости рисунка A(a_1, a_3), точка B(b_1, b_3) в осях g_1 и g_3 , принимаем точку A за начало отсчета, тогда координаты на плоскости (для примера пусть это столбцы g_1 и g_3) преобразуются двумя преобразованиями:

1) из них вычитаются координаты точки А,

\$

$$g_{1,k}^* = g_{1,k} - a_1, \quad g_{3,k}^* = g_{3,k} - a_3,$$
 (3)

 $b_1^* = b_1 - a_1, b_3^* = b_3 - a_3$ (новые координаты точки В)

2) и поворот оси A-B до горизонтального состояния, предполагающий вычисление радусвектора r_k от точек до начала координат A

$$r_{k} = (g_{1,k}^{*2} + g_{3,k}^{*2})^{0.5}, \quad \varphi_{k} = \operatorname{arctg}(g_{1,k}^{*} + g_{3,k}^{*}),$$

$$\varphi_{b} = \operatorname{arctg}(b_{1}^{*}/b_{3}^{*}),$$
(4)

² Поскольку матрица К диагонально-симметричная, то собственные значения и собственные вектора — вещественнозначны.

МАЗУНИН, ЧЕЧУЛИН

T	Состав насыщен. р-ра, мас.%				Tourselland	
Точка	Сахароза	Фруктоза	Глюкоза	H ₂ O	– Івердая фаза	
e ₁	48.6	0	26.3	25.1	Сахароза + Глюкоза	
a_1	43	7	24.1	25.9	»	
a ₂	34.91	23.17	18.84	23.08	»	
Р	30.8	30.8	17.5	20.9	Сахароза + Глюкоза + Глюкоза \cdot H ₂ O	
d_1	16.27	36.97	23.68	23.08	Глюкоза + Глюкоза · H_2O	
e ₃	0	45.28	30.79	23.93	»	
e ₂	23.2	64.8	0	12	Сахароза + Фруктоза	
E	24.2	50.2	15.4	10.2	Сахароза + Глюкоза + Фруктоза	
c ₁	3.9	57.18	22.65	16.27	Фруктоза + Глюкоза	
E_4	0	59.72	24.01	16.27	»	
b_1	23.81	42.71	16.81	16.67	Сахароза + Глюкоза	
R_1	68.11	_	0	31.89	Сахароза	
	58.14	_	12.2	29.66	»	
	52.11	_	20.78	27.11	»	
e ₁	48.6	_	26.3	25.1	Сахароза + Глюкоза \cdot H ₂ O	
	33.79	_	33.88	32.33	Глюкоза · H ₂ O	
	19.66	_	41.97	38.37	»	
	7.35	_	50	42.65	»	
R ₂	0	_	54.64	45.36	»	
R ₁	68.11	0	_	31.89	Сахароза	
	57.22	16.93	_	25.85	»	
	41	39.67	_	19.33	»	
e ₂	23.2	64.8	_	12	Сахароза + Фруктоза	
	14.03	72.9	_	13.07	»	
	11.19	74.6	_	14.21	»	
	5.92	78.46	_	15.62	»	
R ₃	0	81.5	_	18.5	Фруктоза	
R ₂	_	0	54.64	45.36	Глюкоза · H ₂ O	
	_	12	45.54	42.46	»	
	_	22.97	38.28	38.75	»	
	_	36.02	32.63	31.35	»	
e ₃	_	45.28	30.79	23.93	Глюкоза $\cdot H_2O + Г$ люкоза	
	_	50.11	26.51	23.38	Глюкоза	
	_	56.15	24.46	19.39	»	
e_4	_	59.72	24.01	16.27	Глюкоза + Фруктоза	
	_	63.24	17.93	18.83	Фруктоза	
	_	68.73	10.74	20.53	»	
	_	75.32	4.72	19.96	»	
R ₃	_	81.5	0	18.5	$C_{6}H_{12}O_{6}$	

Таблица 1. Растворимость в системе Caxaposa(Suc)-Фруктоза(Fru)-Глюкоза(Glu)-H₂O и в оконтуривающих системах при 30°C

№ компо- нента	Собственные значения	% дисперсии	Накопленная дисперсия
1	2.280375	57.01	57.01
2	1.626515	40.66	97.67
3	0.093110	2.33	100.00
4	0.000000	0.00	100.00

Таблица 2. Дисперсия системы Сахароза-Фруктоза-Глюкоза-H₂O-H₂O при 30°С, плоскость эвтоники (№ 1)

Таблица 3. Дисперсия системы Сахароза–Фруктоза– Глюкоза- H_2O-H_2O при 30°С, плоскость перитоники (№ 2)

№ компо- нента	Собственные значения	% дисперсии	Накопленная дисперсия
1	2.627114	65.68	65.68
2	1.355292	33.88	99.56
3	0.017593	0.44	100.00
4	0.000000	0.00	100.00

где k — номер строки. Новые координаты x, y для построения рисунка на плоскости вычисляются как результат поворота относительно точки A на угол φ_b :

$$x_k = r_k \cos(\varphi_k - \varphi_b), \quad y_k = r_k \sin(\varphi_k - \varphi_b).$$
 (5)

При необходимости координаты могут быть отображены справа налево заменой знака столбца данных *х* или сверху вниз — заменой знака *у*.

Способы изображения многокомпонентных систем описаны в [12–16].

Свойство плоскостности для ионных растворов

Для определения плоскостности линий моновариатного равновесия были обработаны данные более чем по 100 водно-солевым системам (включая данные и физических параметров) как ионного так смешанного типа.

Для ионных растворов был обработан достаточно большой массив данных в 51 водно-солевую систему компонентностью 4 и выше [4, с. 107–110] (из них 3–5-компонентных); для систем эвтонического и перитонического типа наблюдаемая мера неплоскостности линий моновариантного равновесия составила менее 1%. В трех 4компонентных системах перитонического типа плоскостность определялась для каждой совокупности нонвариантных точек и линий моновариантных равновесий, мера неплоскостности таких наборов данных также не превышала 1% [4, с. 107–110].

В 10-ти взаимных некорректных системах без стабильной диагонали, с выделением аммиака, углекислого газа и т.п., — наблюдались значения неплоскостности от 0.22 до 5.63% у семи четверных систем и от 4.65 до 8.35% у пятерных систем.

Также свойство плоскостности для систем ионного типа проверялось и при добавлении к данным о растворимости значений плотности раствора для 10 водно-солевых систем [4]. Добавление этого параметра сохраняло или уменьшало неплосткостность, которая оставалась в пределах 1%.

Свойство плоскостности для растворов смешанного типа

В диссертационной работе М.Н. Носкова [5] исследовались растворы смешанного типа, содержащие карбамид, причем в десяти 4-компонентных системах неплоскостность от 0.13 до 2.97%, в семи 5-компонетных системах неплоскостность от 0.02 до 4.44%, в 6-компонентной системе неплоскостность для эвтонической совокупности 3.27%, для перитогнической – 4.35%.

Таким образом, оставалось проанализировать только системы с растворами молекулярного типа.

Таблица 4. Векторные переменные системы Сахароза–Фруктоза–Глюкоза·H₂O–H₂O при 30°C, плоскость эвтоники (№ 1)

Собстрании на раитора	Коэффициенты в векторе при растворимостях					
Сооственные вектора	Сахароза	Фруктоза	Глюкоза	H ₂ O		
Фактор 1, v _{1, <i>i</i>}	0.608616	-0.658151	-0.043298	0.441078		
Фактор 2, v _{2, <i>i</i>}	-0.304954	0.043084	0.768731	0.560536		
Фактор 3, v _{3, <i>i</i>}	0.208795	-0.314459	0.609072	-0.697532		
Фактор 4, $v_{4, i}$	-0.702136	-0.682712	-0.190288	-0.06855		

Рис. 2. Аксонометрическая проекция системы Сахароза – Фруктоза–Глюкоза· H_2O-H_2O при 30°С для плоскости эвтонической совокупности данных (№ 1); Е – эвтоника, Δ – эвтоническая совокупность точек, Р – перитоника, ∇ – перитоническая совокупность точек .

Данные по системам с молекулярными растворами

В доступной авторам литературе удалось найти данные только о двух системах с молекулярными растворами.

Система Сахароза(Suc)—Фруктоза(Fru)— Глюкоза(Glu)—H₂O при 30 ℃

Сведения о растворимости в четверной системе Сахароза(Suc)–Фруктоза(Fru)–Глюкоза(Glu)–H₂O получены и восстановлены по данным изображений из [17–20]. На рис. 1 и в табл. 1 приведены данные о растворимости в системе, представлена ортогональная проекция изотермы растворимости Сахароза(Suc)–Фруктоза(Fru)–Глюкоза(Glu)–H₂O при 30°C на плоскость, параллельную двум перекрещивающимся сторонам тетраэдра состава.

Рис. 3. Аксонометрическая проекция системы Сахароза–Фруктоза–Глюкоза· H_2O-H_2O при 30°С для плоскости перитонической совокупности данных (№ 2); Р – перитоника, ∇ – перитоническая совокупность точек, Е – эвтоника, Δ – эвтоническая совокупность точек.

В системе Сахароза-Фруктоза-Глюкоза-H₂O при 30°С образуется две плоскости (см. рис. 1) одна из плоскостей образуется вокруг эвтоники, а вторая – вокруг перитоники. К плоскости № 1 (плоскость эвтоники) относятся точки e_2 , E, e_1 , e_3 , к плоскости № 2 (плоскость перитоники) – e_1 , a_1 , a_2 , P, d_1 , e_4 . Точка b_1 является переходной. Посредством обработки данных о растворимости многокомпонентной системы методом главных компонент был проведен расчет меры плоскостности. Данные представлены в табл. 2 и 3. Для плоскости № 1 мера неплоскостности равна 2.33%, а для плоскости № 2 – 0.44%.

В табл. 4 и 5 приведены данные по собственным векторам для соответствующих плоскостей, по которым вычислены проекции в пространстве главных компонент. Новые координаты проек-

Таблица 5. Векторные переменные системы Сахароза-Фруктоза-Глюкоза H₂O-H₂O при 30°C, плоскость перитоники (№ 2)

	Коэффициенты в векторе при растворимостях					
Собственные вектора	Сахароза	Фруктоза	Глюкоза	H ₂ O		
Фактор 1, v _{1, <i>i</i>}	0.611801	-0.01254	-0.533759	-0.5836		
Фактор 2, v _{2, <i>i</i>}	-0.103259	0.857656	-0.428364	0.26508		
Фактор 3, v _{3, <i>i</i>}	0.355047	-0.389569	-0.402366	0.74852		
Фактор 4, $\mathbf{v}_{4, i}$	-0.69927	-0.335418	-0.608036	-0.1697		

О ПЛОСКОСТНОСТИ СОСТАВОВ МНОГОКРАТНО НАСЫЩЕННЫХ

	Состав насыщ. р-ра, мас. %				
1 очка	Глюкоза	Галактоза	Лактоза	H ₂ O	I вердая фаза
E ₁	31.32	0	7.25	61.43	Глюкоза + Лактоза
a_1	30.26	3.75	7.26	58.73	»
a ₂	28.47	11.19	5.31	55.03	»
E	28.16	14.6	2.77	54.47	Глюкоза + Лактоза + Галактоза
b_1	24.75	15.03	3.94	56.28	Лактоза + Галактоза
b ₂	21.93	16.46	3.86	57.75	»
b ₃	19.1	17.62	3.79	59.49	»
b ₄	13.34	18.76	7.15	60.75	»
b ₅	7.06	19.55	10.15	63.24	»
E ₃	0	20.95	10	69.05	»
E ₂	29.28	14.09	0	56.63	Глюкоза + Галактоза
R ₁	33.42	_	0	66.58	Глюкоза·H ₂ O
	32.7	_	2.37	64.93	»
	32.11	_	4.77	63.12	»
E	31.32	—	7.25	61.43	Лактоза + Глюкоза·Н ₂ О
	26.63	_	8.04	65.33	Лактоза
	20.95	_	9.91	69.14	»
	14.67	_	11.82	73.51	»
	7.75	_	13.34	78.91	»
R ₂	0	_	14.97	85.03	»
R ₃	—	24.24	0	75.76	Галактоза
	—	23.55	3.34	73.11	»
	—	22.9	6.89	70.21	»
E	—	20.95	10	69.05	Лактоза + Галактоза
	—	17.96	10.63	71.41	Лактоза
	—	14.67	11.66	73.67	»
	—	11.27	12.73	76	»
	—	7.75	13.42	78.83	»
	—	3.94	14.16	81.9	»
R ₂	_	0	14.96	85.04	»
R_1	33.56	0	_	66.44	Глюкоза·Н ₂ О
	32.75	3.36	_	63.89	»
	31.74	6.82	_	61.44	»
	30.65	10.39	_	58.96	»
E_3	29.28	14.09	_	56.63	Глюкоза·H ₂ O + Галактоза
	24.28	16.46	—	59.26	Галактоза
	18.76	18.7	—	62.54	»
	12.89	20.78	—	66.33	»
	6.62	22.78	—	70.6	»
R ₃	0	24.3	—	75.7	»

Таблица 6. Растворимость в системе Глюкоза–Галактоза–Лактоза–H₂O при 25°C

 R_{1} R_{2} R_{2

H₂O

 R_3

Рис. 4. Аксонометрическая проекция системы Глюкоза–Галактоза–Лактоза–Н₂О при 25°С, Е – эвтоника, Δ – эвтоническая совокупность точек.

ций после параллельного переноса и поворота совокупности точек вычислены по формулам (2)— (4). Изображения в новых аксонометрических координатах рис. 2 и 3 показывают данные со стороны сечения соответствующей плоскости, их расположение вблизи плоскости.

Система Глюкоза(Glu)–Галактоза(Gal)– Лактоза(Lac)–H₂O при 25 °C

Также рассмотрена четырехкомпонентная Глюкоза–Галактоза–Лактоза–H₂O при 25°C. [21, Т. II, Кн. 2, с. 1759, сист. № 5194], а также из [22–24]. В табл. 6 приведены данные с добавленной твердой фазой, что позволят отличать нонвариантные и моновариантные равновесия от дивариантных.

Таблица 7. Дисперсия системы Глюкоза–Галактоза– Лактоза–H₂O при 25°C

№ компо- нента	Собственные значения	% дис- персии	Накопленная дисперсия
1	2.733740	68.34	68.34
2	1.084500	27.11	95.46
3	0.181760	4.54	100.00
4	0.000000	0.00	100.00

Рис. 5. Аксонометрическая проекция системы Глюкоза–Галактоза–Лактоза–Н₂О при 25°С.

На рис. 4 представлена аксонометрическая проекция изотермы растворимости этой системы на плоскость.

В системе Глюкоза–Галактоза–Лактоза–H₂O при 25°C эвтонической совокупности точек образует плоскость. Методом главных компонент данные о растворимости многокомпонентной системы были обработаны для определения меры неплоскостности. Данные представлены в табл. 7, 8. Для плоскости мера неплоскостности равна 4.54%.

По данным многокомпонентной системы и формулам (2–4) построено изображение (рис. 5), показывающее вид на данные о растворимости в ортогональном сечении плоскости, что наглядно показывает расположение линий моновариантного равновесия вблизи одной плоскости.

выводы

1. Обработка статистическим методом главных компонент данных о растворимости в многокомпонентных водных системах с исключительно молекулярным характером растворов подтвердила свойство плоскостности составов насыщенных растворов на линиях моновариантных равновесий и в нонвариантных точках, выраженных в % масс. для следующих систем: Сахароза–Фруктоза–Глюкоза–H₂O при 30°C; Глюкоза–Галактоза–Лактоза–H₂O при 25°C. Опубликованные ранее данные о более чем 100 системах со всеми типами растворов (ионных, ионно-молекулярных), практически доказывают наличие коллигативного свойства "плоскостности" составов растворов, выраженных в мас. %, насыщенных двумя или

 $C_6H_{12}O_6 \cdot H_2O$

О ПЛОСКОСТНОСТИ СОСТАВОВ МНОГОКРАТНО НАСЫЩЕННЫХ

Собствении не вектора	Коэффициенты в векторе при растворимостях					
Сооственные вектора	Глюкоза	Галактоза	Лактоза	H ₂ O		
Фактор 1, v _{1, <i>i</i>}	0.58891	-0.354876	-0.476774	-0.547663		
Фактор 2, $\mathbf{v}_{2, i}$	0.218572	-0.773945	0.524097	0.280279		
Фактор 3, v _{3, <i>i</i>}	0.021879	-0.183406	-0.666311	0.722435		
Фактор 4, $\mathbf{v}_{4,i}$	0.777774	0.491359	0.232461	0.315589		

Таблица 8. Векторные переменные системы Глюкоза-Галактоза-Лактоза-Н₂О при 25°С

более твердыми фазами, находящимися с ними в моно- и нонвариантных равновесиях.

2. Математический метод главных компонент показал свою эффективную применимость для обработки результатов исследований в многокомпонентных водных системах: позволил быстро определять находятся ли координаты реперных точек на гранях нонвариантных областей и истинный характер использованных концентраций; вычислять координаты проекций систем, развернутых ортогонально к плоскости звезды, используя результаты вычисления собственных векторов; выполнять прогнозирование эвтоник четверных- и более-компонентных водных систем по составам эвтоник оконтуривающих систем, с высокой степенью точности, которой достаточно для эффективного планирования экспериментов.

3. Отклонения линий моновариантных равновесий от плоскости, построенной методом главных компонент, показывает наличие в системе эффектов всаливания, высаливания или индифферентного поведения.

4. Обнаружено сохранение свойства "плоскостности" при добавлении к координатам составов, выраженных в мас. %, физических параметров этих растворов (плотности, показателя преломления и т.п.).

5. Обнаружение данных свойств многократно насыщенных растворов, гипотетически объясняемое преимущественно физическим характером взаимодействия компонентов в них, указывает на наличие общей закономерности теории растворимости.

СПИСОК ЛИТЕРАТУРЫ

- 1. Чечулин В.Л., Мазунин С.А. // Изв. высших учебных заведений: Химия и хим. технология 2010. Т. 53. № 3. С. 152.
- 2. Чечулин В.Л., Мазунин С.А. // Журн. общ. химии. 2012. Т. 82. № 2. С. 202.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 1 2019

- Chechulin V.L., Mazunin S.A. // Russian Journal of General Chemistry. 2012. V. 82. № 2. P. 199.
- Чечулин В.Л., Мазунин С.А., Моисеенков М.С. Плоскостность линий моновариантного равновесия в водно-солевых системах и ее приложение: монография / Перм. гос. нац. исслед. ун-т. Пермь, 2012. 116 с.
- Носков М.Н. Фазовые равновесия в многокомпонентных водных системах, содержащих ионы К⁺, NH⁺₄, H₂PO⁻₄, HPO²⁻₄, SO²⁻₄, Cl⁻ и карбамид // дисс. на соиск. ... канд. хим. наук., Пермь, 2015. 310 с.
- 6. Чечулин В.Л., Мазунин С.А., Заколодкина О.А. // Вестн. Пермского ун-та. Серия: Химия. 2014. № 2. С. 106.
- 7. *Мазунин С.А., Чечулин В.Л.* // Изв. высших учебных заведений: Химия и химическая технология 2015. Т. 58. № 3. С. 42.
- Айвазян С.А., Бухштабер В.М., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Классификации и снижение размерности: Справ. изд. / Под ред. С.А. Айвазяна. М.: Финансы и статистика, 1989. 607 с.
- 9. *Гмурман В.Е.* Теория вероятностей и математическая статистика: Учебное пособие для вузов. 10-е издание, стереотипное. М.: Высш. школа, 2004. 479 с.
- Чечулин В.Л. // Университетские исследования. 2009–2014 гг.: сборник [Электронный ресурс]; Перм. гос. нац. исслед. ун-т. Пермь, 2015. С. 227.
- Крылов В.И., Бобков В.В., Монастырный П.И. Вычислительные методы высшей математики. Том I / Под ред. И.П. Мысовских. Мн.: Вышэйш. школа, 1972. 584 с.
- 12. *Мазунин С.А., Носков М.Н., Елсуков А.В.* // Журн. неорган. химии. 2017. Т. 62. № 5. С. 538.
- Mazunin S.A., Noskov M.N., Elsukov A.V. // Russian Journal of Inorganic Chemistry. 2017. V. 62. № 5. P. 539.
- 14. *Мазунин С.А., Елсуков А.В.* // Журн. неорган. химии. 2017. Т. 62. № 5. С. 545.

- 15. *Mazunin S.A., Elsukov A.V.* // Russian Journal of Inorganic Chemistry. 2017. V. 62. № 5. P. 545.
- Мазунин С.А. Физико-химический анализ в химии и химической технологии / Пермь: Перм. гос. нац. исслед. ун-т, 2014. 492 с.
- 17. Kelly F.H.C. // J. appl. Chem. 1955. V. 5. P. 120.
- Frank E. Young. D-Fructose-Water Phase Diagram // J. Phys. Chem. 1952. V. 56(9).
- 19. Kelly F.H.C. // J. appl. Chem. 1954. V. 4. P. 405.

- 20. Kelly F.H.C. // Ibid. 1954. V. 4. P. 622.
- Коган В.Б. и др. Справочник по растворимости В 3 т. М.-Л.: Издательство Академии наук СССР, 1961–1967.
- 22. Frank E. Young J. // J. Phys. Chem. 1957. V. 61(5).
- 23. Frank E. Young, Francis T. Jones Sucrose Hydrates. // J. Phys. Chem. 1949. V. 53(9).
- 24. *Samuel H. Yalkowsky, Yan He, Parijat Jain*. Handbook of Aqueous Solubility Data, Second Edition; CRC Press 2010.