_____ К 90-ЛЕТИЮ ХИМИЧЕСКОГО ____ ФАКУЛЬТЕТА МГУ

УЛК 541.183 : 543.544

АДСОРБЦИОННЫЕ РАВНОВЕСИЯ В НАНОПОРАХ КРЕМНЕЗЕМОВ С ПРИВИТЫМИ БРОМПРОПИЛЬНЫМИ ГРУППАМИ

© 2019 г. Т. М. Рощина^{а,*}, Н. К. Шония^{а,**}

^а Московский государственный университет имени М.В. Ломоносова, Химический факультет, Москва, Россия * e-mail: 2474747@mail.ru

** e-mail: natalyashonija@gmail.com
Поступила в редакцию 15.03.2019 г.
После доработки 15.03.2019 г.
Принята к публикации 09.04.2019 г.

Методом газовой хроматографии исследована зависимость термодинамических характеристик и адсорбции разных классов органических соединений от химической природы поверхности кремнеземов, модифицированных 3-бромпропилтрихлорсиланом с образованием монослойного покрытия (образец Br-2), привитого слоя полимерного типа (образец Br-5), а также дополнительно силанизированного (образец Br-5*). Показано, что дисперсионные взаимодействия на бромокремнеземах проявляются сильнее, чем на исходном носителе или образце NH₂ с привитым аминопропильным слоем полимерного типа. Роль специфических взаимодействий, как правило, снижается в ряду: Br-2 > Br-5 > Br-5* > NH₂. Анализ полученных данных указывает на то, что механизм удерживания на кремнеземах с бромпропильными группами определяется проникновением адсорбированных молекул в привитой слой. В противоположность этому, полимерный аминопропильный слой обладает более жесткой структурой с ограниченной конформационной подвижностью привитых аминопропильных групп, и в этом случае, доминирует адсорбционный механизм удерживания.

Ключевые слова: кремнезем, бромпропильные покрытия, газовая хроматография

DOI: 10.1134/S0044453719100224

Химическое модифицирование поверхности различных оксидов, включая нанопористые кремнеземы, относится к незаменимым методам создания новых материалов, применяемых в различных вариантах современной хроматографии, сорбции, катализе и в других областях [1, 2]. В случае необходимости синтеза на поверхности привитых соединений сложного строения с помощью проведения ряда последовательных химических превращений в поверхностном слое (методом поверхностной сборки) в качестве предшественников используют ограниченное число силанов, содержащих реакционноспособную концевую функциональную группу, при этом к наиболее распространенным относятся аминоалкил- и бромалкилсиланы [2, 3].

Считают [2, 3], что методом поверхностной сборки можно привить практически любое соединение. Однако, несмотря на большие синтетические возможности метода поверхностной сборки, протекание последовательных химических реакций со 100% селективностью является скорее исключением, чем правилом. Поэтому целенаправленный синтез сложных конечных продуктов химического модифицирования требует систематического изучения свойств поверхности не только исходного

носителя, но и полученного на его основе химически модифицированного кремнезема-прекурсора для дальнейшего модифицирования.

Исследованию физико-химических характеристик поверхности аминокремнеземов с помощью разнообразных методов, включая ИК-спектроскопию и ЯМР, посвящены многочисленные работы [2, 4]. Отмечено [2, 4], что в случае сорбентов с привитыми аминосоединениями имеет место организация так называемой арочной структуры привитого слоя за счет взаимодействия NH₂-групп с силанолами поверхности кремнезема, что влияет на их протолитические и комплексообразующие характеристики, уменьшает доступность и реакционную способность привитых групп, изменяет однородность и полярность поверхности. Проведенное в [5, 6] систематическое исследование кремнеземов с химически привитым аминопропильным покрытием полимерного типа методом газовой хроматографии показало, что независимо от характеристик исходного носителя могут быть получены аминокремнеземы с близкими адсорбционными свойствами и достаточно однородной поверхностью в случае формирования плотного модифицирующего слоя с концентрацией привитых групп более 4 нм^{-2} . Приведен целый ряд примеров применения аминокремнеземов для исследования взаимосвязей между строением адсорбированных молекул и характеристиками их удерживания, а также для разделения высокополярных и реакционноспособных соединений, в том числе органических оснований.

На основе бромалкилкремнеземов были получены сорбенты для лигандообменной хроматографии, разделения энантиомеров, выделения и очистки ферментов, а также энантиоселективные и металлокомплексные катализаторы [2, 7—12]. Применение 3-бромпропилтрихлорсилана обеспечило надежное связывание со стенками кварцевого капилляра сверхсшитого полимера на основе винилпиридина, предложенного в [13] в качестве стационарной фазы для капиллярной электрохроматографии.

Использование бромалкилкремнеземов позволяет проводить синтез в более мягких условиях по сравнению с хлоралкилкремнеземами и нередко с лучшим выходом [2, 4]. К положительным моментам применения 3-бромпропилтрихлорсилана относятся высокая плотность прививки модификатора и возможность проведения дополнительной силанизации с помощью простых агентов, в частности, триметилхлорсилана, что может благоприятно сказываться на свойствах полученных на основе бромокремнеземов материалов с привитыми соединениями сложного строения и облегчает предсказание их адсорбционной и каталитической активности.

Несмотря на широкий спектр практического применения, сведения о поверхностных свойствах привитых бромалкилсиланов до сих пор относятся к малоизученной области. Краткая аннотация наших работ [14, 15], посвященных изучению кремнеземов с бромпропильными покрытиями, приведена в [2, с. 397].

В работе представлены результаты исследования свойств поверхности нанопористых кремнеземов, модифицированных 3-бромпропилтрихлорсиланом с образованием монослойного покрытия и привитого слоя полимерного типа, а также обобщение закономерностей, связывающих природу привитых функциональных групп, в основном бром- и аминопропильных, и термодинамические характеристики адсорбции (ТХА).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объекты исследования

Носитель — кремнезем SiO_2 с эффективным радиусом пор 20 нм и удельной поверхностью $s_{yд}$ 97 м²/г [16], относящийся к мезопористым адсорбентам. Химически модифицированные кремнеземы (ХМК) синтезированы в ЗАО "БиоХимМак СТ" с использованием трифункционального модификатора 3-бромпропилтрихлорсилан, что

обычно обеспечивает существование в составе привитого покрытия дополнительных гидроксилов у якорного атома кремния, принадлежащего модификатору.

Синтез образца Br-2 с монослойным покрытием (концентрация привитых групп $N \approx 2$ нм⁻²) проводили в безводных условиях (на первой стадии) по следующей схеме:

$$\begin{array}{c|c}
\hline
OH + Cl_3Si & Br \longrightarrow \\
\hline
O & Cl & Br \xrightarrow{H_2O} \\
\hline
Cl & OH & Br \\
\hline
OH & Si & Br \\
\hline
OH & OH & Br \\
\hline
\end{array}$$
(1)

Образец Br-5 (концентрация привитых групп $N \approx 4.9 \text{ нм}^{-2}$) получали в присутствии воды:

$$OH + Cl_3Si \qquad Br \xrightarrow{H_2O}$$

$$O - Si \qquad Br$$

В этом случае молекулы модификатора взаимодействуют как с поверхностью кремнезема, так и между собой с образованием привитого слоя полимерного типа.

Образец Br-5* представляет собой Br-5, дополнительно обработанный триметилхлорсиланом (TMC).

С целью анализа влияния природы функциональной группы на ТХА использованы известные [5, 6] и новые данные для образца аминокремнезема NH_2 с привитым слоем полимерного типа ($N \approx 4.7 \, \text{ нм}^{-2}$), полученного модифицированием SiO_2 3-аминопропилтриэтоксисиланом.

Методы

Величины удельной поверхности $s_{yд}$ образцов рассчитаны методом БЭТ из изотерм адсорбции азота (площадка молекулы 0.162 hm^2), измеренных на сорбтометре ASAP-2020 Micromeritics при 77 К. Кроме этого для оценки значений $s_{yд}^*$ XMK использовано уравнение, подобное приведенному в [2]:

$$s_{vn}^* = s_{vn}^0 (1 - m), \tag{1}$$

где $s_{yд}^0$ — удельная поверхность исходного носителя, m — массовая доля привитого слоя в XMK.

Газохроматографические исследования выполнены на хроматографе "Хром-5" с пламенноионизационным детектором и со стеклянными колонками (длина 0.6—0.8 м и внутренний диаметр 2.5 мм); в качестве газа-носителя использовали гелий (расход газа 15—35 мл/мин). Перед измерениями образцы прогревали в токе гелия при температуре 453 К в течение 30 ч.

В качестве тестовых молекул использовали *н*-алканы, адамантан, *тестовых* молекул использовали *н*-алканы, адамантан, *тестовых* и азотсодержащие соединения ("х.ч."). Пробы веществ вводили 3—6 раз в виде паро-воздушных смесей в количестве 0.1—0.2 мл. "Мертвое" время определяли по метану [17].

Константы Генри адсорбционного равновесия K_{Γ} и индексы удерживания Ковача I рассчитывали из газохроматографических (ГХ) параметров по формулам, приведенным в [1, 17].

При определении термодинамических характеристик адсорбции использовали следующие стандартные состояния вещества: 1 мкмоль/см³ в газовой фазе и 1 мкмоль/м² в адсорбированном состоянии [1, 17].

Начальные дифференциальные мольные теплоты адсорбции q и стандартные энтропии адсорбции ΔS° (в области Генри) определены из температурной зависимости K_{Γ} в интервале от 372 до 423 K с шагом 4—5 K по уравнению [1, 17]:

$$\ln K_{\Gamma} = q/(RT) + \Delta S^{\circ}/R + 1.$$

Для всех тестовых соединений погрешность экспериментального определения термодинамических характеристик адсорбции не превышала 5%.

Вклад $\mathrm{CH_2}$ -групп в величины $\ln K_\Gamma$ ($\ln K_\Gamma(\mathrm{CH_2})$) и в q ($q_{\mathrm{CH_2}}$) для H-алканов рассчитывали по уравнениям [1, 18]:

$$\ln K_{\Gamma} = a + \ln K_{\Gamma}(CH_2)n,$$

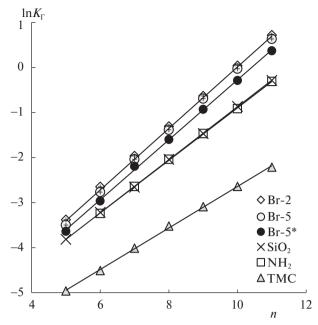
$$q = a' + q_{CH}n,$$

где n — число атомов углерода в молекуле n-алкана, a и a' — величины, отвечающие вкладу двух атомов H в $\ln K_{\Gamma}$ и q соответственно.

Вклады специфического взаимодействия оценивали согласно уравнению [1, 19]:

$$\Delta G^{\rm sp} = \Delta G^{\rm o} - \Delta G^{\rm d},$$

где ΔG° — энергия Гиббса адсорбции и $\Delta G^{\rm d}$ — энергия дисперсионных сил исследуемого соединения, равная значению $\Delta G^{\rm d}$ реального или гипотетического H-алкана с той же поляризуемостью.


ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Согласно данным по адсорбции азота модифицирование 3-бромпропилтрихлорсиланом почти не влияет на величины s_{yz} (m^2/r) образцов,

рассчитанные по БЭТ: для Br-2 $s_{yд}$ = 106, для Br-5 $s_{yд}$ = 95. Рассчитанные по уравнению (1) значения $s_{yд}^*$ на 10% ниже. В случае аминопропилкремнезема NH₂ $s_{yд}$ = 71, а $s_{yд}^*$ = 89. Известную сложность представляет собой выбор значения площадки молекулы для химически модифицированных поверхностей [20, 21]. Однако различия в значениях $s_{yд}$ (использовали в расчетах) и $s_{yд}^*$ не оказали влияния на интерпретацию результатов нашей работы. Модифицирование сопровождается обычным снижением константы C уравнения БЭТ: 100 на исходном носителе SiO₂, а на образцах Br-2, Br-5 и NH₂: 59, 55 и 44 соответственно.

ТХА линейных алканов, взаимодействие которых с поверхностью определяется преимущественно дисперсионными силами, представлены на рис. 1-3. Показано, что образование на поверхности бромпропильного слоя приводит к cyщественному увеличению констант Генри K_{Γ} и теплот адсорбции q по сравнению с исходным носителем. При этом K_{Γ} *н*-алканов почти не изменяются при переходе от образца с монослойным покрытием Br-2 к бромокремнезему Br-5 с привитым слоем полимерного типа, толщина которого примерно равна двум "монослоям". Дополнительная силанизация триметилхлорсиланом приводит к небольшому снижению (на pprox 20%) K_{Γ} *и*-алканов на образце Br-5*, но эти величины остаются много выше, чем на исходном носителе и тем более, на низкоэнергетическом кремнеземе [22], модифицированном ТМС (рис. 1). K_{Γ} всех тестовых соединений на образце, содержащем на поверхности только триметилсилильные группы, почти на порядок ниже, чем на бромокремнеземах [22]. Следовательно, сильные дисперсионные взаимодействия с привитыми бромпропильными радикалами компенсируют эффект уменьшения количества доступных для адсорбции силанольных групп после дополнительной силанизации. Теплоты адсорбции μ -алканов (рис. 2), как и вклады в теплоту адсорбции CH_2 -групп, на образцах с привитым бромпропильным слоем полимерного типа близки ($q_{\mathrm{CH}_2} = 6$ кДж/моль) и, как и K_{Γ} , выше, чем на исходном носителе ($q_{\rm CH}$, = = 4.3 кДж/моль [16]). Сопоставление стандартных энтропий адсорбции показывает, что ΔS° снижаются после модифицирования 3-бромпропилтрихлорсиланом, что для Br-5* выражено сильнее (рис. 3).

Полученные результаты позволяют предположить, что определенное значение в механизме удерживания на бромсодержащих ХМК играет проницаемость привитого слоя для адсорбирующихся молекул. Это обеспечивает, во-первых, рост значений теплоты адсорбции после модифицирования за счет дополнительных боковых вза-

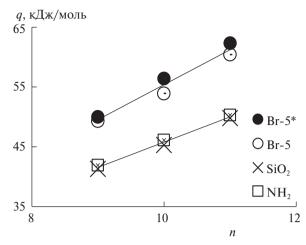


Рис. 1. Зависимости $\ln K_{\Gamma}$ от числа атомов углерода n в молекулах h-алканов при 403 K на исходном и модифицированных кремнеземах.

имодействий с привитыми группами и, во-вторых, снижение энтропии адсорбции вследствие уменьшения подвижности молекул, "растворяющихся" в слое модификатора.

Формирование на поверхности аминопропильного слоя полимерного типа практически не влияет на ТХА молекул, способных только к дисперсионным взаимодействиям: K_{Γ} , q и ΔS° μ -алканов почти не изменяются при переходе от SiO₂ к аминокремнезему (рис. 1-3). На первый взгляд сохранение величин K_{Γ} и q после модифицирования аминосиланом можно объяснить, если учесть, что дополнительные гидроксилы у атома кремния, образующиеся при модифицировании кремнезема трифункциональным силаном, способны принимать весьма активное участие в дисперсионном взаимодействии. Похожие результаты наблюдались и на привитых слоях, полученных с помощью трифункциональных октил- и перфторгексилсиланов [22, 23]. Однако необходимо принять во внимание, что привитые аминосоединения могут формировать арочную структуру привитого слоя за счет взаимодействия NH2-групп с остаточными и/или вновь образованными силанолами поверхности, что уменьшает участие в адсорбционном процессе обоих типов групп.

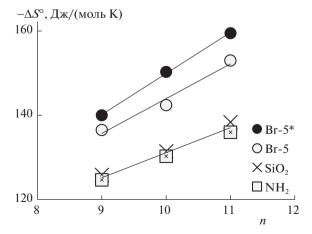

Особенности адсорбционных равновесий на бромпропилкремнеземах можно объяснить, если учесть, что поляризуемость атома брома почти в два раза выше, чем амино- и, тем более, ОН группы (например, 6×10^{-3} , 4×10^{-3} , 4.4×10^{-3} и 3.3×10^{-3} нм³ для CH_3Br , CH_3NH_2 , CH_3CH_3 и CH_3OH соответственно [24]).

Рис. 2. Зависимости теплот адсорбции q от числа атомов углерода n в молекулах H-алканов.

На основании наших данных можно, в первом приближении, объяснить сильное нековалентное связывание белков поверхностью аффинных сорбентов, полученных при использовании в качестве предшественников бромокремнеземов [12]. Главная причина этого, на наш взгляд, заключается в высоком дисперсионном потенциале поверхности с привитыми бромпропильными группами, что способствует усилению гидрофобных взаимодействий.

Для обсуждения возможного механизма удерживания в системах с участием модифицированных кремнеземов и насыщенных углеводородов исследовали адсорбционные равновесия в системах с участием молекул с одинаковым числом атомов углерода, но с различным пространственным строением: адамантан (АД), *транс*-декалин (Д) и декан (C_{10}). Данные по индексам Ковача, теплотам и энтропиям адсорбции для АД и Д приведены в табл. 1. Как и в случае H-алканов, H0 цик-

Рис. 3. Зависимости стандартных энтропий адсорбции ΔS° от числа атомов углерода n в молекулах n-алканов.

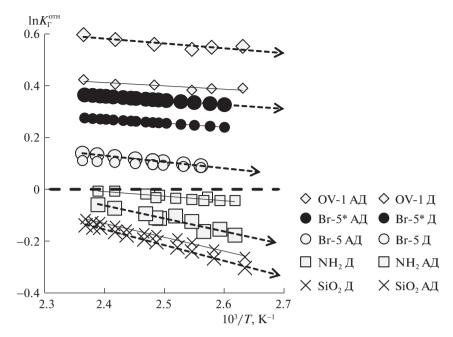
лических соединений уменьшаются в следующем порядке: $Br-5*>Br-5>SiO_2\approx NH_2$, а ΔS° увеличиваются в противоположном направлении: $Br-5*<< Br-5<SiO_2\approx NH_2$.

Известно, что отдельные звенья циклических молекул АД и Д удалены от поверхности раздела газ-твердое тело. Поэтому на плоской поверхности, например, на графитированной термической саже ГТС [16], АД и Д удерживаются намного слабее, чем С₁₀, молекула которого в наиболее выгодной для взаимодействия конформации может контактировать с поверхностью всеми звеньями. Адамантан выходит из колонки с ГТС почти вместе с гептаном – I(AД) = 690, а *транс*-декалин раньше нонана I(Д) = 870. Ha SiO₂ C₁₀ также адсорбируется сильнее, чем циклические соединения, однако различия в индексах Ковача АД и Д малозаметны (табл. 1). Сказанное иллюстрирует рис. 4, где результаты представлены в наглядном и компактном виде как температурные зависимости отношений констант Генри циклических углеводородов и декана. Вероятно, это связано с особенностями молекулярной топографии (шероховатостью, кривизной) поверхности аморфных кремнеземов, образованной беспорядочно расположенными кремний-кислородными тетраэдрами. На бромокремнеземах порядок выхода иной: циклические углеводороды выходят позже декана. Подобная картина наблюдается и при растворении в жидких фазах, например, на метилсилоксане OV-1 I(AД) = 1103, а I(Д) = 1056[16]. Определяющим фактором в удерживании на жидких фазах является уменьшение давления насыщенных паров АД и Д (~9 кПа и 16.8 кПа при 403 К соответственно) по сравнению с деканом (28.3 кПа при 403 К), а форма и размер молекулы оказывают лишь второстепенное влияние. Вероятно, на бромокремнеземах предпочтителен абсорбционный механизм удерживания. Можно предположить, что увеличение относительных параметров циклических соединений (табл. 1, рис. 4), при переходе от образца Br-5 к Br-5* связано с уменьшением влияния адсорбционного поля поверхности кремнезема, к которому приводит дополнительное силанизирование, и, вероятно, привитой слой становится менее структурированным.

К особенностям аминокремнезема в сравнении с ранее исследованными XMK [16] относится то, что циклические соединения удерживаются на этом образце во всей области исследованных температур слабее декана, что напоминает закономерности адсорбции АД и Д на твердой поверхности исходного носителя (табл. 1, рис. 4). Возможно, вследствие того, что аминопропильные радикалы могут взаимодействовать с остаточными силанольными группами поверхности с образованием так называемых арочных структур, сни-

Таблица 1. Индексы удерживания Ковача (*I*) при 403 K, теплоты (q, кДж/моль) и энтропии адсорбции (ΔS °, Дж/(моль K))

Параметр	SiO ₂	NH_2	Br-5	Br-5*				
Адамантан								
I	969	980	1013	1052				
q	42.3	41.5	51.9	55.1				
$-\Delta S^{\circ}$	126	123	136	144				
<i>транс</i> -Декалин								
I	975	995	1012	1039				
q	42.1	42.8	52.8	55.2				
$-\Delta S^{\circ}$	125	124	139	145				


жается подвижность привитых групп и модифицирующий слой становится более "жестким".

Следует учесть, что линейные зависимости $\ln K_{\Gamma}$ для μ -алканов от числа атомов углерода в молекуле в ряду семи гомологов с коэффициентом корреляции R > 0.999 (рис. 1.) и, следовательно, аддитивность вклада метиленового звена, дают возможность вполне обоснованно утверждать, что μ -алканы, в том числе декан, взаимодействуют с поверхностью кремнезема или с привитыми слоями всеми звеньями.

Таким образом, анализ полученных результатов указывает на то, что в механизме удерживания на кремнеземах с бромпропильными группами существенное значение имеет проникновение адсорбированных молекул в привитой слой. В противоположность этому, полимерный аминопропильный слой обладает более жесткой структурой с ограниченной конформационной подвижностью привитых аминопропильных групп, и в этом случае, по видимому, доминирует адсорбционный механизм удерживания.

Существует достаточно большой набор подходов, позволяющих оценить с помощью метода газовой хроматографии "полярность" поверхности материалов, т.е. вкладов электростатических и донорно-акцепторных взаимодействий, образования водородной связи в сорбцию и, следовательно, их селективность к разным классам органических соединений. В табл. 2 для некоторых из исследованных тестовых соединений представлены вклады специфического взаимодействия ΔG^{sp} в стандартную энергию Гиббса адсорбции на исходном носителе, бромо- и аминокремнеземах. Там же для сравнения приведены данные на еще двух признанных неполярных адсорбентах кремнеземах, модифицированных октилтрихлорсиланом [22], с близкой для функциональных ХМК плотностью прививки октильных групп образце C8 ($N \approx 4.4 \text{ нм}^{-2}$) и образце с дополнительной силанизацией С8*.

В целом значения $-\Delta G^{\rm sp}$ уменьшаются при модифицировании ${
m SiO_2},$ что связано с замещением

Рис. 4. Зависимости $\ln K_{\Gamma}^{\text{отн}}$ от обратной температуры; $A \square - K_{\Gamma}^{\text{отн}} = K_{\Gamma}$ (адамантан)/ K_{Γ} (декан) — пунктирные линии со стрелками; $\square - K_{\Gamma}^{\text{отн}} = K_{\Gamma}$ (*температуры*)/ K_{Γ} (декан) — сплошные линии.

и экранированием силанольных групп поверхности кремнезема. В группе бромокремнеземов самые низкие значения $-\Delta G^{\rm sp}$, как правило, наблюдаются на Br-5*. Полярность поверхности Br-5* выше, чем аминокремнезема, что отвечает изменению дипольных моментов ц молекул аналогичных производных алканов: μ (1-Br-пропана) = 1.9 D, ц (1-аминопропана) = 1.3 D [25]. При этом бромпропильные группы, в отличие от аминогрупп (нуклеофилов), обладают достаточно сильными электрофильными свойствами. Этот фактор способен влиять на величины $-\Delta G^{\mathrm{sp}}$ молекул с выраженной донорной способностью. Например, при переходе от аминокремнезема к образцу Br-5* — ΔG^{sp} диэтилового эфира, диоксана и тетрагидрофурана растут более чем в 2 раза, в то время как для спиртов различаются всего в 1.2 раза. Аналогичным образом изменяются индексы Ковача I, самой популярной оценке характеристик неподвижных фаз для ГХ (табл. 3): на Br-5* они выше, чем на NH_2 на 120-300 ед. для простых эфиров, а для спиртов всего на ≈ 30 ед.

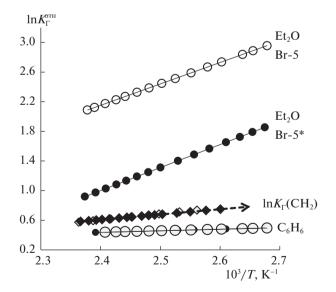
К неожиданным характеристикам аминокремнезема относится понижение $-\Delta G^{\rm sp}$ по сравнению с октилкремнеземом С8, т.е. с образцом с неполярными привитыми группами. Единственной причиной этого явления может быть активное взаимодействие ${\rm NH_2}$ -групп с силанолами исходного носителя и/или дополнительными SiOHгруппами, что снижает степень участия в адсорбционном процессе обоих типов групп и приводит к созданию более плотного покрытия. Как и для

Таблица 2. Вклады специфического взаимодействия в энергию Гиббса адсорбции $-\Delta G^{\rm sp}$ (кДж/моль) при 403 К

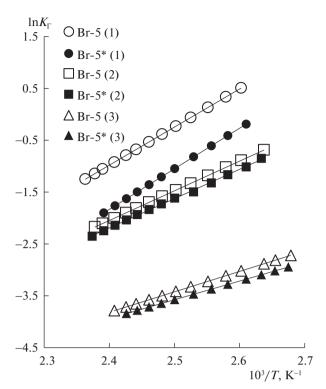
Соединение	SiO ₂	Br-2	Br-5	Br-5*	NH ₂	C8	C8*
Бензол	5.1	3.6	3.3	3.0	3.2	3.3	1.5
Толуол	5.7	3.9	3.6	3.3	3.2	3.6	1.5
Этилбензол	5.7	3.9	3.6	3.2	3.1	3.5	1.4
Диэтиловый эфир	14.5	11.1	9.2	5.6	2.2	7.4	2.8
Этилацетат	17.7	13.8	12.2	10.8	5.5	10.1	4.6
2-Метилпропан-2-ол		13.5	11.9	9.9	8.0	10.4	3.9
Ацетонитрил	18.1	14.3	13.3	13.5	10.2	13.5	11.9
Нитрометан	9.8	8.6	8.05	8.23	7.76		
Тетрагидрофуран			14.0	12.9	5.7		
Диоксан		18.7	16.5	15.0	7.35		
Метилэтилкетон	18.2	14.7	13.3	12.3		11.4	6.9

октилкремнеземов, дополнительная силанизация бромокремнезема как правило сопровождается уменьшением $-\Delta G^{\mathrm{p}}$: на Br-5 > Br-5*.

Дополнительная силанизация давно считается приемом, способствующим улучшению качества сорбентов, в частности химической однородности их поверхности. Так, октилкремнезем С8* с дополнительной силанизацией в отношении многих исследованных соединений обладает наиболее неполярной поверхностью. Однако только в немногочисленных работах приводятся количественные адсорбционные данные, подтверждающие эффективность этого процесса [2, 22, 26–28]. В связи с этим подробнее остановимся на сравнении констант Генри ряда соединений, измеренных в широком интервале температур, на образцах Br-5 и Br-5*.


Сопоставление температурных зависимостей относительных констант Генри $\ln K_{\Gamma}^{\text{отн}}$ для молекул со сравнительно близкими размерами и поляризуемостями, включая такие традиционные пары, как бензол-гексан или диэтиловый эфирпентан [1, 20, 28], дало возможность охарактеризовать роль π-связей или водородных связей в межмолекулярных взаимодействиях (рис. 5). Показано, что дополнительная силанизация существенно снижает $\ln K_{\Gamma}^{\text{отн}}$ для пары диэтиловый эфир—пентан на Br-5* по сравнению с Br-5, что обусловлено замещением и экранированием силанольных групп как исходного носителя, так и дополнительных SiOH-групп, образовавшихся в результате гидролиза непрореагировавших атомов Cl при модифицировании 3-бромпропилтрихлорсиланом. При этом дополнительная силанизация почти не оказывает влияние на величины $\ln K_{\Gamma}^{\text{отн}}$ для пары бензол-гексан. Интересно, что вклады метиленовых звеньев в адсорбцию $\ln K_{\Gamma}$ (СН₂), согласно которым принято оценивать энергию дисперсионных сил, близки на этих образцах, но выше, чем $\ln K_{\Gamma}^{\text{отн}}$ для пары бензол гексан.

Величины K_{Γ} для 2-метилпропан-2-ола (рис. 6), как и для диэтилового эфира, заметно падают после дополнительной силанизации, поскольку для этих молекул преобладающую роль играет сильное взаимодействие по типу образования водородных связей с остаточными силанольными группами поверхности (число которых снижается после дополнительной силанизации ТМС). Иная картина наблюдается при изучении адсорбции ацетонитрила (рис. 6). Дополнительная силанизация приводит только к едва заметному снижению (на $\approx 5\%$) K_{Γ} ацетонитрила, что напоминает данные для алканов, например, пентана (рис. 6), и к изменению порядка выхода диэтилового эфира и ацетонитрила на образце


Таблица 3. Индексы удерживания Ковача (1) при 403 К

Соединение	Br-2	Br-5	Br-5*	NH ₂
Бензол	673	664	652	683
Толуол	794	783	772	795
Этилбензол	893	883	872	892
Диэтиловый эфир	921	842	689	568
Этилацетат	1038	968	922	703
2-Метилпропан-2-ол	1021	952	876	841
Пропан-2-ол	960	877	845	814
Ацетонитрил	812	776	798	718
Нитрометан	726	705	722	753
Тетрагидрофуран		997	966	672
Диоксан		1151	1098	799

Вг-5* по сравнению с Вг-5. Как видно из табл. 3, на Вг-5* ацетонитрил адсорбируется сильнее диэтилового эфира. Это можно объяснить, если учесть, что ацетонитрил способен к более сильным электростатическим взаимодействиям (дипольный момент $\mu(CH_3CN) = 3.9D$), чем диэтиловый эфир ($\mu = 1.1D$), с полярными бромпропильными группами. Следовательно, адсорбция ацетонитрила на бромокремнеземах преимущественно происходит на бромпропильных звеньях, а не на SiOH-группах. Аналогичные результаты наблюдаются при сравнении I нитрометана ($\mu = 3.5D$), которые, в отличие, например, от спиртов, растут после обработки бромокремнезема ТМС (табл. 3).

Рис. 5. Зависимости вкладов метиленовых звеньев в адсорбцию $\ln K_{\Gamma}(\mathrm{CH_2})$ и $\ln K_{\Gamma}^{\mathrm{OTH}}$ от обратной температуры на Br-5 и Br-5*; $\mathrm{Et_2O} - K_{\Gamma}^{\mathrm{OTH}} = K_{\Gamma}$ (диэтиловый эфир)/ K_{Γ} (пентан); $\mathrm{C_6H_6} - K_{\Gamma}^{\mathrm{OTH}} = K_{\Gamma}$ (бензол)/ K_{Γ} (гексан).

Рис. 6. Зависимости $\ln K_{\Gamma}$ от обратной температуры для 2-метилпропан-2-ола (1), ацетонитрила (2) и пентана (3).

Таким образом, модифицирование бромпропилсиланом, увеличение плотности привитого слоя и дополнительная силанизация в большинстве случаев снижает вклад специфических взаимодействий в ряду $SiO_2 > Br-2 > Br-5 > Br-5*$. Однако эта закономерность нарушается для молекул с большим дипольным моментом, что показано на примере ацетонитрила и нитрометана. Значения $-\Delta G^p$ и I подрастают на Br-5* в сопоставлении с Br-5 (табл. 2, 3).

Остановимся на некоторых моментах, связанных с применением кремнеземов с привитым бромпропильным покрытием в аналитической хроматографии. К важным свойствам бромокремнеземов Br-5 и Br-5* с пленкой модификатора полимерного типа относится то, что на них наблюдаются симметричные хроматографические пики практически всех исследованных полярных соединений. Следовательно, на практике вполне допустимо использование более дешевого (без дополнительного силанизирования) адсорбента с привитыми бромпропильными группами. Br-5 обладает достаточно высокой селективностью разделения веществ с близкими физико-химическими свойствами [14]. Термостойкость бромокремнеземов не менее 473 К, нелетучесть, стабильность при хранении не менее 5 лет предполагают возможность применения 3-бромпропилтрихлорсилана для приготовления насадочных и капиллярных колонн для ΓX со сравнительно высокой полярностью.

Таким образом, обобщение полученных результатов указывает на существенные различия в свойствах поверхности бромо- и аминокремнеземов, что представляет интерес с точки зрения предсказания адсорбционной и каталитической активности материалов, полученных на основе таких ХМК. В целом, к преимуществам кремнеземов с привитым слоем полимерного типа по сравнению с монослойным покрытием относится, вопервых, существенное снижение доступности остаточных силанольных групп и, во-вторых, возможность реализации более высокого выхода в процессах синтеза привитых соединений сложного строения за счет увеличения концентрации реакционноспособных центров на поверхности предшественника, что способствует решению задач синтеза сорбентов и катализаторов с заданными свойствами.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Киселев А.В.* Межмолекулярные взаимодействия в адсорбции и хроматографии. М.: Высш. школа, 1986. 360 с.
- Химия привитых поверхностных соединений / Под ред. Лисичкина Г.В. М.: Физматлит, 2003. 592 с.
- 3. *Лисичкин Г.В.* Химическое модифицирование твердых поверхностей // Современное естествознание. Энциклопедия. М.: Наука, Флинта, 1999. Т. 1. С. 206.
- 4. *Тертых В.А., Белякова Л.А.* Химические реакции с участием поверхности кремнезема. Киев: Наукова думка, 1991. 264 с.
- 5. Roshchina T.M., Davydov V.Y., Khrustaleva N.M. et al. // Adsorpt. Sci. Technol. 1997. V. 15. № 3. C. 147.
- 6. Давыдов В.Я., Рощина Т.М., Хрусталева Н.М., Мандругин А.А. // Журн. физ. химии. 1993. Т. 67. № 12. С. 2428.
- 7. Даванков В.А., Навратил Дж., Уолтон Х. Лигандообменная хроматография. М.: Мир, 1989. 294 с.
- 8. *Кудрявцев Г.В., Бернадюк С.З., Лисичкин Г.В.* // Успехи химии. 1989. Т. 58. № 4. С. 684.
- 9. *Кротов В.В., Староверов С.М., Нестеренко П.Н., Лисичкин Г.В.* // Журн. общ. химии. 1986. Т. 56. № 11. С. 2460.
- 10. *Кротов В.В., Староверов С.М., Нестеренко П.Н., Лисичкин Г.В.* // Там же. 1987. Т. 57. № 5. С. 1187.
- 11. *Мингалев П.Г.* Взаимосвязь структуры и аффинных свойств кремнеземных сорбентов с привитыми олигопептидами: Автореф. дис. канд. хим. наук. М.: МГУ, 1993. 20 с.
- Mingalev P.G., Fadeev A.Y. // J. Chromatogr. A. 1996.
 V. 719. P. 291.
- Маерле К.В. Сверхсшитый полимер на основе винилпиридина в качестве стационарной фазы в капиллярной электрохроматографии. Автор. дис.

- канд. хим. наук: М.: Ин-т элементоорганических соединений им. А.Н. Несмеянова РАН, 2009. 25 с.
- 14. *Рощина Т.М., Давыдов В.Я., Тимошик М.С. и др. //* Вестн. МГУ. Сер. 2. Химия. 1998. Т. 39. № 4. С. 236.
- 15. Рощина Т.М., Коханов О.В., Власенко Е.В., Фадеев А.Ю. // Труды IX Международной конф. по теоретическим вопросам адсорбции и адсорбционной хроматографии "Современное состояние и перспективы развития теории адсорбции" (к 100-летию со дня рождения академика М.М. Дубинина). М.: ГНЦ РФ "Ниопик", 2001. С. 250.
- Roshchina T.M., Gurevich K.B., Fadeev A.Y. et al. // J. Chromatogr. A. 1999. V. 844. P. 225.
- Экспериментальные методы в адсорбции и молекулярной хроматографии / Под ред. Никитина Ю.С. и Петровой Р.С. М.: МГУ, 1990. 318 с.
- Papirer E., Balard H., Vergelati C. // Adsorption on silica surfaces. Surfactant science series. Marcel: Dekker. Inc., 2000. V. 90. P. 205.
- 19. Voelkel A., Strzemiecka B., Adamska K., Milczewska K. // J. Chromatogr. A. 2009. V. 1216. P. 1551.

- 20. Грег С., Синг К. Адсорбция, удельная поверхность, пористость. М.: Мир, 1984. 306 с.
- 21. *Карнаухов А.П.* Адсорбция. Текстура дисперсных и пористых материалов. Новосибирск: Наука, 1999. 470 с.
- 22. Рощина Т.М., Шония Н.К., Таякина О.Я., Фадеев А.Ю. // Журн. физ. химии. 2011. Т. 85. № 2. С. 352.
- 23. Рощина Т.М., Шония Н.К., Лагутова М.С., Фадеев А.Ю. // Там же. 2008. Т. 82. № 3. С. 470.
- 24. *Miller T.M.* / in CRC Handbook of Chemistry and Physics / ed. by *D. R. Lide*. CRC Press. Boca Raton. Fl, 2002. 83d edition. 202 p.
- 25. *Ocunos O.A.*, *Минкин В.И.* Справочник по дипольным моментам. М.: Высш. школа, 1971. 414 с.
- Киселев А.В., Лисичкин Г.В., Никитин Ю.С. и др. // Журн. физ. химии. 1983. Т. 57. № 7. С. 1829.
- 27. Шония Н.К., Староверов С.М., Никитин Ю.С., Лисичкин Г.В. // Журн. физ. химии. 1984. Т. 58. № 3. С. 702.
- 28. Сердан А.А., Никитин Ю.С., Староверов С.М., Лисичкин Г.В. // Там же. 1986. Т. 60. № 1. С. 147.