ФОТОХИМИЯ И МАГНЕТОХИМИЯ

УДК (535.21 + 541.14 + 541.61) : 556.33

ДОКАЗАТЕЛЬСТВА ОТСУТСТВИЯ *транс—цис-*ФОТОИЗОМЕРИЗАЦИИ РИДИМЕРОВ МЕТИЛОРАНЖА В ВОДНОЙ СРЕДЕ И В КОМПЛЕКСАХ ВКЛЮЧЕНИЯ

© 2019 г. Ю. А. Михеев^{*a*,*}, Ю. А. Ершов^{*b*}

^а Российская академия наук, Институт биохимической физики им. Н.М. Эмануэля, Москва, Россия ^b Московский государственный технический университет им. Н.Э. Баумана, Москва, Россия

> *e-mail: mik@sky.chph.ras.ru Поступила в редакцию 17.12.2018 г. После доработки 17.12.2018 г. Принята к публикации 15.01.2019 г.

Проведен анализ данных по лазерному ультравысокоскоростному зондированию фотоиндуцированных состояний метилоранжа в водной среде и в комплексах с циклодекстринами, а также *mpaнс*аминоазобензола в этаноле, полученных методами ультрабыстрых транзитных линз (UTL) и транзитной абсорбционной спектроскопии (TAS). В основу анализа положена концепция ридимерного строения азокрасителей в их основном состоянии, причем аминоазобензол рассматривается как референтное соединение. Показано, что несоответствие, существующее между UTL-, TAS-сигналами ридимеров метилоранжа и UTL-, TAS-сигналами ридимеров аминоазобензола, обусловлено неспособностью ридимеров метилоранжа к *mpaнс—цис*-фотоизомеризации в водной среде и в комплексах включения, протекающей вследствие диссоциации ридимеров аминоазобензола в этаноле на мономеры. Один из мономеров, обладающий двумя катионами фениламинильного типа и VIS-поглощением в интервале длин волн 500–750 нм, превращается в *цис*-изомер. В отличие от этого фотодиссоциация ридимеров метилоранжа на мономеры не приводит к образованию *цис*-изомеров. Причины такого различия — иммобилизация и ограниченная подвижность ридимеров метилоранжа в аквакапсулах и нанополостях циклодекстринов.

Ключевые слова: метилоранж, аминоазобензол, ридимеры, фотодиссоциация ридимеров, *трансцис*-изомеризация, UTL- и TA-спектроскопия, циклодекстрины, соединения включения, гидрофобная гидратация, аквакапсулы

DOI: 10.1134/S0044453719090152

В работах [1-5] установлено, что простые красители на основе аминоазобензола в основном состоянии являются ридберговскими димерами (ридимерами). Межмономерная связь в ридимерах – ковалентная связь нового типа – образуется в результате спаривания электронов, промотированных с *sp*²-орбиталей атомов N азогрупп на ридберговские 3*s*-орбитали азогрупп. При этом характерная для азокрасителей цветность связана не с их хиноидными мономерами, как полагали до этого более 100 лет, а с принадлежащими ридимерам катионами фениламинильного типа (CPhAT).

На основе работ [1-5] дана новая трактовка экспериментальных данных по фотохимии аминоазобензольных красителей. Так, в [6] объяснены резонансные рамановские спектры ридимеров аминоазобензола (AAB₂), а в [7, 8] раскрыта природа транзитных состояний AAB₂, установленных в [9, 10] методами UTL и TAS, и раскрыт механизм *транс-цис*-фотоизомеризации.

В настоящей работе новая трактовка UTL- и TAS-сигналов AAB₂ [7, 8] положена в основу анализа UTL- и TAS-сигналов метилоранжа (MOD), приведенных в работе [11]. Показано, что эти сигналы тоже обусловлены ридимерами MOD₂, но не традиционно постулируемыми мономерами строения

$$R_2N \longrightarrow N = N \longrightarrow X,$$

где $R = CH_3, X = SO_3^-$.

Результаты проведенного анализа позволяют также сделать заключение о неспособности находящихся в воде ридимеров MOD2 вступать в *транс-цис*-изомеризацию, в отличие от AAB2 в этаноле.

Рис. 1. Сигналы ТАЅ метилового оранжевого красителя в воде(а) и аминоазобензола в этаноле (б) при концентрациях 0.3 ммоль/л в присутствии γ -CD концентрацией: 1 - 0, 2 - 0.3, 3 - 10 ммоль/л (а), и без γ -CD (б). Время задержки зондового пучка, пс: 1 - 0.1, 2 - 0.5, 3 - 1.0, 4 - 5.0 (б). По данным [9–11].

УЛЬТРАБЫСТРЫЕ UTL- И ТАЅ-МЕТОДЫ

Авторы [9–11] использовали ультрабыстрые UTL- и TAS-методы с целью уточнения механизма фотопроцессов *транс-цис*-изомеризации *t*-AAB (в этаноле и гептаноле) и MOD (в водной среде и в комплексах с циклодекстринами). При этом они традиционно исходили из представления о мономерном строении аминоазобензольных красителей. Между тем, транзитные VISспектры и UTL-сигналы от MOD и AAB имеют отличия, объяснимые только в рамках ридимерной концепции.

Метод ультрабыстрой транзитной абсорбционной спектроскопии (TAS)

Для регистрации TAS-спектров MOD₂ и AAB₂ использовали импульсную лазерную установку, генерирующую излучение с длиной волны $\lambda =$ 800 нм и частотой повторения импульсов 1000 Гц [9-11]. Это излучение расщепляли на два пучка, один из которых после преобразования с удвоением частоты в видимый (VIS) свет ($\lambda_{ex} = 400$ нм) использовали в качестве пучка фотовозбуждения (pump beam) ридимеров (мощность этого пучка составляла менее 200 мкДж). Другой пучок после преобразования в континиум белого света использовали в качестве зондового (probe) пучка, ориентированного под малым углом к пучку возбуждения и фокусированного в ту же точку в кювете с образцом, что и пучок возбуждения. Импульсы зондового пучка генерировали через определенное время задержки, причем малую его часть отделяли в канал сравнения. Облучаемые растворы красителей (концентрация 0.3 ммоль/л) пропускали через проточную кварцевую кювету с оптическим путем 0.5 мм.

Авторы [11] предполагали, что в воде фотовозбужденные молекулы MOD претерпевают *транс—цис*-изомеризацию, наличие которой установили для AAB_2 [9, 10] (механизм фотоизомеризации AAB_2 дан в [7, 8]). В этой связи они поставили задачу исследовать характер изменения транзитных сигналов комплексов предполагаемых молекул MOD с циклодекстринами (CD) в стерических затрудненных условиях для *трансцис*-изомеризации.

*TAS-сигналы MOD*₂ в воде и комплексах включения

Для получения комплексов включения использовали α-, β- и γ-циклодекстрины, молекулы которых построены из шести, семи и восьми глюкопиранозных единиц соответственно [11, 12]. Эти молекулы имеют форму усеченных конусов высотой 7.8 Å с внешней гидрофильной поверхностью и отличаются размерами внутримолекулярных полостей, имеющих гидрофобную поверхность и диаметры у основания соответственно 5.7, 7.8 и 9.5 Å [12]. Желая получить комплексы в соотношении CD/MOD-молекулы = 1 : 1 и 2 : 1, авторы [11] использовали CD-концентрации 0.3 и 10 ммоль/л соответственно. По их мнению, высокая концентрация CD обеспечивает образование преимущественно комплексов 2:1, в которых молекулы MOD будут закапсулированы с обоих концов и получат наиболее сильное стеснение. В [11] не сообщено о спектрах TAS для комплексов с α - и β -CD. В то же время было обнаружено изменение TAS-спектров у комплексов MOD_2 с у-CD относительно спектров MOD₂ в водном растворе без ү-CD. Наблюдавшиеся в [11] для нулевого времени задержки спектры TAS приведены на рис. 1а.

Рис. 2. Сигналы UTL метилоранжа (а) в водной среде при концентрации 0.3 ммоль/л и различной концентрации γ -CD: 1 - 0, 2 - 0.3, 3 - 10 ммоль/л; б и в – модели комплексов включения в работе [11].

На рис. 1а кривая 1 характеризует TAS-спектр MOD_2 в воде без γ -CD, кривая 2 – спектр совместного раствора MOD_2 с γ -CD при концентрациях 0.3 ммоль/л, кривая 3 – спектр раствора с содержанием 0.3 ммоль/л MOD_2 и 10 ммоль/л γ -CD. Авторы [11] ограничились данными рис. 1а, уделив основное внимание UTL-исследованиям (данные UTL рассмотрены ниже).

При описании TAS-спектров комплексов включения (рис. 1а, спектры 2, 3) принято [11], что в относительно крупные полости γ -CD инклюдируются две молекулы MOD, претерпевая агрегацию с параллельной укладкой. При этом в комплексах "1:2" димеры MOD-молекул фиксируются с одного конца (рис. 26). Этим комплексам приписаны транзитный спектр 2 (рис. 1а) и низкая скорость *транс—цис*-изомеризации [11]. В комплексах "2:2" (рис. 2в), согласно [11], димеры MOD капсулируются с двух концов. Этим комплектическое отсутствие *транс—цис*-изомеризации.

Следует отметить, что, в соответствии с новыми фактами [1–8], основным состоянием метилоранжа, как и других производных аминоазобензола, являются ридимеры. Далее будет показано, что спектры 2 и 3 на рис. 1а соответствуют транзитным фотовозбужденным состояниям, возникающим при наличии двух ридимеров MOD_2 , включенных в полость γ -CD.

Что касается ридимеров AAB_2 , то их TAS-сигналы, полученные для этанольного раствора в кинетическом (time-resolved) варианте в работах [9, 10], приведены на рис. 16. Они получили свое объяснение в рамках ридимерной концепции в [7, 8] и будут использованы как референтные спектры при обсуждении данных по MOD₂.

Метод ультрабыстрых транзитных линз (UTL)

Метод UTL служит для определения динамики молекул растворителя и растворенного соединения по транзитному неоднородному изменению показателя преломления (*n*) среды. Такое транзитное изменение *n* относительно *n*₀ возникает в условиях фотовозбуждения растворенных молекул сфокусированным пучком света в результате безызлучательной конверсии энергии возбуждения. В [10, 11] использовали лазерную установку, генерирующую импульсы возбуждения и импульсы зондирования с одинаковой поляризацией электрического вектора. Импульсы зондирования (probe), имеющие $\lambda_p = 800$ нм и частоту повторения 76 МГц, направляли через линию оптической задержки коллинеарно с импульсами возбуждения ($\lambda_{ex} = 400$ нм, частота повторения 1.1 МГц, мощность менее 200 пДж/импульс) и фокусировали оба пучка излучения на ячейку с образцом выпуклой линзой с f = 50 мм. Определяли изменение интенсивности излучения в центральном сечении зондового луча. Центральное сечение выделяли, пропуская зондовый луч через расположенный на удалении от образца фильтр, снабженный "булавочным отверстием" (pinhole).

*UTL-сигналы от ридимеров МОD*₂

Импульсное возбуждение MOD_2 [11] и AAB_2 [10] вызывает мгновенный рост интенсивности зондового излучения вследствие мгновенного роста показателя преломления, связанного с оптическим эффектом Керра (OKE, $n_{OKE} - n_0 > 0$). Эффект OKE имеет место и в чистых растворителях вследствие мгновенного отклика электронов среды на световое воздействие и появления транзитной линзы с положительным фокусом. Спад интенсивности OKE-сигнала наступает практически при нулевом времени задержки зондового пучка. На его спадающую ветвь налагается индуцированное фотовозбуждением ослабление интенсивности зондового импульса за счет появления дефокусирующей транзитной UTL-линзы с отрицательным фокусом. Появление такой линзы связывают с безызлучательной конверсией энергии возбуждения в колебательно возбужденное основное электронное состояние с последующей передачей конвертированной энергии молекулам среды, в результате чего происходит снижение показателя преломления ($n_0 - n > 0$).

На рис. 2а приведены транзитные UTL-сигналы [11] для водных растворов MOD_2 (кривая 1), а также для комплексов включения MOD₂ в γ-CD при концентрациях 0.3 ммоль/л обоих компонентов (кривая 2) и при концентрациях 0.3 ммоль/л у MOD₂ и 10 ммоль/л у ү-СD (кривая 3). Расчетный анализ кривой 2, проведенный с разделением сигналов ОКЕ и UTL [11], показал, что наблюдаемый вслед за ОКЕ спад сигнала UTL соответствует сумме двух экспоненциальных кривых [10, табл. 1]. Одна из этих кривых имеет характеристическое время $\tau_1 = 0.6 - 0.9$ пс, другая $-\tau_2 = 8 - 13$ пс. Время τ₁ приписали конверсии энергии исходного возбужденного состояния (трактуемого как S_2) молекулы t-MOD в энергию колебательно-возбужденного состояния ($S_2 \sim \rightarrow S_0^v$), а τ_2 – колебательной релаксации $S_0^{\vee} \sim \rightarrow S_0$.

Сходные компоненты UTL-сигналов с такими же значениями констант τ_1 , τ_2 были установлены для комплексов включения в растворах с концентрацией 0.3 ммоль/л *t*-MOD (в расчете на молекулы), содержащих 0.3 ммоль/л α -CD, β -CD и 10 ммоль/л β -CD. Всем этим комплексам был приписан состав 1 : 1.

Для UTL-сигналов от комплексов предполагаемых молекул *t*-MOD с γ-CD при концентрациях 0.3 ммоль/л t-MOD и 0.3 ммоль/л ү-CD авторы получили примерно такие же кинетические константы ($\tau_1 = 0.6-1.2$ пс, $\tau_2 = 6-12$ пс). Однако, учитывая, что при указанных молярных концентрациях константа комплексообразования в равновесии "t-MOD + γ -CD \leftrightarrow (t-MOD, γ -CD)" на четыре порядка больше, чем при таких же концентрациях *t*-MOD с α - и β -CD, авторы [11] приняли, что комплексы с γ-CD включают две молекулы t-MOD в виде димеров (1 : 2), капсулируемых с одного конца (рис. 2б). Для концентраций 0.3 ммоль/л t-MOD и 10 ммоль/л γ-CD спад UTLсигналов был более длительным, с $\tau_1 = 1.1 - 2.1$ пс, $\tau_2 = 13 - 17$ пс. Это было объяснено капсулированием димеров *t*-MOD с двух концов (2 : 2) (рис. 2в).

Следует отметить, что UTL-сигнал находящихся в воде предполагаемых свободных молекул MOD снижается в область отрицательных значений при ~2.5 пс (рис. 2, кривая *I*), после чего очень медленно возвращается к нулю. Это свойство характерно также для комплексов с α -CD, β -CD (1 : 1), и авторы связали его с образованием *цис*-формы MOD, предположив для нее более низкий показатель преломления относительно *транс*-формы MOD.

Транзитные UTL- и TAS-сигналы ридимеров ААВ₂

Ридимеры AAB_2 в среде этанола и гептанола исследовали с помощью описанных выше установок [9, 10]. При этом оказалось, что полученная для AAB_2 картина отличается от картины с MOD_2 числом экспоненциальных компонент в UTL-, TAS-сигналах и значениями кинетических констант.

Расчетное разделение наблюдавшихся OKE- и UTL-сигналов показало [10], что для спиртовых растворов AAB_2 характерно наличие трех кинетических компонент в UTL-сигнале. Соответствующие им константы 0.3, 0.7 и 2 пс были вычислены с учетом эффекта снижения интенсивности сигнала UTL в области отрицательных значений на длительное время. Такое снижение, как и в случае с MOD_2 , было приписано образованию *цис*-формы молекул AAB.

Что касается TAS-сигналов AAB_2 в работах [9, 10], то они практически одинаковы для обоих спиртов. На рис. 16 приведены транзитные TAS-спектры для растворов в этаноле, полученные в [9] при временах задержки импульсов зондирующих лучей 0.1, 0.5, 1.0 и 5.0 пс. Здесь спектр *I* имеет широкую полосу TAS в области 410–750 нм и относительно долгоживущую полосу отбеливания (bleachihg) в области поглощения AAB_2 при 370–410 нм (ее возвратная эволюция соответствует моноэкспоненциальной функции с характеристическим временем $\tau = 15$ пс).

Спад интенсивности TAS в интервале $\lambda = 600 -$ 725 нм описывается тремя экспонентами [9]. Наиболее быстрая компонента TAS с $\lambda_{max} =$ = 625 нм [9, рис. 4] и τ_1 = 0.2 пс фактически соответствует компоненте UTL с $\tau_1 = 0.3$ пс [10]. Эта компонента в области 500-600 нм практически не определяется. Она отсутствует и в TAS-спектрах MOD₂ работы [11] (рис. 1а, кривые *1–3*). Относящиеся к ААВ₂ две другие ТАЅ-компоненты охватывают одну и ту же спектральную область 410-750 нм и имеют один общий максимум 525 нм [9, рис. 4] (рис. 1б). Они спадают медленнее, характеризуются константами $\tau_2 = 0.6$ пс и $\tau_3 = 1.9$ пс и, несмотря на почти трехкратное различие констант, их спектры TAS имеют одинаковую форму, не меняющуюся в ходе их исчезновения. В конце TAS-эволюции наблюдается спектр раствора, обедненного ААВ₂ и обогащенного *цис*-

формой AAB. Регенерация *t*-AAB достигает ~75%, тогда как ~25% превращается в *c*-AAB [9].

Что касается быстрой транзитной TAS-компоненты AAB₂ (0.2 пс в области спектра 600– 750 нм), то авторы [9] приписывают ее процессу конверсии энергии возбужденных молекул с S_2 уровня (π,π^* -состояние) на S_1 -уровень (" n,π^* -состояние"). Наличие двух компонент спада, идущих в спектральной области 410–750 нм с $\tau_2 =$ = 0.6 пс и $\tau_3 = 1.9$ пс и имеющих одинаковую форму спектров, они связывают с существованием двух разных путей спада " n,π^* -состояния" в основное S_0 -состояние молекул *t*-AAB.

Очевидно, что описание механизма конверсии энергии возбуждения с S_2 -уровня, данное в [9] для мнимых молекул *t*-AAB (а реально ридимеров AAB₂ [1-8]), не согласуется с числом компонент в UTL-сигналах [11] предполагаемых молекул MOD (а реально ридимеров MOD₂ [2]) и способом объяснения их природы.

Фотопревращения ридимеров ААВ₂ и МОD₂

Процессу фотоизомеризации AAB предшествует диссоциация AAB_2 на мономеры [7, 8]. Этого следует ожидать и для MOD_2 как естественного свойства фотовозбужденных ридимеров. Рассмотрим в краткой форме механизм фотолиза AAB_2 [7, 8], принимаемый в качестве референтного образца.

Фотоизомеризация ридимеров *ААВ*₂

Для фотопревращения аминоазокрасителей наиболее значимы *е*-конфигурации [7, 8]:

В схеме 1 символы R, X обозначают H в AAB₂, точки под атомами N обозначают электроны на *sp*²-орбиталях, а точки над N – электроны на p_z -орбиталях. Между азогруппами мономеров показаны ридберговские ковалентные связи из двух электронов, промотированных с *sp*²-орбиталей азогрупп на R_{3s} -орбитали (R_{3s} - R_{3s} -связи). В каждом мономере *sp*²-орбиталь, потерявшая электрон, наделяет свой атом N положительным зарядом. На p_z -орбиталь этого атома N стягивается электрон с p_z -орбитали соседнего атома N. Данная ситуация имеет место в каждом мономере ридимера. Потерявшие sp^2 -электроны атомы N мономеров индуцируют положительные заряды на p_z -орбиталях соседних атомов N, которые поляризуют электронные p_z -системы в сопряженных кольцах с образованием катионов фениламинильного типа (CphAT).

Ридимеры (1b) в схеме 1 образуются вследствие того, что атомы азота аминных групп отдают по электрону в соседние фениленовые кольца, которые становятся донорами электронов для CPhAT (Ph⁺N⁺) в противолежащих мономерах. В итоге связь между мономерами в ридимере усиливается, и возникают наиболее устойчивые *е*-таутомеры (1b). В них между противолежащими катионами обоих мономеров существуют одноэлектронные связи [3–8], фиксирующие четыре катиона фениламинильного типа с интенсивной полосой поглощения. В AAB₂ такая полоса захватывает область 330–420 нм ($\lambda_{max} \sim 382$ нм, растворитель ацетонитрил [6]). У растворенных в воде ридимеров MOD₂, содержащих группы N(CH₃)₂ и

 SO_3^- в фенильных кольцах, такая полоса смещена в область 360–525 нм, $\lambda_{max} \sim 463$ нм [2].

Из изложенного выше следует, что импульсное лазерное излучение с $\lambda_{ex} = 400$ нм [9–11] должно взаимодействовать преимущественно с *e*-таутомером (1b), создавая франк-кондоновские (FK) состояния (полное описание в [7, 8]):

здесь R = H. Схема 2 отражает процесс расщепления ридимера (2b) с образованием неодинаковых FK-пар мономеров (2c_{FK}) и (2d_{FK}) примерно в равных количествах. При этом гомогенная пара (2c_{FK}) является результатом того, что разрыв R_{3s} - R_{3s} -связи фотовозбужденного ридимера (2b) приводит к возвращению освободившихся электронов на *sp*²-орбитали атомов N обоих мономеров. Эта пара является промежуточным FK-состоянием, ее последующее превращение рассмотрено ниже.

Образование гетерогенной пары (2d) связано с тем, что только одна R_{3s}^{\bullet} -орбиталь разорванной при фотолизе $R_{3s}-R_{3s}$ -связи возвращает электрон

на sp^2 -орбиталь атома N. Вторая одноэлектронная R_{3s}^{\bullet} -орбиталь захватывает электрон из одноэлектронной связи ридимера (2b). В итоге появляется пара (2d_{FK}), состоящая из мономера *t*-AAB и поляризованного мономера с двумя катионами фениламинильного типа и с сильно ослабленной связью $N_{\bullet+}^{\bullet\bullet} - N_{\bullet+}^{\bullet+}$ в азогруппе. Заряды поляризованного мономера уравновешиваются двумя отрицательными зарядами электронов, находящимися на ридберговской орбитали $R_{3s}^{\bullet\bullet}$.

Вступать в *транс*—*цис*-изомеризацию способны только поляризованные мономеры из пары ($2d_{FK}$), но не электронейтральные мономеры *t*-AAB (в парах $2c_{FK}$ и $2d_{FK}$) с прочной двойной связью N=N. Поляризованные мономеры содержат группу N_{•+}^{+•}–N_{•+}^{+•} и ослабленную азосвязь в сочетании с сильным кулоновским отталкиванием положительно заряженных атомов азота. Именно их изомеризацией объясняют наличие субпикосекундных сигналов TAS (с $\tau_1 = 0.2$ пс [7]) и UTL (с $\tau_1 = 0.3$ пс [8]) и тот факт [7, 8], что доля образующихся молекул *цис*-изомеров (*c*-AAB) составляет, согласно [9, 10], всего ~25% от числа всех мономеров, входящих в AAB₂. Остальные 75% мономеров рекомбинируют в AAB₂ [7, 8].

Превращение FK-гомогенных пар AAB₂

FK-пары из неполяризованных мономеров ($2c_{FK}$) превращаются в FK-ридимеры с транзитной полосой при $\lambda_{max} = 525$ нм по схеме [7, 8]: (X, R = H у AAB₂). В схеме 3 каждый мономер в с_{FK}-паре отдает на создание межмономерной связи по электрону, промотированному на ридберговскую орбиталь. Образующиеся при этом FKридимеры a_r^v и b_r^v несут на себе бинарные резонаторы из катионов $XP\hbar^+N_{\bullet\bullet}^+$ ($3a_r^v$) и $R_2N^{\bullet\bullet}P\hbar^+N_{\bullet\bullet}^+$ ($3b_r^v$).

В каждой паре таких резонаторов происходит расщепление π*-уровней одиночных резонаторов (механизм Симпсона), и это приводит к появлению суммарной широкой транзитной полосы VIS-поглощения в области 500–750 нм с λ_{max} ~ ~ 525 нм (рис. 1б, кривые 2, 3) [7, 8]. В момент своего образования ридимеры $(3a_r^v) \leftrightarrow (3b_r^v)$ имеют некоторый избыток колебательной энергии. Сначала этот избыток достаточно высок ("горячее колебательное состояние"), и стадию исчезновения TAS-сигнала с константой $\tau_2 = 0.6$ пс "горячих" структур $(3a_r^v) \leftrightarrow (3b_r^v)$ связывают [7, 8] с их переходом в основное электронное, но термически неравновесное (1ат) состояние 1а в схеме 1. Такому переходу соответствует UTL-сигнал с τ₂ = 0.7 пс [10].

Снижение степени колебательного возбуждения релаксирующих структур $(3a_r^v) \leftrightarrow (3b_r^v)$ приводит к более медленной стадии (в TAS $\tau_3 = 1.9$ пс [7], в UTL $\tau_3 = 2.0$ пс) их перехода в основное неравновесное электронное состояние $(1a_T)$. После этого происходит релаксация структур типа $(1a_T)$ в состояние равновесия $(1a_T \rightarrow 1a \rightarrow 1b)$ с восстановлением исходных ридимеров AAB₂ (схема 1).

Сходные стадии фотопревращений МОД₂ и ААВ₂

Из изложенного выше следует, что в актах фотовозбуждения MOD_2 должны участвовать наиболее устойчивые ридимеры типа (2b), причем их возбужденные *e*-конфигурации должны завершиться расщеплением как в случае AAB_2 [7, 8]:

В схеме 4 FK-состояние – гомогенная пара (4с_{FK}). В ней не приведены FK-гетерогенные пары типа (2d_{FK}), так как среди TAS-сигналов MOD₂ [11] в интервале длин волн 550–650 нм нет полосы поглощения с $\lambda_{max} = 625$ нм (рис. 1а, кривые *1–3*), характерной для поляризованных мономеров с ослабленной связью N^{+•}_{•+}–N^{•+}_{•+} (рис. 16, кривая *1*). В суммарных UTL-сигналах MOD₂ [11] тоже отсутствует высокоскоростная компонента, которая могла бы свидетельствовать в пользу *транс– цис*-изомеризации.

Вместе с тем, ТАS-сигналы МОD₂ (рис. 1а, кривые 1-3), содержат транзитную полосу с $\lambda_{max} = 535$ нм, которая почти дублирует транзитные сигналы ридимеров ААВ₂ (рис. 16, спектры 2, 3). На этом основании естественно предполагать, что транзитные ридимеры МОД₂ должны появляться в соответствии со схемой 4. Слелует также отметить, что TAS-сигнал 1 на рис. 1а включает в себя не только транзитную VIS-полосу с $\lambda_{max} =$ = 535 нм, как у ААВ₂ (рис. 1б, спектры 2, 3), но одновременно и полосу отбеливания (bleaching) исходного ридимера (область 400-500 нм) в соответствии со схемой 4, общей для обоих красителей. Таким образом, имеется определенное качественное сходство превращений обоих красителей, за исключением факта отсутствия *транс-цис*-изомеризации у МОД₂.

Особенности фотопревращений МОД₂

Сопоставление данных [9, 10] и [11] показало, что находящийся в водной среде краситель MOD_2 не обладает UTL- и TAS-сигналами поляризованных мономеров с ослабленной азогруппой $N_{\bullet+}^{\bullet\bullet} - N_{\bullet+}^{\bullet+}$, необходимой для *транс—цис*-изомеризации [7, 8]. При этом практическое совпадение кинетических констант UTL-сигналов ($\tau_1 = 0.6$ — 0.9 пс и $\tau_2 = 8-13$ пс) от ридимеров MOD₂, находящихся в воде без CD и в комплексах включения с α -CD и β -CD (CD/MOD = 1 : 1 [11]), свидетельствует о том, что в этих системах действуют механизмы расщепления ридимеров MOD₂ по схеме 4 и механизмы регенерации исходных ридимеров по схеме 3.

Отметим, что в экспериментах [11] соотношение исходных компонентов не соответствует молекулярным комплексам состава 1:1, так как ридимерная концентрация в 2 раза меньше молекулярной. В связи ЭТИМ возникает С неопределенность: реально в растворе могут находиться как комплексы $CD/MOD_2 = 1:1$, так и MOD₂ вне CD. Вместе с тем, отмеченный выше факт совпадения кинетических констант UTLсигналов свидетельствует о том, что ридимеры MOD₂ в воде испытывают примерно такую же стерическую стесненность, как и в комплексах с α -CD и β -CD. В то же время установленные в [11] значительные отличия UTL- и TAS-сигналов у комплексов MOD₂ с у-CD свидетельствуют о наличии в этих комплексах структурных особенностей, которые были отмечены [11], но не получили адекватного объяснения.

Причины отсутствия транс—цис-изомеризации у MOD₂

Как изложено выше, степень стесненности MOD_2 в водной фазе примерно соответствует таковой в нанополостях α- и β-CD. Это можно объяснить гидрофобностью ридимеров. В противном случае не было бы движущих сил для образования комплексов включения. Определенная степень гидрофобности придает ридимерам MOD₂ способность не только инклюдироваться в гидрофобные полости циклодекстринов [11], но и образовывать кластеры в нейтральной воде [2]. Дело в том, что растворение (в той или иной степени) гидрофобных молекул (в данном случае MOD_2) в воде идет с формированием вокруг них супрамолекулярных аквакапсул, прочность которых превышает прочность сетки из водородных связей [13, 14]. При этом в МОД₂ электроны азогрупп, находящиеся на 3s-ридберговских орбиталях, не только образуют ридберговские связи $R_{3s}-R_{3s}$, но также имеют некоторую вероятность пребывания в зоне третьих пучностей 3*s*-орбиталей азогрупп, выходя за пределы молекулярного каркаса. Они не только компенсируют положительные заряды ридимеров, но также способны взаимодействовать с молекулами воды, увеличивая прочность аквакапсулы. При этом действующее между аквакапсулой и иммобилизованным ридимером давление вызывает уменьшение ван-дер-ваальсовского размера и повышает его потенциал Гиббса.

Согласно [11], кинетические константы релаксации UTL-сигналов, генерируемых ридимерами MOD_2 в аквакапсулах и комплексах α - и β -CD (1:1, молекулы), практически одинаковы. Они отражают условия иммобилизации и стерического стеснения, исключающие динамику фенильных колец, необходимую для *транс—цис*-изоме-

ризации. Вследствие этого FK-пара (2d_{FK}) способна превратиться только в FK-пару (2c_{FK}) за счет рекомбинации обоих электронов орбитали

 $R_{3s}^{\bullet\bullet}$ с положительными зарядами обеих *sp*²-орбиталей азогруппы. Одновременно исчезают оба CPhAT:

$$Xph^+N^{\bullet\bullet}_{\bullet+}-N^{\bullet+}_{\bullet+}ph^+NR_2)R^{\bullet\bullet}_{3s} \rightarrow XphN = NphNR_2.$$

Следует также отметить, что схема 4 образования фотовозбужденного FK-состояния MOD_2 исключает рассмотренный ранее [4] вариант с хиноидной структурой фотовозбужденного MOD_2 .

Для понимания механизма фотопревращения комплексов γ -CD + MOD₂ важно, что их сигналы TAS (рис. 1a, кривые 2, 3) не содержат полосы отбеливания (bleaching), характерной для сигнала TAS ридимеров MOD₂ в воде (рис. 1a, кривая 1). Сама полоса отбеливания является результатом вычитания спектра раствора MOD₂, зафиксированного зондирующим пучком перед фотовозбуждением, из транзитного спектра, полученного после фотовозбуждения. И ее наличие у MOD₂ в воде свидетельствует о том, что фотовозбуждение ридимеров MOD₂ создает мономерные FK-пары, обладающие слабым поглощением VIS-света в VIS-полосе ридимеров (схемы 3, 4).

Отсутствие полосы отбеливания у комплексов γ -CD + MOD₂ (рис. 1а, кривые 2, 3) можно объяснить взаимным наложением двух явлений, связанных с фотовозбуждением комплексов. Так, разностные спектры зондирующих пучков отражают: 1) образование FK-пар, слабо поглощающих свет в VIS-полосе ридимера b, (схемы 3, 4); 2) появление другого ридимера MOD₂, имевшего в

γ-CD до возбуждения измененную структуру, не поглощающую свет с $\lambda_{ex} = 400$ нм. Другими словами, следует учитывать факт образования комплексов γ-CD + 2MOD₂ и 2 γ-CD + 2MOD₂. Это можно ожидать в связи с тем, что константы связи для комплексов с γ-CD (lg *K* = 7.26 в расчете на молекулы) значительно превосходят таковые для α-CD (lg *K* = 3.95) и β-CD (lg *K* = 3.3) [11].

Следует также отметить, что ван-дер-ваальсовские расстояния между соседними молекулами в кристаллах ароматических соединений равны 3.4 Å, тогда как для образования химических связей между мономерами в топохимических реакциях необходимо, чтобы расстояние (*d*) между ними стало меньше 3 Å [15]. Между тем, ридимеры (1b) уже имеют R_{3s} - R_{3s} -связь между азогруппами и две одноэлектронных связи между катионами СрhAT. Эти связи обеспечивают высокую стабильность ридимеров даже в парообразном состоянии [3], что свидетельствует о наличии в них d < 3 Å и о возможности инклюдирования двух ридимеров в γ -CD.

Вместе с тем для объяснения TAS-сигналов на рис. 1а (кривые 2, 3) необходимо принять, что инклюдирование двух ридимеров MOD_2 в γ -CD приводит к изменению *e*-конфигурации одного или обоих ридимеров. Так, в комплексах γ -CD + $2MOD_2$ (преобладающих при концентрации [γ -CD] = 0.3 ммоль/л) один из ридимеров, устойчивый в обычном равновесии (1b, схема 1), превращается в менее устойчивый ридимер (1a). Это сочетание представлено (со схематическим очертанием стенок полости) в схеме 5 структурой (5ab):

При концентрации [γ -CD] = 10 ммоль/л пара ридимеров капсулируется с обоих концов (комплексы 2 γ -CD + 2MOD₂, схема 5, af). В этом случае стесненность усиливается, и к образовавшейся структуре (а) присоединяется конформация f, вызванная деформированием H₃C–N-связей группы N(CH₃)₂. Эти связи (соответствующая группа NR₂ обозначена звездочкой) стремятся принять пирамидальную форму, характерную для электронной конфигурации азота 1s²2s²2p³. Данная ситуация ведет к потери sp²-гибридизации атома N и его сопряжения с фениленовым кольцом. Одновременно исчезает катион CphAT, и на аминный атом N возвращается электрон из одноэлектронной связи.

Представленные на схеме 5 сочетания ридимеров MOD₂ необходимы и достаточны для объяснения происхождения TAS-сигналов на рис. 1а, спектры 2, 3. Дело в том, что ридимерная форма (а) в схеме (5) обладает VIS-поглощением при $\lambda_{max} = 535$ нм (рис. 1а; 16, кривые 2, 3), но практически не поглощает света в VIS-полосе ридимеров 16 и соответственно не испытывает фотовоз-

буждения в пучке лазерного света с $\lambda_{ex} = 400$ нм. В акты фотовозбуждения вступают только ридимерные формы (b) и (f), несущие на себе четыре и три катиона CphAT, соответственно.

Согласно изложенному выше, фотопревращение пары (5ab) индуцируется возбуждением ридимера (b) (схема 4) с последующим появлением FK-состояний (схема 3), которые ответственны за широкую полосу VIS-поглощения от 470 до 650 нм с λ_{max} = 535 нм (рис. 1а, кривая 2). При этом, несмотря на исчезновение ридимера (1b), кривая 2 (рис. 1а) не содержит полосы отбеливания. Это можно объяснить тем, что фотовозбуждение ридимера (b) в ридимерной паре (5ab) приводит к образованию колебательно возбужден-FK-состояний, ных передающих энергию колебаний на соседнюю форму (а) и на капсулу ү-CD. Как видно, получаемая парой (а) энергия достаточна для перевода ее в пару (b). Таким образом, появление новой пары (b), компенсирует исчезновение фотовозбужденной пары (b), тем самым, компенсируя и полосу отбеливания. Одновременно с этим потеря VIS-полосы с λ_{max} = = 535 нм, связанная с исчезновением пары (а), компенсируется появлением такой же полосы, принадлежащей FK-состояниям $3a_r^v \leftrightarrow 3b_r^v$ (схема 3).

Все описанные выше трансформации ридимеров (а) повторяются и в ридимерной паре (5af) при действии света с $\lambda_{ex} = 400$ нм. Нетрудно показать, что фотовозбуждение ридимерной пары (f), содержащей три катиона CphAT, тоже ведет к ее расщеплению на FK-пары. При этом энергия возбуждения пары (f) достаточна для изменения электронной конфигурации атома N из состояния $1s^22s^22p^3$ в состояние с sp^2 -гибридизацией (N*R₂ \rightarrow NR₂), а также для восстановления его сопряжения с фениленовым кольцом и, в итоге, появления фотовозбужденного ридимера (b), претерпевающего далее превращения в соответствии со схемами (3, 4). В данном случае важно, что взамен исчезающих трех катионов CPhAT в

ридимерной паре (5af) появляются четыре катиона CphAT в результате перехода (a) \rightarrow (b). Этим можно объяснить появление относительно сильного транзитного сигнала TAS с полосой VIS-поглощения в области исходного ридимера (b) с $\lambda_{max} \sim 460$ нм (рис. 1a, кривая *3*).

В [11] отмечено, что этот транзитный сигнал релаксирует очень медленно. Данный процесс можно связать с тем, что капсулы 2γ -CD + $+ 2MOD_2$ (схема 5, af), получив некоторое структурное искажение при фотовозбуждении, постепенно восстанавливают механическое давление на ридимерную пару и соответственно возвращают состояние с электронной конфигурацией азота $1s^22s^22p^3$. Сходный, но значительно менее интенсивный сигнал TAS при $\lambda_{max} \sim 460$ нм наблюдается и на кривой 2, рис. 1а. Отсюда можно заключить, что и при низкой концентрации γ -CD (3 ммоль/л) одновременно с комплексами (5ab) присутствует некоторое количество комплексов (5af).

Выше отмечалось, что наличие отрицательных значений у сигналов UTL от MOD в воде и от комплексов с α - и β -CD авторы [11] объясняли образованием *с*-MOD. Проведенный в настоящей работе анализ показал отсутствие *транс*—*цис*-изомеризации MOD₂ в экспериментах [11]. По нашему мнению, отрицательные и медленно релаксирующие к нулевой интенсивности сигналы UTL [11] следует объяснять в соответствии с представлениями работы [16].

Согласно [16], имеются два вида сигналов UTL в водных растворах. UTL-сигналы со значениями т порядка нескольких пс обусловлены образованием транзитных линз с отрицательным фокусом за счет практически мгновенного повышения температуры без изменения плотности среды в зонах релаксации энергии фотовозбуждения. Затем появляются другие линзы с отрицательным фокусом, связанные с изменением плотности нагретой среды и имеющие значительно более медленную динамику релаксации, ~500 пс. Таким образом, в результате анализа TAS- и UTL-сигналов установлено строение комплексов включения MOD_2 в γ -CD. Кроме того, на основании совпадения кинетических компонент UTL-сигналов от MOD_2 в водной среде и в комплексах с α - и β -CD получено подтверждение факта формирования аквакапсул вокруг гидрофобных молекул и ридимеров. В конечном итоге результаты проведенного анализа позволяют утверждать, что концепция ридимерного строения создает адекватный фундамент для объяснения не только спектроскопии аминоазобензольных красителей и закономерностей фотохимического превращения аминоазобензола, но также и фотопревращения его сульфопроизводного MOD_2 .

СПИСОК ЛИТЕРАТУРЫ

- 1. *Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. //* Журн. физ. химии. 2017. Т. 91. № 4. С. 672.
- 2. *Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. //* Там же. 2017. Т. 91. № 10. С. 1683.
- 3. Михеев Ю.А., Ершов Ю.А. // Там же. 2018. Т. 92. № 2. С. 267.

- 4. Михеев Ю.А., Ершов Ю.А. // Там же. 2018. Т. 92. № 8. С. 1251.
- 5. Михеев Ю.А., Ершов Ю.А. // Там же. 2018. Т. 92. № 10. С. 1552.
- 6. *Михеев Ю.А., Ершов Ю.А. //* Там же. 2019. Т. 93. № 2. С. 369.
- 7. *Михеев Ю.А., Ершов Ю.А. //* Там же. 2019. Т. 93. № 6. С. 946.
- 8. *Михеев Ю.А., Ершов Ю.А. //* Там же. 2019. Т. 93. № 7. С. 1111.
- Hirose Ya., Yui H., Sawada Ts. // J. Phys. Chem. A. 2002. V. 106. № 13. P. 3067.
- 10. *Hirose Ya., Yui H., Fujinami M., Sawada Ts.* // Chem. Phys. Letters. 2001. № 341. № 1–2. P. 29.
- 11. Takei M., Yui H., Hirose Ya., Sawada Ts. // J. Phys. Chem. A. 2001. V. 105. № 51. P. 11395.
- 12. Szejtli J. // Chem. Rev. 1998. V. 98. № 5. P. 1743.
- 13. *Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. //* Журн. физ. химии. 2005. Т. 79. № 4. С. 583.
- 14. *Михеев Ю.А., Гусева Л.Н., Давыдов Е.Я., Ершов Ю.А. //* Там же. 2007. Т. 81. № 12. С. 2119.
- 15. Симон Ж., Андре Ж.-Ж. Молекулярные полупроводники. М.: Мир, 1988. С. 275.
- *Terazima M.* // J. Chem. Phys. 1996. V. 105. № 16. P. 6587.