_____ К 90-ЛЕТИЮ ХИМИЧЕСКОГО ____ Факультета мгу

УДК 66.092-977 + 544.421.42 + 544.421.081.7 + 544.032.4

ТЕРМИЧЕСКАЯ СТАБИЛЬНОСТЬ 4-трет-БУТИЛДИФЕНИЛОКСИДА

© 2019 г. В. А. Шакун^{а,*}, Т. Н. Нестерова^а, С. В. Таразанов^b, С. А. Спиридонов^а

а Самарский государственный технический университет, Самара, Россия

^b Всероссийский научно-исследовательский институт по переработке нефти, Москва, 111116, Россия

* *e-mail: ShakyH@mail.ru* Поступила в редакцию 11.02.2019 г. После доработки 11.02.2019 г. Принята к публикации 14.05.2019 г.

В диапазоне температур 703—763 К изучена термическая стабильность 4-*терет*-бутилдифенилоксида (4-ТБДФО), произведена идентификация компонентов реакционной массы термолиза, предложена кинетическая модель процесса, рассчитаны константы скорости и параметры уравнения Аррениуса для всех рассматриваемых реакций. Установлена преобладающая роль изомеризационных превращений 4-ТБДФО. Предложен механизм радикальной изомеризации трет-бутильного заместителя.

Ключевые слова: 4-трет-бутилдифенилоксид, термическая стабильность, термическая деструкция, изомеризация, кинетика

DOI: 10.1134/S0044453719110256

Дифенилоксид (ДФО) и его алкилпроизводные представляют научный интерес и имеют большое практическое значение в развитии современной промышленности.

Общеизвестно, что ДФО в смеси с бифенилом используется в качестве высокотемпературного теплоносителя [1, 2]. На основе производных ДФО создаются полимеры, обладающие уникальными механическими и оптическими свойствами [3], некоторые из алкилДФО, в том числе содержащие C_4 -заместитель, проявляют свойства жидких кристаллов [4].

Однако, информация о термической стабильности дифенилоксида и его производных ограничена. Наиболее обширные исследования [5, 6] посвящены определению начальных температур и минимальных энергий декомпозиции алкилароматических эфиров с целью определения перспективных гидравлических жидкостей и лубрикантов.

В последнее время возрос интерес к исследованию термической стабильности алкилбензолов в области производства перспективных топлив. Большое внимание уделяется, в том числе, бутилбензолам [7–10], как модельным структурам. Эти работы объединяет то, что в реакторах различного типа (золотые, стальные, стеклянные) в диапазоне температур 500–800 К распад н-бутилбензола (НББ) и трет-бутилбензола (ТББ) по радикальному механизму сопровождался образованием вторбутилбензола (ВББ) и изобутилбензола (ИББ), соответственно.

В данной работе в качестве объекта исследования избран 4-трет-бутилдифенилоксид (4-ТБД-ФО) как соединение, которое объединяет в себе свойства алкиларенов и простых ароматических эфиров. Нами произведен анализ взаимных превращений продуктов термолиза, и показано, что изомеризация 4-ТБДФО играет определяющую роль в процессе распада.

Эта информация приобретает высокую значимость при исследовании и разработке термо- и теплостойких полимеров. Известно [11], что простые ароматические полиэфиры обладают высокой тепло- и термостойкостью, а присутствие алкильного заместителя в ядре сообщает полимеру дополнительные свойства, например, повышает температуру стеклования. Полифениленоксиды и их алкилпроизводные используются при температурах вплоть до 623 К, поэтому полученные результаты актуальны для развития представления об их свойствах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные вещества

4-ТБДФО синтезирован, выделен и очищен нами [12], концентрация основного вещества составила 99.93 мас. % по данным ГЖХ.

Рис. 1. Хроматограмма смеси продуктов термического распада 4-ТБДФО (T = 728 К, $t_{\text{конт}} = 40$ мин): (I) фенол, (2) 4-трет-бутилфенол (4-ТБФ), (3) 4-изобутилфенол (4-ИБФ), (4) дифенилоксид (ДФО), (5) 4-метилдифенилоксид (4-МеДФО), (6) 4-этилдифенилоксид (4-ЭДФО), (7) 4-изипропилдифенилоксид (4-ИПДФО), (8) 4-н-пропилдифенилоксид (4-ИПДФО), (9) 4-трет-бутилдифенилоксид (4-ТБДФО), (10) 4-изобутилдифенилоксид (4-ИБДФО), (11-14) – не определенные компоненты X_1 – X_4 .

Методика изучения термолиза 4-ТБДФО

Исследование термолиза проводили в газовой фазе в стеклянных капиллярах (l = 23 - 25 мм; $d_n =$ = 0.95-1.05 мм) из "Пирекса", в которые помещалось исследуемое вещество, капилляр продувался гелием (чистота 99.999%) и запаивался. Степень заполнения составляла 25-27% объема, что соответствовало массе вещества в 0.8-1.0 мг. Взвешивания проводили на аналитических весах Shimadzu AUW 120D с точностью 10^{-4} г. Термостатирование капилляра с веществом осуществлялось в лабораторной печи пиролиза, обеспечивающей точность поддержания температуры в изотермической зоне ±1 К, устройство которой представлено в работе [13]. Время достижения изотермического режима после помещения капилляра в печь не превышало 60 с. Процесс пиролиза завершался процедурой закалки в охлажденной до -15°C пробирке. Термическая стабильность 4-ТБДФО исследована в интервале температур 703-763 К с шагом в 5 К. Конверсия 4-ТБДФО не превышала 25%, число моль в процессе росло не более чем на 5%.

Анализ и идентификация компонентов реакционной смеси термолиза

В качестве основного метода анализа реакционных смесей использовали ГЖХ. Анализ выполнялся на хроматографе "Кристалл 2000 М", с

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 11 2019

кварцевой капиллярной колонкой SE-30 (60 м \times 250 мкм \times 0.25 мкм). Температурный профиль анализа приведен на хроматограмме (рис. 1). Температура испарителя — 250°C, детектора — 280°C.

Количественный анализ состава реакционной массы выполнен методом внутреннего стандарта, в качестве которого использовали $H-C_{20}H_{42}$ (98.0 мас. % по ГЖХ), величина калибровочного коэффициента по отношению к 4-ТБДФО составила 0.9625 ± 0.067.

Идентификация компонентов смесей включала направленный химический синтез и хроматомасс-спектрометрический анализ (70 эВ), выполненный на газовом хроматографе Agilent 6850, оснащенном капиллярной колонкой HP-5MS Agilent 19091S-433E (30 м × 250 мкм × 0.25 мкм), и масс-селективным детектором Agilent 5975C VL MSD. Идентификацию продуктов реакции проводили с использованием правил и подходов, описанных Лебедевым [14], Претчем, Бюльманом и Аффольтером [15], а также данных библиотеки NIST 2017 [16].

Структура 4-ИБДФО (10) установлена в результате направленного синтеза. 4-ИБДФО получен по реакции Вюрца—Фиттига в результате взаимодействия смеси 4-бромДФО и изобутила бромистого на натриевой стружке в среде *н*-гексана при комнатной температуре. 4-БромДФО был получен в результате бромирования ДФО жид-

ШАКУН и др.

Таблина 1.	Характеристика	масс-спектров реакии	ионной массы те	рмолиза 4-ТБЛФО
таолица т.	<i>Mupukiepherniku</i>	made energipob peakar	ionnon macchi ic	риолизи г год то

Соединение	Масс-спектр 70 эВ (m/z , интенсивность отн. %)
Фенол	94 (M ⁺ , 100), 66 (46), 39 (43)
4-ТБФ	150 (M ⁺ , 23), 135 (100), 107 (42), 91 (10), 77 (10)
4-ИБФ	150 (M ⁺ , 14), 107 (100), 91 (1), 77 (12)
ДФО	170 (M ⁺ , 45), 141 (72), 115 (26), 94 (4), 77 (60)
4-МеДФО	184 (M ⁺ , 100), 169 (4), 141 (15), 91 (100), 77 (50)
4-ЭДФО	198 (M ⁺ , 58), 183 (100), 169 (5), 153 (10), 105 (16), 91 (15), 77 (57)
4-ИПДФО	212(M ⁺ , 37), 197 (100), 178 (4), 169 (2), 119 (6), 104 (14), 91 (36), 77 (38)
4-НПДФО	212(M ⁺ , 32), 183 (100), 165 (1), 153 (8), 107 (8), 91 (6), 77 (35)
4-ТБДФО	226 (M ⁺ , 31), 211 (100), 183 (6), 171 (1), 165 (2), 91 (8), 77 (12)
4-ИБДФО	226 (M ⁺ , 20), 183 (100), 165 (1), 115 (5), 107 (8), 91 (4), 77 (22)
X ₁	224 (M ⁺ , 100), 209 (22), 194 (4), 181 (7), 169 (3), 153 (10), 147 (5), 131 (92), 116 (72), 115 (58), 107 (14), 91 (48), 77 (84), 65 (13), 51 (52)
X ₂	210 (M ⁺ , 100), 195 (3), 184 (2), 181 (4), 165 (10), 152 (6), 141 (4), 133 (8), 117 (100), 115 (80), 103 (16), 91 (24), 77 (68), 65 (16), 51 (48)
X ₃	224 (M ⁺ , 100), 209 (7), 194 (4), 183 (5), 181 (6), 165 (5), 153 (4), 147 (6), 131 (50), 116 (68), 115 (64), 107 (5), 91 (50), 77 (72), 65 (20), 51 (44)
X ₄	224 (M ⁺ , 26), 209 (100), 194 (2), 181 (40), 169 (20), 152 (6), 139 (14), 126 (1), 115 (5), 104 (2), 98 (3), 90 (18), 76 (6), 63 (5), 51 (2)

ким бромом при комнатной температуре, соотношение $Д\Phi O/Br_2$ составило 20/1 моль/моль. Время выхода синтезированного 4-ИБД ΦO соответствовало компоненту (*10*) на рис. 1. Наложение хроматограмм не приводится, так как снижает информативность.

АлкилДФО не имели позиционных изомеров и были идентифицированы в соответствии с правилами определения алкилароматических структур [14, 15]. 4-ТБФ идентифицирован посредством сравнения времени выхода со стандартным образцом. 4-ИБФ идентифицирован путем сравнения времен выхода и масс-спектров компонента (3) и 4-*н*-бутилфенола (>98 мас. % по ГЖХ), который был добавлен к анализируемой смеси.

В реакционной массе, в условиях глубокой конверсии, также наблюдались следовые количества (>0.1 мол. %) изопропилбензола и *трет*-бутилбензола. Концентрация не идентифицированных компонентов X_1-X_4 не превышала 0.5 мол. % в самых жестких условиях эксперимента. При построении кинетической модели распада ИПБ, ТББ и компоненты X_1-X_4 не были включены в обработку.

Характеристики масс-спектров компонентов приведены в табл. 1.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Предположение о механизме радикальной изомеризации 4-ТБДФО

В табл. 2 представлено изменение концентраций компонентов реакционной смеси при T = 728 К в зависимости от времени.

Анализ приведенных экспериментальных данных показал, что при термолизе 4-ТБДФО наиболее активно протекает изомеризация трет-бутильного заместителя с образованием 4-ИБДФО. Например, при 728 К и времени контакта 10 мин концентрация 4-ИБДФО составляет 3.45 мол. % при степени превращения 4-ТБДФО 4.40 мол. %, т.е. селективность образования 4-ИБДФО составила 78%. В целом, в условиях эксперимента, при конверсии 4-ТБДФО 0-10% селективность образования 4-ИБДФО составляет 70-80%. Деструкция 4-ТБДФО проявляется в существенно меньшей степени и способствует образованию 4-ТБФ, фенола и ДФО в результате разрыва связей С_{Аг}-С_{четв.} и С_{аг-О}. При этом распад практически не затрагивает алкильный заместитель, так как концентрация 4-МеДФО и 4-ИПДФО, например, имеет адекватную взаимосвязь только с 4-ИБДФО.

1646

ТЕРМИЧЕСКАЯ СТАБИЛЬНОСТЬ

Время,	, Молярные концентрации компонентов, мол. %									
МИН	Фенол	4-ТБФ	4-ИБФ	ДФО	4-МеДФО	4-ЭДФО	4-ИПДФО	4-НПДФО	4-ТБДФО	4-ИБДФО
0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	0.00
2.0	0.04	0.03	0.00	0.05	0.04	0.00	0.03	0.00	99.16	0.65
5.0	0.09	0.06	0.01	0.10	0.10	0.00	0.09	0.01	97.93	1.61
7.0	0.19	0.13	0.02	0.18	0.30	0.03	0.28	0.05	95.44	3.38
10.0	0.10	0.10	0.01	0.16	0.27	0.02	0.25	0.04	95.60	3.45
15.0	0.30	0.19	0.02	0.24	0.43	0.07	0.49	0.10	92.34	5.82
20.0	0.53	0.25	0.03	0.28	0.77	0.09	0.63	0.24	91.12	6.06
25.0	0.75	0.31	0.03	0.35	1.13	0.16	0.93	0.50	87.87	7.97
30.0	1.11	0.37	0.05	0.42	1.74	0.36	1.08	0.75	85.48	8.64
32.5	1.30	0.41	0.07	0.45	1.88	0.46	1.26	0.97	84.28	8.92
35.0	1.39	0.45	0.07	0.51	2.16	0.53	1.31	1.09	83.35	9.14
40.0	1.60	0.54	0.11	0.58	2.94	0.76	1.41	1.44	81.00	9.62
45.0	1.89	0.56	0.11	0.63	3.47	1.04	1.68	1.73	78.84	10.05
50.0	2.52	0.66	0.12	0.76	4.25	1.51	1.74	2.27	75.52	10.65

Таблица 2. Изменение концентраций компонентов реакционной массы термолиза 4-ТБДФО при 728 К

Такое направление распада выглядит довольно неожиданно. Особенно интересным оказывается то, что в продуктах термолиза 4-ТБДФО независимо от температуры или времени контакта (в пределах условий исследования) не было обнаружено следов 4-н-бутилДФО и 4-втор-бутил ДФО. Очевидно, что причина заключается в механизме *трет-*бутильного превращения заместителя. Предположительно, изомеризация, способствующая превращению трет-бутильного заместителя исключительно в изобутильный, может происходить через образование трехчленного цикла между С_{перв} трет-бутильного заместителя и С_{Аг} ароматического ядра (рис. 2).

Приведенный механизм адекватно объясняет, почему в продуктах термолиза 4-ТБДФО отсутствуют вторичные и нормальные бутиларены.

Аналогичный результат был получен нами при термолизе 4-ТБФ [13]. Полученные для 4-ТБД-ФО и 4-ТБФ данные позволяют предположить об

Рис. 2. Предположительный механизм изомеризации 4-ТБДФО.

та у-О. Формирование кинетической модели ме термолиза 4-ТБДФО

личными замещенными аренами.

При разработке кинетической модели термолиза 4-ТБДФО из всех теоретически возможных превращений в исследуемой системе был выделен ряд превращений, обладающих наибольшей значимостью (рис. 3).

общем характере радикальной изомеризации

трет-бутильного заместителя, связанного с раз-

Очевидно, что в процессе термолиза представленные на схеме (рис. 3) реакции протекают в несколько стадий. Известно также, что в радикально-цепных процессах присутствие свободных радикалов не препятствует осуществлению мономолекулярных реакций [17]. Поэтому нами было принято допущение о том, что все реакции, избранные для кинетического анализа, мономолекулярные. Соответственно, константы скорости указанных на схеме реакций являются комбинацией констант скоростей всех стадий реакции. Значения констант скорости индивидуальных превращений были вычислены в соответствии со следующим алгоритмом:

1. Для всех продуктов реакции вычислены фактические скорости изменения концентрации $(r_{i, \ \
m scn})$, т. е. дифференциал от $C_{i, \ \
m scn} = f(\tau)$.

2. Вычислены расчетные скорости ($r_{i, \text{ расч}}$) накопления продуктов с учетом 38 наиболее вероятных реакций, уравнение:

$$r_{i,\text{pacy}} = \sum (k_j C_j), \qquad (1)$$

Рис. 3. Схема превращений, протекающих при термолизе 4-ТБДФО.

3. Путем совместной обработки полученных в пункте 1 и 2 зависимостей с критерием оптимизации

$$\sum_{n} (r_{i, \Im K C \Pi} - r_{i, \operatorname{pacy}})^2, \qquad (2)$$

исключены незначимые реакции и вычислены константы скорости k_j (табл. 3). Погрешность определения значений констант скорости составила <10%.

4. С использованием констант скорости, приведенных в табл. 3, методом Рунге—Кутты получены расчетные значения концентраций продуктов термолиза 4-ТБДФО.

(где *n* – количество измерений)

Таблица 3. Значения констант скорости ($k_i \times 10^5$, с⁻¹) для превращений, сопровождающих термолиз 4-ТБДФО в диапазоне 703–763 К

<i>Т</i> , К	k_1	<i>k</i> ₂	<i>k</i> ₃	k_4	k_5	k_6	k_7	k_8	k_9	<i>k</i> ₁₀	<i>k</i> ₁₁
703	2.16	0.07	0.04	0.06	8.54	6.12	2.32	27.37	4.85	8.01	3.82
708	3.26	0.11	0.06	0.10	10.44	8.02	3.51	37.59	7.36	10.44	5.29
713	3.92	0.15	0.09	0.13	13.90	11.08	5.02	43.98	8.57	11.68	6.82
718	5.21	0.21	0.11	0.18	19.56	14.68	6.59	62.38	13.67	18.65	8.99
723	5.52	0.21	0.12	0.20	20.90	16.02	7.82	72.56	17.68	20.19	9.92
728	8.19	0.28	0.16	0.28	25.20	19.76	9.66	104.18	24.88	30.73	13.18
733	13.63	0.56	0.30	0.46	48.55	35.27	16.39	129.98	33.48	43.24	19.42
738	17.02	0.77	0.42	0.63	65.20	46.86	22.02	164.91	44.76	56.79	24.92
743	19.83	0.89	0.47	0.67	75.85	52.11	25.35	179.88	55.18	76.26	27.18
748	29.84	1.44	0.78	1.15	116.20	81.80	39.30	278.71	84.85	103.73	40.65
753	32.25	1.81	0.95	1.35	167.55	101.32	48.39	291.40	89.68	108.56	42.18
758	49.47	2.64	1.43	2.06	203.96	140.71	69.07	437.01	146.91	173.64	70.70
763	62.39	3.25	1.97	2.80	277.93	205.26	93.66	537.93	175.68	208.72	93.18

Рис. 4. Сопоставление экспериментальных (маркеры) и расчетных (линии) концентраций продуктов термических превращений 4-ТБДФО при 728 К: а) (■) – 4-ТБДФО, (▲) – 4-ИБДФО, (●) – 4-ИПДФО, (○) – 4-НПДФО, (□) – 4-3ДΦΟ, (\diamond) – 4-МеДΦΟ; δ) (+) – Фенол, (\triangle) – ДΦΟ, (×) – 4-ТБΦ, (\blacklozenge) – 4-ИБΦ.

5. Во всем диапазоне температур исследования адекватность предложенной модели тестирована методами математической статистики с применением критерия Пирсона, величина которого превышала 0.99, и критерия Фишера, расчетное значение которого при уровне значимости 0.05 многократно превышало табличную величину.

Из табл. 3 видно, что константа скорости изомеризации "4-ТБД $\Phi O \rightarrow$ 4-ИБД ΦO " k_1 на порядок выше констант скорости деструктивных процессов (k₂-k₄), затрагивающих *трет*-бутильный заместитель и связи C_{ar}-O и C_{ar}-C_{четв}. Так, при 728 К суммарная величина констант скорости k₂-

 k_4 составляет 7.20 × 10⁻⁶ с⁻¹, что в 11.4 раза меньше $k_1 = 8.19 \times 10^{-5}$ с⁻¹.

Также, необходимо отметить, что константа скорости превращения "4-ТБДФО → 4-ИПД-ФО" во всех вариантах расчета стремилась к нулю. Согласно полученной нами модели источником 4-ИПДФО, а также 4-МеДФО является 4-ИБДФО, претерпевающий активный распад алкильного заместителя (при 728 K, $k_5 = 2.52 \times$ $\times 10^{-4}$ и $k_6 = 1.98 \times 10^{-4} \text{ c}^{-1}$).

Результаты модельного описания состава реакционной массы термолиза 4-ТБДФО при 728 К представлены на рис. 4.

Таблица 4. Значения констант скорости для реакции "4-ТБДФО → продукты", протекающей при термолизе 4-ТБДФО в диапазоне 703–763 К

<i>Т</i> , К	1000/ <i>T</i>	k_{i}, c^{-1}	$-\ln(k_i)$
703	1.42	2.33×10^{-5}	10.665
708	1.41	3.56×10^{-5}	10.243
713	1.40	4.55×10^{-5}	9.998
718	1.39	5.53×10^{-5}	9.803
723	1.38	6.59×10^{-5}	9.627
728	1.37	9.03×10^{-5}	9.312
733	1.36	1.55×10^{-4}	8.770
738	1.36	2.05×10^{-4}	8.493
743	1.35	2.24×10^{-4}	8.402
748	1.34	3.48×10^{-4}	7.962
753	1.33	3.88×10^{-4}	7.855
758	1.32	5.84×10^{-4}	7.445
763	1.31	7.38×10^{-4}	7.211

Расчет параметров уравнения Аррениуса

Кинетический анализ экспериментальных данных в диапазоне 703–763 К был выполнен для реакции "4-ТБДФО \rightarrow продукты" по уравнениям расчета константы скорости первого порядка. Путем линеаризации уравнения Аррениуса в координатах "ln $k_i - 1000/T$ " установлено, что $k_0 =$

 $= 10^{14.3 \pm 0.5}, E_a = 255.2 \pm 6.8$ кДж/моль. Значения констант скорости распада 4-ТБДФО приведены в табл. 4.

Для реакций, включенных в кинетическую модель процесса в диапазоне температур 703–763 К были вычислены константы скорости и параметры уравнения Аррениуса. Данные приведены в табл. 5.

Таким образом, установлено, что при термолизе 4-*трет*-бутилдифенилоксида основным превращением является изомеризация в 4-изобутилдифенилоксид. Предложен механизм данной реакции.

В диапазоне температур 703–763 К для реакции "4-ТБДФО \rightarrow продукты" вычислены параметры уравнения Аррениуса: предэкспоненциальный множитель $k_0 = 10^{14.3 \pm 0.5}$, энергия активации $E_a = 255.2 \pm 6.8$ кДж/моль.

Предложена кинетическая модель процесса, согласно которой в диапазоне температур исследования основным источником продуктов распада – 4-МеДФО, фенола, 4-ИПДФО – является 4-ИБДФО. При этом 4-НПДФО образуется в результате изомеризации 4-ИПДФО, а 4-ЭДФО является продуктом деструкции этих двух компонентов. Деструкция исходного 4-ТБДФО протекает в незначительной степени и выражается в разрыве связей C_{ar} –О и C_{ar} – $C_{четв}$ с образованием ДФО, 4-ТБФ и фенола.

Полученная информация может быть использована при разработке перспективных термо- и теплостойких полимерных композиций, так как позволяет предположить поведение их структуры в условиях повышенных температур. Выявлен-

Таблица 5. Значения параметров уравнения Аррениуса для превращений, сопровождающих термолиз 4-ТБДФО в диапазоне 703–763 К

Реакция		k_i	$\lg(k_0)$	$E_{\rm a}$, кДж/моль	R
4-ТБДФО	4-ИБДФО	k_1	13.8 ± 0.5	248.6 ± 7.0	0.99
4-ТБДФО	ДФО	k_2	15.1 ± 0.7	286.6 ± 9.5	0.98
4-ТБДФО	Фенол	k_3	15.1 ± 0.6	289.4 ± 8.1	0.99
4-ТБДФО	4-ТБФ	k_4	14.3 ± 0.5	276.6 ± 7.3	0.99
4-ИБДФО	4-ИПДФО	k_5	15.7 ± 0.6	267.3 ± 9.0	0.98
4-ИБДФО	4-МеДФО	k_6	14.9 ± 0.6	257.7 ± 7.7	0.99
4-ИБДФО	Фенол	k_7	15.3 ± 0.4	268.0 ± 5.7	0.99
4-ИПДФО	4-НПДФО	k_8	12.6 ± 0.3	218.0 ± 4.7	0.99
4-ИПДФО	4-ЭДФО	k_9	15.3 ± 0.4	264.0 ± 5.5	0.99
4-НПДФО	4-ЭДФО	k_{10}	14.3 ± 0.6	247.7 ± 9.1	0.99
4-ТБФ	4-ИБФ	k_{11}	12.5 ± 0.5	228.3 ± 6.6	0.99

ные закономерности, в целом, могут служить основой для дальнейшего исследования термической стабильности соединений класса алкилдифенилоксидов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Cabaleiro D., Pastoriza-Gallego M.J., Piñeiro M.M. et al. // J. Chem. Thermodynamics. 2012. V. 50. P. 80.
- Cabaleiro D., Segovia J.J., Martín M.C. et al. // J. Chem. Thermodynamics. 2016. V. 93. P. 86.
- Che J.C., Wu J.A., Li S.W. et al. // Reactive & Functional Polymers. 2014. V. 78. P. 23.
- Hu W.Q., Cui Z.K., Jin J. et al. // Applied Surface Science. 2011. V. 258. P. 507.
- Blake E.S., Hammann C.W., Edwards J.W. et al. // J. Chem. Eng. Data. 1961. V. 6. № 1. P. 87.
- Jackson Jr. M.T., Walker J.Q. // J. Anal. Chem. 1971. V. 43. № 1. P. 74.
- 7. Laatikainen M., Vahteristo K., Saukkonen S. et al. // Ind. Eng. Chem. Res. 1996. V. 35. P. 2103.

- Ederer H.J., Kruse A., Mas C. et al. // J. Supercrit. Fluids. 1999. V. 15. P. 191.
- Yu J., Eser S. // Ind. Eng. Chem. Res. 1998. V. 37. P. 4591.
- Guerra L.N.C., Huerta L.J.C., Lorgeoux C. et al. // J. Anal. Appl. Pyrolysis. 2017. V. 133. P. 234.
- Бюллер К.-У. Тепло- и термостойкие полимеры. Пер. с нем. / Под ред. Я.С. Выгодского. М.: Химия, 1984. 1056 с. // Buhler K.-U. Spezialplaste. В.: Akademie-Verlag, 1978. 1019 p.
- 12. Druzhinina A.I., Pimenova S.M., Tarazanov S.V. et al. // J. Chem. Thermodynamics. 2015. V. 87. P. 69.
- 13. Шакун В.А., Нестерова Т.Н., Таразанов С.В. // Нефтехимия. 2019. Т. 59(1). С. 113–120.
- 14. Лебедев А.Т. Масс-спектрометрия в органической химии. М.: Бином, 2003. 493 с.
- 15. *Pretsch E., Buhlmann P., Affolter C.* Structure Determination of Organic Compounds: Tables of Spectral Data. Springer. 2000. 421 p.
- 16. Интернет-ресурс: http://webbook.nist.gov/
- 17. *Робинсон П., Холбрук К.* Мономолекулярные реакции: Пер. с англ. М.: Мир, 1975. 380 с.