ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2019, том 93, № 12, с. 1910–1912

КРАТКИЕ СООБЩЕНИЯ

УДК 544.27

РАЗМЕРЫ И ОРИЕНТАЦИЯ МИЦЕЛЛ ТРИТОНА X-100 В ВОДНЫХ РАСТВОРАХ ПО ДАННЫМ ТУРБИДИМЕТРИИ

© 2019 г. О. А. Федяева^{*a*,*}, Е. Г. Пошелюжная^{*a*}

^а Омский государственный технический университет, Омск, Россия * e-mail: kosatine@mail.ru Поступила в редакцию 19.02.2019 г. После доработки 19.02.2019 г. Принята к публикации 12.04.2019 г.

Турбидиметрическим методом определены размеры и ориентация мицелл неионогенного поверхностно-активного вещества Тритон X-100 в водных растворах. Показано, что мицеллы представляют собой вытянутые эллипсоиды, изменяющие свою ориентацию по отношению к падающему свету в зависимости от концентрации раствора.

Ключевые слова: тритон X-100, мицеллы, турбидиметрия, пространственная ориентация частиц **DOI:** 10.1134/S0044453719120070

Тритон X-100 — неиногенное поверхностно активное вещество, которое широко используется в биохимии для солюбилизации белков, липосахаридов и других гидрофобных молекул [1], входит в состав сцинтилляционных жидкостей, используемых при измерениях радиоактивности в водных растворах [2]. Он представляет собой полидисперсный препарат моно-*н*-(1,1,3,3-тетраметилбутил)фениловый эфир полиэтиленгликоля, содержащий 9— 10 оксиэтильных групп в молекуле.

Мицеллы тритона Х-100 в водных растворах изучаются достаточно давно [3-17]. Для описания их структуры были предложены две модели частиц сферические [4–9] и эллипсоидальные [10–17]. Наиболее распространенной в настоящее время является гипотеза о том, что мицеллы данного вещества имеют форму сплющенных эллипсоидов. Авторы [18] при исследовании размера, формы и пространственного расположения молекул тритона Х-100 в агрегированном состоянии установили, что при низких концентрациях его мицеллы являются почти сферическими, а при более высоких концентрациях — эллипсоидальными. О морфологических изменениях мицелл тритона Х-100 в водных растворах при добавлении желчных солей сообщается в работе [19]. Трансформацию сферических мицелл в эллипсоидальные авторы объяснили глубоким проникновением молекул желчной кислоты в мицеллы при низком значении рН.

В настоящее время для исследования геометрии структуры макромолекул в растворе используют малоугловое рентгеновское рассеяние [11, 15] и ЯМР-спектроскопию [20]. Эти методы являются универсальными при изучении поверхностно-активных веществ. Полезным дополнением при ис-

следовании их геометрии может стать турбидиметрический метод [21]. Он основан на том, что при прохождении света через коллоидный раствор, в котором отсутствует поглощение, ослабление интенсивности падающего света происходит только за счет его рассеяния дисперсной фазой. При размерах частиц, не превышающих 1/15-1/10 длины световой волны и отношении показателей преломления частиц и дисперсионной среды, равном $n_1/n_2 = 1.15-1.20$, величина полного светорассеяния подчиняется уравнению Релея.

Целью данной работы явилось исследование возможности применения турбидиметрического метода для определения размера мицелл тритона X-100 в водных растворах.

Растворы для анализа готовили из коммерческого препарата Triton X-100 фирмы SIGMA-ALDRICH последовательным разбавлением 5.12 × 10⁻² моль/л раствора деионизованной водой, полученной на приборе "Водолей". Значение критической концентрации мицеллообразования (ККМ) определяли кондуктометрическим методом на приборе Мультитест КСЛ. Эта величина при комнатной температуре составила 1.72×10^{-4} моль/л и согласуется с литературными данными [22]. Спектры пропускания приготовленных растворов регистрировали на спектрофотометре Specol 1500 с использованием кварцевой кюветы толщиной 1 см. Показатели преломления исходного препарата Triton X-100 и деионизованной воды определяли на рефрактометре ИРФ-454 Б2М. Они оказались равными 1.4886 и 1.3333 соответственно.

На рис. 1 представлены спектры пропускания водных растворов тритона Х-100. Они имеют ха-

Рис. 1. Спектры пропускания водных растворов тритона X-100 от его концентрации (моль/л): $1 - 1 \times 10^{-4}$, $2 - 2 \times 10^{-4}$, $3 - 4 \times 10^{-4}$, $4 - 8 \times 10^{-4}$, $5 - 1.61 \times 0^{-3}$, $6 - 3.2 \times 10^{-3}$, $7 - 6.4 \times 10^{-3}$, $8 - 1.28 \times 10^{-2}$, $9 - 2.56 \times 10^{-2}$, $10 - 5.12 \times 10^{-2}$.

рактерные для феноксильных групп полосы поглощения в области 247—290 нм [22], интенсивность которых изменяется в зависимости от концентрации раствора. При длине волны падающего света, равной 246 нм, поглощение феноксильными группами отсутствует, а интенсивность прошедшего света плавно изменяется с увеличением концентрации раствора. В этих условиях ослабление интенсивности падающего света, вероятнее всего, происходит за счет светорассеяния на мицеллах.

Для проверки данного предположения нами были выполнены расчеты эквивалентных радиусов мицелл тритона X-100 с использованием уравнения Рэлея. Для сферических частиц оно имеет вид:

$$\frac{I_P}{I_0} = \frac{24\pi^3}{\lambda^4} \left(\frac{n_1^2 - n_2^2}{n_1^2 + 2n_2^2}\right)^2 C_V V,$$

где I_P – полная интенсивность света, рассеянного единицей объема дисперсной системы в секунду; I_0 – интенсивность падающего света; λ – длина волны ($\lambda = \lambda_{\text{вак}}/n_2$); n_1 – показатель преломления дисперсной фазы; n_2 – показатель преломления дисперсионной среды; C_V – объемная доля дисперсной фазы; V – объем частицы.

Размер частиц вычисляли через мутность системы (τ), которая численно равна световой энергии, рассеиваемой 1 см³ раствора во всех направлениях, при интенсивности падающего света, равной единице:

$$\tau = I_P / I_0.$$

Мутность системы связана с оптической плотностью или пропусканием соотношениями:

$$\tau = \frac{2.3D}{L} = \frac{-2.3 \lg T}{L},$$

где *D* – оптическая плотность; *T* – пропускание; *L* – толщина слоя системы.

Объем частицы и ее радиус рассчитывали по формулам:

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 12 2019

где

$$k = \frac{24\pi^3}{\lambda^4} \left(\frac{n_1^2 - n_2^2}{n_1^2 + 2n_2^2} \right)^2.$$

 $V = \frac{\tau}{C_{\rm e}} \frac{1}{k}; \quad r = \sqrt[3]{\frac{3V}{4\pi}},$

Для растворов тритона X-100 из спектров про-
пускания для
$$\lambda = 246$$
 нм были рассчитаны значения
мутности и построен график зависимости

$$\frac{\tau}{C_V} = f(C_V).$$

Из графика (рис. 2) видно, что в зависимости от концентрации тритона X-100 растворы отличаются между собой оптическими свойствами. При этом можно выделить растворы, для которых зна-

чение функции $\frac{\tau}{C_V} = f(C_V)$ уменьшается с ростом объемной доли дисперсной фазы, и растворы, для которых эти значения увеличиваются. Для каждого вида растворов графической экстраполяцией величин τ/C_V до $C_V = 0$ (рис. 3) были найдены объемы частиц и рассчитаны их радиусы. Для

Рис. 2. Кривая изменения мутности раствора от объемной доли тритона X-100.

Рис. 3. Графическая экстраполяция участков кривой $\frac{\tau}{C_V} = f(C_V)$ на ось ординат.

растворов тритона X-100 с объемной долей дисперсной фазы, равной $(1.87-7.47) \times 10^{-3}$ см³/см³, эквивалентный радиус мицелл составил 6.4 Å, а для растворов с содержанием дисперсной фазы $(1.16-9.34) \times 10^{-4}$ см³/см³ он оказался равным 11.4 Å. Поскольку размеры мицелл и их форма не могут значительно изменяться с разбавлением растворов, полученные результаты можно объяснить эллипсоидальной формой частиц и их различной ориентацией по отношению к падающему свету. При этом эллипсоиды могут принимать вертикальное или горизонтальное сонаправленное со световым потоком положение в зависимости от концентрации раствора поверхностно-активного вещества.

Полученный нами размер полуоси b (11.4 Å) эллипсоидальных мицелл тритона Х-100 согласуются с литературными данными [11, 17]. Эти авторы, предположили, что мицеллы тритона Х-100 имеют форму сплюснутого эллипсоида. Несмотря на то, что рассчитанные ими размеры полуоси *b* совпали и составляют 10.4 Å, размеры полуоси *a* у них значительно различаются: 20 Å [17] и 34 Å [11]. Если бы мицеллы имели форму сплюснутых эллипсоидов, вращающихся вокруг малой оси, то они имели бы одинаковый эквивалентный радиус независимо от их ориентации в растворе по отношению к падающему свету. Мицеллы, имеющие форму вытянутых эллипсоидов, при изменении их положения в растворе могут казаться как частицы с различными радиусами.

Таким образом, турбидиметрическим методом мы определили, что мицеллы тритона X-100 в водных растворах имеют форму вытянутых эллипсоидов вращения с размерами полуосей a = b = 6.4 Å и c = 11.4 Å. Эллипсоиды изменяют свою ориентацию по отношению к падающему свету в зависимости от концентрации раствора.

СПИСОК ЛИТЕРАТУРЫ

1. *Koley D., Bard A.J.* // Proceeding of the National Academy of Sciences of the United States of America. 2010. V. 107. № 39. P. 16783.

- Беланов С.В., Каширин И.А., Малиновский С.В. и др. Способ идентификации радионуклидов в пробах с использованием жидкостного сцинтилляционного счетчика. Пат. 2132074 РФ, 1999.
- Kushner L.M., Hubbard W.D. // J. Phys. Chem. 1954. V. 58. № 12. P. 1163.
- Biaselle C.J., Millar D.B. // Biophys. Chem. 1975. V. 3. № 4. P. 355.
- 5. Corti M., Degiorgio V. // Opt. Commun. 1975. V. 14. № 3. P. 358.
- *Dennis E.A., Ribeiro A.A.* // ACS Symposium Ser. 1976. № 34. P. 453.
- *Ribeiro A.A., Dennis E.A.* // Biochemistry. 1975. V. 14. № 17. P. 3746.
- *Ribeiro A.A., Dennis E.A.* // J. Phys. Chem. 1976. V. 80. № 16. P. 1746.
- Wright A.K. // J. Colloid Interface Sci. 1976. V. 55. № 1. P. 109.
- 10. Brown W., Rymden R., Van Stam J., Almgren M., Svensk G. // J. Phys. Chem. 1989. V. 93. № 6. P. 2512.
- 11. Robson R.J., Dennis E.A. // Ibid. 1977. V. 81. № 11. P. 1075.
- 12. Paradies H.H. // Ibid. 1980. V. 84. № 6. P. 599.
- 13. Rao K.S., Goyal P.S., Dasannacharya B.A. et al. // Pramana. 1991. V. 37. P. 311.
- Charlton I.D., Doherty A.P. // J. Phys. Chem. B. 2000. V. 104. № 34. P. 8327.
- Goyal P.S., Menon S.V.G., Dasannacharya B.A., Thiyagarajan P. // Phys. Rev. E. 1995. V. 51. № 3. P. 2308.
- 16. *Tanford C., Nozaki Y., Ronde M.F.* // J. Phys. Chem. 1977. V. 81. № 16. P. 1555.
- Baglione M., Poggi G., Ciolli G. et al. // Materials. 2018.
 V. 11. № 7 (1144).
- Dencova P.S., Van Lokeren L., Verbruggen I., Willem R. // J. Phys. Chem. B. 2008. V. 112. № 35. P. 10935.
- Patel V., Bharatiya B., Ray D. et al. // J. Colloid Interface Sci. 2015. V. 441. P. 106.
- 20. *Mao S.Z., Dy Y.R.* // Acta Phys.-Chim. Sin. 2003. V. 19. № 7. P. 675.
- Лабораторные работы и задачи по коллоидной химии / Под ред. Ю.Г. Фролова и А.С. Гродского. М.: Химия, 1986. 216 с.
- Мицеллообразование и солюбилизация микроэмульсии / Пер. с англ. М.Г. Гольдфельда. Под ред. В.Н. Измайловой. М.: Мир, 1991. 763 с.