– ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ РАЗДЕЛЕНИЯ. ХРОМАТОГРАФИЯ

УДК 544.543

ПОЛЯРНОСТЬ МОДИФИЦИРОВАННЫХ ТИМИНОМ И 6-МЕТИЛУРАЦИЛОМ ПОРИСТЫХ ПОЛИМЕРОВ ПО ДАННЫМ ОБРАЩЕННОЙ ГАЗОВОЙ ХРОМАТОГРАФИИ

© 2019 г. Ю. Ю. Гайнуллина^{*a*,*}, В. Ю. Гуськов^{*a*}, Д. В. Тимофеева^{*a*}

^а Башкирский государственный университет, Уфа, 450076 Россия

* *e-mail: umashkova@mail.ru* Поступила в редакцию 16.01.2019 г. После доработки 13.05.2019 г. Принята к публикации 14.05.2019 г.

Методом обращенной газовой хроматографии в режиме бесконечного разбавления проб тест-сорбатов изучено сродство поверхностей модифицированных тимином (5-метилурацилом) и 6-метилурацилом образцов пористого полимера Полисорб-1 к сорбатам, способным к проявлению различных межмолекулярных взаимодействий. Установлено, что первый модификатор при самосборке дает одномерные ленточные супрамолекулярные структуры, в то время как второй — двумерные сетчатые структуры. Методом линейного разложения параметров удерживания рассчитаны вклады межмолекулярных взаимодействий в энергию Гельмгольца адсорбции. Методом Донга определены дисперсионная и специфическая составляющие энергии адсорбции. Показано, что модифицирование поверхности пористого полимера тимином приводит к росту как специфической, так и дисперсионной составляющих энергии адсорбции, при этом вклады различных межмолекулярных взаимодействий и полярность поверхности в результате модифицирования тимином меняются незначительно; модифицирование пористого полимера таким же количеством 6-метилурацила приводит к заметному росту полярности за счет роста вкладов индукционных и ориентационных взаимодействий.

Ключевые слова: тимин, супрамолекулярная структура, обращенная газовая хроматография, полость **DOI:** 10.1134/S0044453719120082

Супрамолекулярные структуры находят применение во многих областях науки и техники, таких, как экстракция биологически активных веществ, создание фото- и хемосенсоров, молекулярных электронных устройств, разработка нанокатализаторов, синтез материалов для нелинейной оптики, моделирование сложных биологических процессов [1-3]. Супрамолекулярные ассоциаты различного строения используются также в качестве сорбентов. Такие сорбенты способны к стереоселективной и хиральной сорбции в объеме полостей молекулярного размера [4, 5]. При этом остаются недостаточно изученными сорбенты на основе гетероциклов пиримидинового ряда (урацил, тимин, 6-метилурацил и т.д.). Было показано, что они способны образовывать супрамолекулярные структуры высокой упорядоченности [6-9]. Среди них выделяются производные урацила по причине низкой токсичности для человека и способности образовывать широкий спектр супрамолекулярных ансамблей [10, 11]. Так, кристаллические структуры производных урацила представляют собой плоские или гофрированные слои ассоциатов молекул ленточного или сетчатого типа, образованные посредством водородных связей между N-H-и C=О-группами пиримидинового кольца. При этом структуры урацила сетчатого типа представляют собой двумерные слои, имеющие полости размером около 7 Å [12]. Введение заместителей в молекулу урацила способствует образованию того или иного типа супраструктур. Так, при введении метильной группы в 5-е положение (5-метилурация – тимин, см. рис. 1) при самосборке образуются одномерные структуры ленточного типа [13]. Такой же тип ассоциатов имеют и 5-хлор-[14], 5-бром-[15] урацилы. Однако наличие метильной группы в 6-м положении (6-метилурация) приводит к самосборке в преимущественно двумерные ассоциаты, а структуры ленточного типа образуются только при перекристаллизации основной модификации 6-метилурацила [16]. Ранее нами было установлено, что в результате нанесения на поверхность пористого полимера 6-метилурацила происходит значительный рост полярности поверхности модифицированного сорбента за счет большего сродства поверхности к донорно-акцепторным взаимодействиям к молекулам тест-

Рис. 1. Супрамолекулярная структура тимина по данным рентгеноструктурного анализа [13].

сорбатов [17]. Так же, как ранее в литературе были описаны случаи инлуширования хиральности в схожих соединениях [18, 19], нами предпринимались попытки разделения энантиомеров на неподвижных фазах на основе 6-метилурацила с индуцированной хиральностью. Однако удовлетворительного разделения не было получено, по причине возникающей вследствие "хвостов" пиков крайне низкой эффективности колонки. Это, вероятно, связано со способностью поверхности к полярным межмолекулярным взаимодействиям. Возможным решением проблемы может стать использование ленточных супрамолекулярных структур. В связи с этим представляет интерес оценить различие в полярности адсорбентов, модифицированных изомерами, дающими различные супраструктуры молекулами. Цель данной работы – сравнение полярностей пористого полимера, модифицированного (1%) тимином и 6метилурацилом.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходного сорбента выбран пористый полимерный сорбент Полисорб-1 с удельной поверхностью 250 м²/г и средним размером пор 130 А. Модифицирование тимином и 6-метилурацилом проводили из их водных растворов путем испарения растворителя при 60°С. Количество наносимых модификаторов составляло 1% от массы исходного сорбента. Чтобы свести к минимуму влияние посторонних факторов при сравнении полярностей получаемых адсорбентов, в обоих модифицированиях использовали пористый полимер из одной партии, процесс модифицирования проводили на одной и той же магнитной мешалке со встроенным нагревателем и внешним термодатчиком, одним и тем же исполнителем, за одинаковое время. Выбранная массовая доля наносимых веществ обеспечивала полное покрытие поверхности Полисорба-1 слоями модификатора.

ной газовой хроматографии в режиме бесконечного разбавления проб, на хроматографе "Хромос ГХ-1000" с пламенно-ионизационным детектором. Применяли колонку 500 × 3 мм. Температура термостата составляла 200°С, температуры испарителя и детектора – 200°С, скорость газаносителя азота – 60 мл/мин. В качестве тест-сорбатов выбирали вещества, способные к различным типам межмолекулярных взаимодействий. Пробы вводили в виде разбавленных паровоздушных смесей на пределе чувствительности детектора. Погрешность измерений удельных удер-

Исследование проводили методом обращен-

живаемых объемов (V_0^g) не превышала 3%. Достижение области Генри фиксировали двумя традиционными хроматографическими способами: симметричностью пиков и отсутствием зависимости удельных удерживаемых объемов от количества вводимой пробы. Полученные в таких условиях значения удельных удерживаемых объемов были равны константам адсорбционно-десорбционного равновесия — константам Генри. Это позволило рассчитать мольные изменения энергии Гельмгольца адсорбции ($-\Delta F$, кДж/моль) [20]:

$$-\Delta F = RT \ln V_{g}^{0} + RT.$$
⁽¹⁾

Полярность поверхности оценивали методом линейного разложения параметров удерживания (ЛРПУ), а также методом Донга. В методе ЛРПУ в качестве характеристики, связанной с удерживанием, использована величина ΔF адсорбции, которую можно представить в виде суммы дисперсионной, электростатической и донорно-акцепторной составляющих [21, 22]:

$$-\Delta F = \Delta F'_{\rm disp} + \Delta F'_{\rm io} + \Delta F'_{\rm da}, \qquad (2)$$

$$-\Delta F = K_1 \alpha_B + K_2 \left(\frac{2\mu_B^2}{3kT} + \alpha_B \right) + K_3 W_B^{\alpha} + K_4 W_B^d + K_5,$$
(3)

$$-\Delta F'_{\rm disp} = K_1 \alpha_B + K_5, \qquad (4)$$

$$-\Delta F_{\rm io}' = K_2 \left(\frac{2\mu_B^2}{3kT} + \alpha_B \right), \tag{5}$$

$$-\Delta F'_{\rm da} = K_3 W^{\alpha}_B + K_4 W^d_B, \qquad (6)$$

где $\Delta F'_{disp}$, $\Delta F'_{io}$ и $\Delta F'_{da}$ – дисперсионная, электростатическая (индукционные и ориентационные взаимодействия) и донорно-акцепторная составляющие свободной энергии адсорбции; $K_1 - K_5 - K_5$ коэффициенты, характеризующие соответственно дисперсионные, индукционные и ориентационные, электронодонорные и электроноакцепторные свойства поверхности сорбента. Коэффициент K_5 также характеризует дисперсионные взаимодействия; α_B , μ_B , W_B^a , W_B^d – соответственно поляризуемость, дипольный момент, электроноакцепторная и электронодонорная постоянные сорбата; k — константа Больцмана, T — температура. К. В качестве серии тест-сорбатов использовали следующий стандартный набор: гексан, гептан, октан, циклогексан, бензол, толуол, этанол, пропанол, изопропанол, бутанол, изобутанол и этилацетат. Для каждого тест-сорбата с помощью набора молекулярных дескрипторов составляли уравнение (3). Использование данного набора тест-сорбатов связано с необходимостью сопоставления полученных в работе данных с ранее определенными для других аналогичных систем.

Из полученной системы уравнений методом линейного многофакторного регрессионного анализа рассчитывали коэффициенты K_1-K_5 , подставляя которые в (3), определяли вклады различных межмолекулярных взаимодействий в энергию Гельмгольца сорбции, а также условную полярность поверхности *P*. Последняя представляла собой средний вклад энергии всех специфических взаимодействий в ΔF сорбции для выбранного набора тест-сорбатов [23]:

$$P, \% = \frac{\sum \left(\frac{\Delta F_{\rm io}^n + \Delta F_{\rm da}^n}{\Delta F_n}\right)}{n_{\rm con6}} \times 100, \tag{7}$$

где $n_{\rm cop6}$ — количество сорбатов, используемых для расчета. Рассчитанные значения *P* являются условными, так как при изменении набора тестсорбатов они будут меняться. Однако применение при расчете одного и того же набора тест-сорбатов позволило использовать полученные значения *P* в качестве сравнительной характеристики полярности адсорбентов.

В качестве стандарта использовали графитированную термическую сажу (ГТС). Для ГТС с использованием идентичного набора тест-сорбатов рассчитывали условную полярность $P_{\Gamma TC}$. Эта величина несколько отличалась от нуля. Далее относительную условную полярность ГТС принимали за ноль [24], относительную условную полярность для изучаемых образцов вычисляли по формуле:

$$P' = P - P_{\Gamma TC},\tag{8}$$

где P' — относительная условная полярность исследуемого образца. Для облегчения сравнения полученных результатов предварительно определяли значения относительной условной полярности пористых полимерных сорбентов на основе стирола и дивинилбензола и силикагелей. Средние значения относительной условной полярности, рассчитанные методом ЛРПУ с использованием того же набора тест-сорбатов, составили соответственно 15 ± 1 и 30 ± 2%.

В качестве контрольного метода оценки полярности применяли классический метод Донга, использующий линейную зависимость энергии адсорбции алканов от поляризуемости [25]. При этом предполагается, что алканы взаимодействуют с поверхностью только за счет дисперсионных (неспецифических) взаимодействий. Энергия не- (ΔF^{disp}) специфических взаимолействий кДж/моль) других молекул рассматривается как энергия адсорбции гипотетического алкана с такой же поляризуемостью. Энергия специфических взаимодействий (ΔF^{spec} , кДж/моль) вычисляется по разности между общей энергией аднеспецифических энергией сорбции И взаимодействий. Величина ΔF^{disp} характеризует дисперсионные взаимодействия между молекулами адсорбатов и поверхностью адсорбента, а величина ΔF^{spec} – индукционные, ориентационные и донорно-акцепторные взаимодействия.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В табл. 1 приведены вклады различных межмолекулярных взаимодействий в энергию Гельмгольца адсорбции различных по природе молекул, рассчитанные методом ЛРПУ для модифицированных и исходного образцов сорбента. Как видно из полученных данных, после нанесения 1% тимина вклад дисперсионных взаимодействий несколько уменьшился. Исключение составляет бензол. В то же время вклады индукционных и ориентационных взаимодействий также незначительно возрастают, что связано с влиянием атомов кислорода и азота молекулы тимина. В целом, вклады различных межмолекулярных взаимодействий в энергию адсорбции в результате модифицирования тимином существенно не изменяются. Общая полярность поверхности при этом возрастает в пределах погрешности измерений. Незначительное повышение полярности поверхности в результате модифицирования некоторыми дающими супрамолекулярные структуры

Сорбат	Ι				II				III			
	Д	И + О	Э/Д	Э/А	Д	И + О	Э/Д	Э/А	Д	И + О	Э/Д	Э/А
Гексан	90	10	0	0	86	14	0	0	93	7	0	0
Гептан	90	10	0	0	85	15	0	0	93	7	0	0
Октан	89	11	0	0	84	16	0	0	93	7	0	0
Циклогексан	90	10	0	0	87	13	0	0	93	7	0	0
Бензол	82	8	0	10	76	11	0	13	82	6	0	11
Толуол	79	11	0	10	72	16	0	13	81	8	0	11
Этанол	41	23	36	0	37	24	39	0	42	21	37	0
Пропанол	48	22	30	0	44	21	35	0	49	19	32	0
Изопропанол	47	22	31	0	43	22	35	0	49	20	31	0
Бутанол	53	18	28	0	49	20	31	0	54	17	28	0
Изобутанол	53	19	27	0	48	21	31	0	54	17	28	0
Этилацетат	54	20	0	26	44	30	0	26	54	19	0	27
Ρ'	17 ± 1				23 ± 2				15 ± 1			

Таблица 1. Вклады (%) различных межмолекулярных взаимодействий в энергию Гельмгольца адсорбции на модифицированном тимином (I) и 6-метилурацилом (II), а также исходном (III) пористом полимере Полисорб-1

Обозначения: Д – дисперсионные, И + О – индукционные и ориентационные, $\Im/Д$ – электронодонорные, \Im/A – электроноакцепторные взаимодействия.

гетероциклическими соединениями наблюдалось нами и ранее [23]. Оно вызвано как способностью молекул тест-сорбатов проникать сквозь щели в таких супрамолекулярных структурах и взаимодействовать напрямую с адсорбентом, так и уменьшением размеров пор пористых полимеров вследствие покрытия поверхности поры слоем модификатора.

Однако при модифицировании того же полимера 6-метилурацилом полярность поверхности возрастает заметнее. Вклады дисперсионных взаимодействий при этом снижаются, в то время как вклады индукционных и ориентационных — возрастают. Таким образом, модифицирование поверхности соединением, способным образовывать двумерные ансамбли, повышает полярность исходной поверхности заметно сильнее, чем модифицирование веществом, дающим ленточные одномерные супрамолекулярные структуры.

Это подтверждается и данными, полученными с использованием метода Донга. Согласно данным табл. 2, в случае модифицирования пористого полимера 6-метилурацилом относительная условная полярность возрастает, однако после нанесения 5-метилурацила остается неизменной. Полярности, приведенные в табл. 1 и 2, различаются вследствие различий в применяемых методах: метод Донга по умолчанию предполагает нулевые специфические взаимодействия для *н*-алканов, следовательно, три *н*-алкана из набора тест-сорбатов в расчете полярности по методу Донга участия не принимали. Анализ данных табл. 2 показывает, что в результате модифицирования Полисорба-1 обоими модификаторами дисперсионная составляющая энергии адсорбции растет. В результате модифицирования тимином и 6-метилурацилом значение $-\Delta F^{\rm disp}$ спиртов возрастает на ≈3 кДж/моль; для аренов – на 1.4–2.6 кДж/моль. Такой рост обусловлен следующим: покрытие модификатором стенок пор пористого полимера приводит к уменьшению размера пор, и, следовательно, к росту силы дисперсионных взаимодействий.

Специфическая составляющая энергии адсорбции на модифицированных обоими модификаторами образцах также возрастает по сравнению с исходным сорбентом. Причина этого – большая полярность модификаторов по сравнению с исходной стирол-дивинилбензольной матрицей пористого полимера. Однако в результате модифицирования 5-метилурацилом рост величины $-\Delta F^{spec}$ заметно меньше, чем аналогичный рост $-\Delta F^{spec}$ для пористого полимера, модифицированного 6-метилурацилом. Это приводит к тому, что рост специфической составляющей в случае тимина сопровождается сопоставимым ростом дисперсионной составляющей, в результате чего величина P остается неизменной.

Таким образом, способность поверхности модифицированного 6-метилурацилом пористого полимера к специфическим взаимодействиям выше, чем у идентичного образца пористого полимера, модифицированного тимином. В случае последнего неизменность относительной условной полярности обусловлена ростом дисперсион-

Таблица 2. Значения свободной энергии Гельмгольца адсорбции (ΔF , кДж/моль), а также рассчитанные по ме-
тоду Донга ее дисперсионная ($\Delta F^{ m disp}$, кДж/моль) и специфическая ($\Delta F^{ m spec}$, кДж/моль) составляющие на модифи-
цированных тимином (I) и 6-метилурацилом (II) и исходном (III) пористых полимерах Полисорб-1

Сорбаты		Ι			Π		III			
	ΔF	$\Delta F^{ m disp}$	$\Delta F^{\rm spec}$	ΔF	$\Delta F^{ m disp}$	$\Delta F^{\rm spec}$	ΔF	$\Delta F^{ m disp}$	$\Delta F^{\rm spec}$	
Этанол	8.4	2.7	5.7	15.1	4.4	10.7	4.2	0.0	4.2	
Пропанол	13.4	5.8	7.6	16.3	6.2	10.1	8.0	2.0	6.0	
Изопропанол	11.2	5.5	5.7	15.4	6.0	9.4	6.8	2.0	4.8	
Бутанол	16.6	9.0	7.6	19.3	8.0	11.3	10.9	4.9	6.0	
Изобутанол	15.2	8.8	6.4	18.3	8.0	10.3	8.8	5.1	3.7	
Этилацетат	14.5	9.7	4.8	18.9	8.5	10.4	9.7	9.8	-0.1	
Бензол	16.8	9.4	7.4	20.6	9.3	11.3	11.5	6.8	4.7	
Толуол	20.2	11.2	9.0	22.6	11.2	11.4	14.7	9.8	4.9	
Ρ'	48 ± 2				56 ± 3	•	49 ± 2			

ной составляющей энергии Гельмгольца адсорбции после модифицирования. Близость физикохимических свойств используемых модификаторов позволяет предположить, что различие в полярности обусловлено различным строением супрамолекулярных структур тимина и 6-метилурацила. Полученные результаты могут быть полезны для применения модифицированных одномерными ленточными супрамолекулярными структурами адсорбентов для газохроматографического разделения энантиомеров.

Работа выполнена за счет гранта Российского научного фонда (проект № 17-73-10181).

СПИСОК ЛИТЕРАТУРЫ

- 1. Зайцев С.Ю. // Российские нанотехнологии. 2010. Т. 2. № 3. С. 121.
- 2. Zaitsev S.Yu., Vereschetin V.P., Gromov S.P. et al. // Supramolecular Science. 1997. V. 4. P. 519.
- Zaitsev S. Yu., Gromov S.P., Fedorova O.A. et al. // Coll. Surf. 1998. V. 131. P. 325.
- Bouas-Laurent H., Castellan A., Desvergne J.-P. et al. // Chem. Soc. Rev. 2001. V. 30. P. 248.
- 5. *Abraham M.H., Whiting G.S.* // JAOCS. 1992. V. 69. № 12. P. 1236.
- Reck G., Kretschmer R.G., Kutschabsky L. et al. // Acta Crystallogr., Sect. A: Found Crystallogr. 1988. V. A44. № 4. P. 417.
- 7. Иванов С.П., Лысенко К.А., Колядина О.А. и др. // Журн. физ. химии. 2005. Т. 79. С. 278.
- Fallon L. // Acta Crystallogr., Sect. B: Struct. Sci. 1973. V. 29. № 11. P. 2549.
- Гуськов В.Ю., Гайнуллина Ю.Ю., Иванов С.П. и др. // Физикохимия поверхности и защита материалов. 2014. Т. 50. № 1. С. 59.

- Гуськов В.Ю., Гайнуллина Ю.Ю., Кудашева Ф.Х. и др. // Журн. физ. химии. 2014. Т. 88. № 6. С. 1058.
- Venkatasubramanian K., Mojeste R.J., Trefonas Z.M. // J. Heterocycl. Chem. 1975. V. 12. № 4. P. 699.
- 12. *Масунов А.Э., Грищенко С.И., Зоркий П.М.* // Журн. физ. химии. 1993. Т. 67. № 2. С. 221.
- Иванов С.П. Изучение кето-енольного равновесия некоторых производных урацила в водных растворах: дис. ... канд. хим. наук. Уфа: Институт органической химии УНЦ РАН, 2003. 100 с.
- 14. *Strenglanz H., Bugg C.E.* // Biochim. Biophys. Acta. 1975. V. 378. № 1. P. 1.
- 15. *Ozeki K., Sakabe N., Tanaka J. //* Acta Crystallogr. Sect. B: Struct. Sci. 1969. V. 25. № 6. P. 1038.
- 16. Леонидов Н.Б., Зоркий П.М., Масунов А.Э. и др. // Журн. физ. химии. 1993. Т. 67. № 12. С. 2464.
- Гуськов В.Ю., Хабибуллина Р.А., Кудашева Ф.Х. // Сорбц. и хромат. процессы. 2011. Т. 11. № 3. С. 415.
- Kondepudi D.K., Digits J., Bullock K. // Chirality. 1995. V. 7. P. 62.
- 19. Kawasaki T., Suzuki K., Hakoda Y., Soai K. // Angew. Chem. Int. Ed. 2008. V. 47. P. 496.
- Katsanos N.A., Karaiskakis G. Time-Resolved Inverse Gas Chromatography and Its Applications. New York: HNB Publishing, 2004. 180 p.
- Гуськов В.Ю., Семенов В.Э., Гайнуллина Ю.Ю. и др. // Изв. АН. Сер. хим. 2015. № 4. С. 800.
- Ларионов О.Г., Петренко В.В., Платонова Н.П. // Журн. физ. химии. 1989. Т. 63. № 9. С. 2533.
- Gus'kov V.Yu., Gainullina Yu.Yu., Ivanov S.P. et al. // J. Chromatogr. A. 2014. V. 1356. P. 230.
- 24. *Яшкин С.Н.* // Журн. прикл. химии. 2012. Т. 85. № 9. С. 1462.
- 25. Dong S., Brendle M., Donnet J.B. // Chromatograhia. 1989. V. 28. P. 469.