СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 547.422

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ВОДОРОДНОЙ, ВАН-ДЕР-ВААЛЬСОВОЙ И ГАЛОГЕННОЙ СВЯЗЕЙ В КОМПЛЕКСАХ АММИАКА С МОЛЕКУЛАМИ НСІ И СІҒ

© 2019 г. А. Н. Исаев^{*a*,*}

^а Российская академия наук, Институт органической химии им. Н.Д. Зелинского, Москва 119991, Россия

* *e-mail: isaevaln@ioc.ac.ru* Поступила в редакцию 29.01.2019 г. После доработки 29.01.2019 г. Принята к публикации 20.02.2019 г.

Методом MP2 теории возмущений Меллера–Плессета второго порядка в корреляционно-согласованном базисе Даннинга aug-cc-pVTZ, дополненном диффузными функциями, проведены квантово-химические расчеты молекулярных комплексов, образованных аммиакам и метанидом (донор электронной пары) с молекулами HCl и ClF (акцептор) при различных вариантах их взаимной ориентации. Во всех комплексах отмечается удлинение ковалентной связи акцептора и красный сдвиг соответствующей полосы в ИК-спектре. Выполнен NBO-анализ и анализ топологии электронной плотности, построены карты сдвига электронной плотности при образовании комплексов. Рассчитана структура переходного состояния для взаимопревращения комплексов NH₃…HCl и NH₃…ClH, отвечающих минимумам на поверхности потенциальной энергии. Переход между конфигурациями сопровождается эволюцией межмолекулярного связевого пути с заменой критической точки контакта N…H критической точкой контакта N…Cl. Данные расчетов, дополненные сравнительным анализом потенциальных кривых взаимодействия, указывают на сходную природу межмолекулярного связывания в комплексах H₃N и HCl с различной ориентацией мономеров.

Ключевые слова: квантово-химические расчеты, молекулярные комплексы, теория орбиталей, водородная, ван-дер-ваальсова и галогенная связи, комплексы аммиака с молекулами HCl и CIF **DOI:** 10.1134/S0044453719120100

В теории орбиталей натуральных связей (NBO) классическая трехцентровая четырехэлектронная (3с-4е) водородная (H-) связь Y···H–X определяется как донорно-акцепторное взаимодействие $n_{\rm Y} \rightarrow \sigma_{\rm X-H}^*$ между центром Y с неподеленной электронной парой и анти-связью X–H акцептора электронов [1]. В этом определении предполагается, что при образовании H-связи электронная пара Y (основание Льюиса) ориентирована в направлении протона акцептора (кислота Льюиса). В то же время, очевидно, что существуют четыре возможных варианта взаимной ориентации неподеленной электронной пары и акцептора, которые представлены на рис. 1.

Вариант а на рис. 1 отвечает традиционному водородному связыванию, рассматриваемому в литературе. Из общих соображений понятно, что именно при такой ориентации мономеров ("голова к голове", А-комплексы) должно происходить наиболее эффективное связывание донора электронной пары с акцептором. Анализ свойств молекулярных комплексов с ориентацией мономеров "хвост к голове" (вариант б на рис. 1, Б-комплексы) показал их сходство с комплексами Атипа и позволил определить межмолекулярное взаимодействие Y····H–X в этих комплексах как водородную связь, более слабую по сравнению с H-связью в A-комплексах [2–4].

Можно предположить, что связывание мономеров по вариантам в и г (рис. 1) также возможно при определенных условиях; природа межмолекулярного взаимодействия в таких комплексах

Рис. 1. Возможные варианты взаимной ориентации неподеленной электронной пары атома Y и ковалентной связи X–H акцептора. Обозначения см. текст.

представляет немалый интерес для теоретической химии. Поиск подобных молекулярных систем показал, что молекулы NH_3 и HCl могут образовывать комплексы всех четырех типов ориентации мономеров. Эти комплексы представляют исключительно удобный объект для сравнительного анализа нековалентных взаимодействий N...H-Cl u N...Cl-H, который выполнен в настоящей работе. Рассмотрены также A- и Б-комплексы NH_3 с CIF с целью сравнения H-связи с галогенной связью, которая интенсивно изучается в последние годы. В частности, A-комплекс $H_3N...ClF$ с галогенной связью рассматривался ранее как в экспериментальных, так и в теоретических работах [5–10].

В ряде исследований показано, что сила нековалентного взаимодействия и ориентация взаимодействующих молекул могут быть предсказаны и объяснены из анализа положений и значений минимумов и максимумов электростатического потенциала (ESP) на ван-дер-ваальсовой поверхности молекул. Как правило, связывание мономеров друг с другом происходит таким образом, что экстремумы ESP молекул максимально комплементарны. Выполненные в работе [4] расчеты показали, что молекула аммиака имеет два минимума ESP на ван-дер-ваальсовой поверхности, которые лежат на оси симметрии С_{3v} молекулы по разные стороны от ядра атома азота. Эти минимумы отвечают за водородное связывание молекулы аммиака с акцептором электронов с образованием комплексов А- и Б-типа. А-комплекс Н₃N…Н-СІ был исследован в целом ряде более ранних работ, например, [3, 11–17]; Б-комплекс детально рассмотрен в работах [3, 4].

На рис. 2 приведены карты ESP для аммиака и -аниона, а также молекул HCl, HF и ClF. На рисунке видно, что ван-дер-ваальсова поверхность молекулы HCl имеет максимум ESP, лежащий на оси молекулы вблизи атома Cl. По-видимому, именно это делает возможным связывание молекулы HCl с молекулой NH₃ по вариантам в и г. По аналогии с Н-связанными комплексами, вариант в отвечает ориентации мономеров "голова к хвосту" (это В-комплексы в тексте статьи), а вариант г – ориентации "хвост к хвосту" (Г-комплексы). Квантово-химические расчеты комплекса Н₃N···-ClH В-типа были ранее проведены в теоретическом исследовании [18], Г-комплекс впервые описан в настоящей статье. Проведено сравнение нейтральных молекулярных систем с ионными Ви Г-комплексами, образованными молекулой HCl и метид-анионом (H_3C^-).

МЕТОДЫ РАСЧЕТОВ

Квантово-химические расчеты молекулярных комплексов проведены по программе Gaussian 09 [19] методом MP2/aug-cc-pVTZ, который в последние годы широко используется при исследовании нековалентных взаимодействий. В исследовании [20] межмолекулярных взаимодействий различной природы было показано, что энергии связи, найденные методом МР2 [21] теории возмушений Меллера-Плессета второго порядка и методом связанных кластеров CCSD(T) [22, 23], имеют близкие значения при проведении расчетов в корреляционно-согласованных базисах Даннинга aug-cc-pVxZ (x = T, Q), дополненных диффузными функциями [24]. В настоящей статье приведены энергии связи по данным расчетов методом CCSD(T)/aug-cc-pVTZ для геометрии молекулярных комплексов, оптимизированной в MP2/aug-cc-pVTZ- pacчetax.

Структуры, найденные в расчетах с полной оптимизацией геометрии, были проверены на отсутствие мнимых частот в матрице силовых констант. Энергии связи в молекулярных комплексах определены как разность между полной энергией комплекса и суммой энергий изолированных мономеров с учетом суперпозиционной ошибки базисного набора (BSSE) по Бойсу-Бернарди [25]. Анализ орбиталей натуральных связей (NBO) [26, 27] и топологический анализ электронной плотности по теории Бейдера [28, 29] проводились с использованием процедур, включенных в Gaussian 09. Карты электростатического потенциала и распределения электронной плотности, а также молекулярные графы построены на основе данных квантово-химических расчетов с помощью программы Multiwfn [30].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Геометрия и энергия связи. Рассмотренные в работе молекулярные комплексы, образованные аммиаком с молекулами HCl и ClF, показаны на рис. 3. Характерные геометрические параметры комплексов, рассчитанные методом MP2/aug-ccpVTZ, приведены также в табл. 1. Как видно из данных таблицы, А-комплексы H₃N…HCl и H₃N…ClF с водородной и галогенной связью заметно прочнее комплексов, образованных при других вариантах ориентации мономеров. Расчетные значения межмолекулярного расстояния и энергии связи в этих комплексах находятся в согласии с известными из литературы данными [8, 9, 14, 18], которые также приведены в табл. 1. Во всех комплексах отмечается удлинение ковалентных связей в молекулах акцептора электронной пары и длинноволновый сдвиг полос HCl и CIF в ИК-спектре (красное смещение). Можно отметить близкие расчетные значения для удлинения ковалентной связи H-Cl и красного смещения Δv_{HCl} полосы HCl в ИК-спектре А-ком-

Рис. 2. Положения минимумов (синие сферы) и максимумов (красные сферы) электростатического потенциала на ван-дер-ваальсовой молекулярной поверхности (изолиния 0.001 а.е.) для мономеров, участвующих в комплексообразовании. Числа показывают значения экстремумов.

плекса H_3N ···HCl и ионного комплекса В-типа H_3C^{-} ···ClH, образованного метид-анионом.

Известно, что межмолекулярное расстояние часто рассматривается как один из критериев силы межмолекулярного взаимодействия [31, 32]. Из табл. 1 видно, что в ионных В- и Г-комплексах метанида межмолекулярное расстояние С…Cl на 0.3–0.5 Å меньше, чем межмолекулярное расстояние N…Cl в нейтральных В- и Г-комплексах аммиака, что находится в согласии с большей стабильностью комплексов метанида. С другой стороны, комплексы NH_3 ...ClF (Б) и H_3C^- ...ClH (В) с примерно одинаковым межмолекулярным расстоянием R(N...Cl) и R(C...Cl) имеют близкие значения энергии связи. Как видно из таблицы, энергии связи, рассчитанные методом CCSD(T)/aug-cc-pVTZ находятся в хорошем согласии с данными расчетов MP2/aug-cc-pVTZ.

Рис. 3. Комплексы аммиака и метанида с HCl и ClF при различной взаимной ориентации молекул. Комплексы H₃N···-ClF с галогенной связью определены как комплексы типа A и Б по аналогии с H-связанными комплексами, так как ближним к азоту находится менее электрооотрицательный атом Cl. Межатомное расстояние указано в Ангстремах.

В равновесных комплексах А, Б и Г аммиака с молекулой HCl, а также в комплексах метанида, наблюдается химический сдвиг б_н водорода со смещением сигнала протона в ЯМР-спектре в сторону более слабого поля, а величина химического сдвига коррелирует с энергией связи. Следует отметить, что комплекс H₃N…ClH B-типа рассчитывался ранее методом MP2/aug-cc-pVDZ в работе [18] и был описан как равновесная структура; найденные в [18] значения R(N…Cl) и энергии связи даны в табл. 1. Однако, наши расчеты методом MP2/aug-cc-pVTZ показали, что матрица силовых констант для этой структуры имеет два отрицательных собственных значения, т.е. Вкомплекс H₃N…ClH отвечает критической точке второго порядка.

Анализ натуральных орбиталей (NBO анализ). Данные NBO-анализа для комплексов позволяют выделить четыре основных типа межорбитальных взаимодействий, которые определяют связывание мономеров. В последнем столбце табл. 2 приведены значения энергии E(2) возмущения второго порядка для доминирующих взаимодействий по данным расчетов методом MP2/aug-ccpVTZ. Из табл. 2 видно, что в А- и Б-комплексах аммиака с водородной и галогенной связью основной вклад в связывание вносит взаимодействие $nN \rightarrow \sigma^*HCl$ ($nN \rightarrow \sigma^*ClF$) неподеленной пары азота с антисвязывающей орбиталью ковалентной связи HCl или ClF-акцептора. В более слабых комплексах H₃N···ClH (B) и NH₃···ClH (Γ) становится заметным вклад взаимодействия σ HCl \rightarrow Ry*N с переносом электронного заряда на Ридберговы орбитали атома азота, энергия

 $E_{nN \to \sigma^* \mathrm{HCl}}^{(2)}$ в этих комплексах невелика.

Так, в А- и Б-комплексах вклад первого взаимодействия на порядок больше, чем вклад второго, а в В- и Г-комплексах эти вклады примерно равны. Из данных табл. 2 также видно, что с усилением электронодонорных свойств, при переходе от нейтральных комплексов аммиака к ионным комплексам метанида, вклад взаимодействия с переносом на орбиталь $\sigma^*(H-Cl)$ заметно возрастает и оно становится доминирующим. В Б-комплексе NH₃···HCl заметный вклад в связывание вносит взаимодействие $nN \rightarrow Ry^*H$, а в Акомплексе H₃N···ClF и в Г-комплексе CH₃⁻···ClH – взаимодействия $nN \rightarrow Ry^*Cl$ и $nC \rightarrow Ry^*Cl$ соответственно.

В табл. 2 даны также изменения зарядов на атомах триады N…HCl (N…ClF), найденные с использованием трех различных схем анализа заселенности: схемы NPA заселенности натуральных атомных орбиталей [27, 33], схемы AIM [28, 29] интегрирования электронной плотности по атом-

ИСАЕВ

Таблица 1. Межатомное расстояние N···Cl (*R*), угол Cl···NH (θ) при связывании мономеров, изменение в длине ковалентной связи H–Cl (Δr_{HCl}), красный сдвиг в частоте ($\Delta v_{\text{H-Cl}}^{\text{asym}}$), химический сдвиг ЯМР (δ_{H}) на атоме водорода и энергия связи (E_{bind}) в молекулярных комплексах, образованных аммиаком с молекулами HCl и ClF при их различной ориентации

Молекулярный комплекс	R	θ	$\Delta r_{ m HCl}$	$\Delta\nu_{H-Cl}^{asym}$	$\delta_{\rm H}$	$E_{\rm bind}$	
						Без учета BSSE	C учетом BSSE
H_3N ···HCl (A)	3.066	111.4	53.3	-748.1	-10.13	9.22 (8.37)	9.51 (8.52)
a)	2.986						9.70
NH ₃ …HCl (Б)	3.654	71.0	7.6	-111.6	-1.81	1.59 (1.44)	1.54 (1.45)
H ₃ N…ClH (B)	3.293	112.1	1.6	-14.2	0.33	1.05 (1.03)	0.90 (0.89)
б)	3.244						0.70
NH_3 ···ClH (Γ)	3.558	68.0	1.2	-10.6	-0.14	0.79 (0.80)	0.64 (0.65)
H_3N ···ClF (A)	2.232	110.1	76.2	-174.8	497.23	11.82 (9.95)	12.75 (10.50)
в)	2.24						11.0
г)	2.27						11.64
NH ₃ ···ClF (Б)	2.825	72.1	15.6	-74.5	175.41	2.72 (2.37)	2.87 (2.54)
$H_3C^{-}ClH(B)$	2.831	108.4	51.3	-613.5	-2.57	3.42 (3.34)	3.50 (3.48)
$CH_{3}^{-}\cdots ClH(\Gamma)$	3.310	73.0	17.1	-234.0	-0.53	1.23 (1.67)	0.75 (1.32)

Примечание. R и Δr_{HCl} даны в Å и мÅ соответственно, Δv дано в см⁻¹, δ_H – в мд. Величины E_{bind} приведены в ккал/моль; значения в круглых скобках показывают E_{bind} , рассчитанную методом CCSD(T)/aug-cc-pVTZ при геометрии комплекса, оптимизированной в расчетах MP2/aug-cc-pVTZ. В двух нижних строках таблицы даны расчетные данные для комплекса метанида. В третьем столбце дано значение угла θ , усредненное по атомам водорода молекулы акцептора. Для комплексов с галогенной связью в четвертом и пятом стобцах приведены данные для ковалентной связы Cl–F и химический сдвиг δ на атоме хлора в шестом столбце. Для комплексов метанида во втором столбце указано межатомное расстояние C···Cl. Для A- и Б-комплексов аммиака с молекулой HCl приведены результаты расчетов [3] и [4]; в строках а), б), в) и г) – данные работ [14], [18], [8] и [9] соответственно.

ному бассейну и процедуры CHelpG [34] воспроизведения молекулярного электростатического потенциала. NPA- и AIM-заряды согласуются между собой лучше, чем со значениями CHelpGзарядов. Например, последний метод всегда показывает заметное увеличение отрицательного заряда на атоме мостика, даже на водороде в А- и Б-комплексах с H-связью.

Методы NPA и AIM предсказывают близкие величины электронного заряда Q, который переходит с аммиака на акцептор (см. табл. 2). В квантово-химическом исследовании [35] молекулярного комплекса HCH₃···HOH корректное описание изменения зарядов на атомах было получено методом AIM, тогда как метод CHelpG показывал нереалистично большую величину перенесенного заряда. Для всех рассматриваемых в настоящей статье комплексов метод AIM показывает увеличение электронного заряда на молекулах HCl и ClF; при этом величина Q коррелирует с энергией E(2) и заселенностью η вакантной σ^* -орбитали акцептора. Значительная величина Q на молекуле ClF в A-комплексе H_3N ····ClF с галогенной связью согласуется с определением этого комплекса как комплекса с переносом заряда [8].

Топология и карты электронной плотности. Любая схема присвоения заряда атомам допускает некоторую степень произвольности. По этой причине данные об изменении зарядов дополнены картами, которые показывают сдвиги электронной плотности в результате взаимодействия мономеров при образовании молекулярного комплекса. Такие карты, построенные для всех комплексов, представлены на рис. 4. На этих картах фиолетовым и зеленым цветом показаны области увеличения и понижения электронной плотности, соответственно. Как видно на рисунке, несмотря на различия в межмолекулярном расстоянии и энергии связи в комплексах, карты перераспределения электронной плотности очень сходны в основных чертах.

Действительно, можно видеть одинаковое чередование областей увеличения и уменьшения электронной плотности при переходе от донора

СРАВНИТЕЛЬНЫЙ АНАЛИЗ

Таблица 2. Вклад *p*-орбитали в натуральную гибридную орбиталь (% *p*), заселенность орбиталей натуральных связей (заселенность NBO η), изменения зарядов (Δq) на атомах при комплексообразовании, перенесенный на молекулу HCl (ClF) электронный заряд (*Q*) и энергия $E^{(2)}$ возмущения второго порядка в комплексах аммиака при различной ориентации мономеров

Morouranuuš	<i>п</i> -орбиталь азота		σ*HCl и Ry*H (Ry*Cl) орбитали		Δq				$E_{nN\to\sigma^*HCl}^{(2)}$
комплекс	% p	η	% p	η	акцептор N	мостик H(Cl)	донор	Q	$E_{\sigma HCl \rightarrow Ry^*N}$ $E_{nCl \rightarrow Ry^*N}^{(2)}$ $E_{nN \rightarrow Ry^*H(Cl)}^{(2)}$
H ₃ N···HCl (A)	77.2 (<i>sp</i> ^{3.38})	1.9236	80.0 (<i>sp</i> ^{4.13})/	0.0716	10.7	61.5	-132.2	70.7	43.37
			$19.2 (sp^{0.24})$	0.0045	-25.2	165.5	-224.5	58.9	3.72
					516.0	-98.6	-94.1	192.7	0.32
									1.14
NH ₃ …HCl (Б)	$81.2 (sp^{4.37})$	1.9844	83.2 (<i>sp</i> ^{5.20})/	0.0124	-8.9	3.9	-18.4	14.5	3.34
			$8.43 (sp^{0.09})$	0.0035	-34.5	19.1	-36.4	17.3	0.32
					-213.8	-170.3	55.9	114.4	0.0
									0.86
H ₃ N…ClH (B)	76.7 $(sp^{3.31})$	1.9926	$85.2 (sp^{6.13})/$	0.0027	3.2	18.1	-18.0	-0.1	1.10
			$19.9 (sp^{1.25})$	0.0003	6.7	17.9	-25.4	7.5	1.65
					518.3	-151.4	55.1	96.3	0.33
									0.09
NH_3 ···ClH (Γ)	76.8 $(sp^{3.35})$	1.9953	84.5 (<i>sp</i> ^{5.75})	0.0018	-0.5	-0.9	1.2	-0.3	0.36
					1.3	-3.8	0.2	3.7	0.53
					-222.1	-153.6	77.8	75.8	0.09
									0.0
H_3N ···ClF (A)	77.35 (<i>sp</i> ^{3.42)}	1.8482	$94.9 (sp^{29.72})/$	0.1262	54.4	-22.2	-115.6	138.6	52.43
			$3.55 (sp^{0.00})$	0.0237	2.6	-52.1	-80.0	133.2	4.08
					323.7	-79.9	-132.1	212.0	1.90
									8.69
NH ₃ …ClF (Б)	82.64 (<i>sp</i> ^{4.83})	1.9721	$92.72 (sp^{17.89})/$	0.0040	-11.1	-5.8	-20.6	26.4	4.45
			19.47 (<i>sp</i> ^{1.78})		-48.0	-27.3	-7.5	36.0	1.19
					-165.9	-142.5	35.3	107.2	0.36
									0.48
$H_3C^{-}ClH(B)$	83.50 (<i>sp</i> ^{5.07})	1.8618	$90.13(sp^{10.0}0)/$ 6.91 ($sp^{0.14}$)	0.0857/	103.2	39.2	-144.1	105.0	19.55
				0.0188	158.0	44.8	-202.2	157.3	5.68
					1382.2	-159.0	-150.2	309.1	3.09
									1.71
$CH_3^- \cdots ClH(\Gamma)$	$86.86 (sp^{6.65})$	1.9523	$87.10 (sp^{7.25})/$	0.0254/	30.0	42.1	-71.8	29.7	3.21
			50.50 (<i>sp</i>)	0.0008	10.2	28.5	-100.4	71.9	1.26
					-433.1	-40.9	-112.2	153.0	0.52
									1.31

Примечание. Значения Δq и Q даны в миллиэлектронах; при этом в первой, второй и третьей строках приведены данные, полученные с использованием NPA, AIM и ChelpG схем анализа заселенности, соответственно. Величина Q определена как сумма зарядов на атомах в молекуле аммиака. Значения энергии возмущения $E^{(2)}$ даны в ккал/моль. Две последние строки относятся к комплексам метид-аниона, где данные во втором, третьем и последнем столбцах относятся к *n*- и Ry*-орбиталям атома C, а данные шестого столбца показывают изменение заряда на атоме углерода. 1816

ИСАЕВ

Рис. 4. Сдвиг электронной плотности при образовании молекулярных комплексов различного типа. Зеленым цветом показаны области уменьшения электронной плотности как результат комплексообразования, а фиолетовым цветом — области повышенной электронной плотности относительно изолированных мономеров. Изолиния очерчивает области с изменением плотности более 0.0003 э.з./а.е.³.

электронов (молекула аммиака) к акцептору. Так, на линии между атомом N и атомом мостика мы видим большую область высокой электронной плотности, которая примыкает к молекуле аммиака, и область понижения электронной плотности вблизи мостикового атома, водорода или хлора. Эта картина согласуется с представлениями об электростатическом связывании электронодефицитного атома мостика областью повышенной электронной плотности вблизи атома азота. Также во всех комплексах, как аммиака так и метанида, на концевом атоме акцептора отмечается область повышения электронной плотности. Для комплексов с различной ориентацией мономеров имеют место только количественные отличия: в Б- и Г-комплексах с электронной парой, ориентированной от акцептора, изменения электронной плотности выражены слабее, чем в А- и Вкомплексах.

Анализ топологии электронной плотности в молекулярных комплексах методом AIM по теории Бейдера [29] показывает наличие межмолекулярного связевого пути, соединяющего атом азота с атомом Н или Cl, и критической точки (КТ) связи (3, -1) для контактов N···H и N···Cl. Значения электронной плотности р и лапласиана электронной плотности $\nabla^2 \rho$ в KT соответствующих межмолекулярных контактов в комплексах аммиака и метанида приведены в табл. 3. Положительные значения лапласиана указывают на то, что все молекулярные комплексы являются системами с взаимодействием по типу закрытой оболочки, к числу которых относятся ван-дер-ваальсовы комплексы и комплексы с водородной связью. Значения электронной плотности ρ и плотности потенциальной энергии V_{вср} в КТ линейно коррелируют с энергией связи в молекулярном комплексе (см. рис. 5). В наиболее прочных комплексах H₃N…ClF (A), H₃N…HCl (A) и H₃C^{-...}ClH (B) значения плотности полной энергии *H*_{BCP} в KT отрицательны, что указывает на частично ковалентный характер межмолекулярной связи в этих комплексах [36].

Потенциальные кривые межмолекулярного взаимодействия. Понятие о поверхности потенциаль-

Таблица 3. Электронная плотность (ρ), лапласиан электронной плотности ($\nabla^2 \rho$), эллиптичность лапласиана (ϵ), плотность потенциальной энергии (V_{BCP}) и плотность полной энергии (H_{BCP}) в критической точке связи для контактов N…H и N…Cl в комплексах аммиака с различной ориентацией мономеров

Молекулярный	Топологические параметры								
комплекс	ρ	$ abla^2 ho$	£	V _{BCP}	$H_{\rm BCP}$				
H_3N ···HCl (A)	0.0506	0.0693	< 0.001	-0.0514	-0.0038				
NH ₃ …HCl (Б)	0.0128	0.0421	0.001	-0.0098	0.0015				
H ₃ N···ClH (B)	0.0065	0.0269	< 0.001	-0.0036	0.0015				
NH_3 ···ClH (Γ)	0.0041	0.0166	0.010	-0.0022	0.0010				
H ₃ N…ClF (A)	0.0618	0.1494	< 0.001	-0.0637	-0.0144				
NH ₃ …ClF (Б)	0.0166	0.0684	< 0.001	-0.0136	0.0013				
$H_3C^{-}ClH(B)$	0.0247	0.0552	< 0.001	-0.0144	-0.0011				
$CH_3^{-}\cdots ClH(\Gamma)$	0.0091	0.0270	<0.001	-0.0045	0.0009				

Примечание. Все величины кроме є даны в а.е. В двух нижних строках таблицы приведены данные для межмолекулярного контакта C···Cl в комплексах метид-аниона.

ной энергии (ППЭ) молекулярной системы является основой современных представлений о свойствах отдельных молекул и молекулярных

Рис. 5. Корреляция между величиной электронной плотности ρ (а) и плотности потенциальной энергии V_{BCP} (б) в критической точке межмолекулярного контакта и энергией связи в комплексах аммиака и метанида с акцептором электронной пары.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 12 2019

комплексов, которые зависят от геометрических характеристик системы. Являясь функцией полной энергии молекулярной системы (в которую не входит кинетическая энергия ядер) от координат атомных ядер, в общем случае ППЭ является гиперповерхностью в многомерном пространстве. Однако для определения механизма химических взаимодействий достаточно иметь информацию об областях минимумов функции ППЭ и о критических точках первого порядка, характеризующих переходное состояние реакции.

Анализ ППЭ для молекулярной системы, образованной молекулами NH₃ и HCl, предоставляет данные об относительной стабильности комплексов с различной ориентацией мономеров и барьере для реакции их взаимопревращения. На рис. 6 показан профиль ППЭ для переходов комплексов с Н-связью N…H-Cl в комплексы N…Cl-Н при отклонении мостика NHCl от линейности (см. рис. 6а). На рис. 6б видно, что потенциальные кривые для переходов между конфигурациями $A \rightarrow B$ и $E \rightarrow \Gamma$ имеют сходную форму: А- и Б-комплексы стабильнее комплексов типа В и Г и максимум на обеих кривых отвечает улу α (∠NClH) примерно равному 90°, при наибольшем удалении атома Н мостика от прямой N····Cl.

Однако, величина барьера для второго перехода заметно меньше, чем для первого, 2 ккал/моль и 13 ккал/моль, соответственно; поэтому переход Б-комплекс → Г-комплекс и обратный переход должны происходить сравнительно легко. Как было сказано ранее, Б- и Г-комплексы отвечают минимумам на ППЭ, структура переходного состояния для реакции их взаимопревращения представлена на рис. 6в. Ее сравнение со структурой Б-комплекса показывает, что межатомные

Рис. 6. Профиль поверхности потенциальной энергии рассчитан как функция угла α , который описывает переход конфигураций N···H–Cl \rightarrow N····Cl–H для комплексов, образованных молекулами NH₃ и HCl (как показано на схеме а, профиль рассчитан при фиксированном положении атома Cl на оси симметрии C_{3v}). Потенциальные кривые соответствующих переходов A \rightarrow B и Б \rightarrow Г (схема б, полная энергия равновесных комплексов с H-связью N····H–Cl принята за ноль; стрелка показывает граничное значение угла α для H-связи) и структура переходного состояния для вза-имопревращения Б- и Г-комплексов (схема в, межатомные расстояния указаны в Ангстремах).

расстояния N····Cl и N····H в переходном состоянии реакции заметно увеличены, а отклонение мостика NHCl от линейности весьма значительно, угол $\alpha = 51.9^{\circ}$.

Представляет интерес вопрос, при каких значениях угла α молекулярные комплексы, образованные молекулами NH₃ и HCl, могут рассматриваться как комплексы с водородной связью, а при каких углах α как ван-дер-ваальсовы комплексы? В работе [37] в качестве критерия, который позволяет идентифицировать природу межмолекулярного взаимодействия при заметных отклонениях мостика Y····H-X от линейности, было предложено использовать топологию (положение и природу) критической точки межмолекулярного контакта. Выполненные нами расчеты показали, что с увеличением угла α происходит трансформация топологии электронной плотности, характерной для H-связи N····H-Cl, в топологию N····Cl.

На рис. 7а показана эволюция межмолекулярного связевого пути при переходе Б-комплекса NH_3 ···HCl в Г-комплекс NH_3 ···ClH. Для углов $\alpha < 50^{\circ}$ анализ топологии электронной плотности показывает существование КТ для контакта N···H, типичный признак водородного связывания N···H–Cl в комплексе. При углах $\alpha > 50^{\circ}$ КТ контакта N····H–Cl в комплексе. При углах $\alpha > 50^{\circ}$ КТ контакта N····Cl, что указывает на ван-дер-ваальсову связь; при этом значения $\angle NClH \sim 50^{\circ}$ близки к значению этого угла в переходном состоянии ре-

Рис. 7. Эволюция межмолекулярного связевого пути (схема а) и распределения электронной плотности (схема б, изолиния очерчивает изменение в плотности более 0.0003 э.з./а.е.³) при переходе N···H–Cl (Б-комплекс) \rightarrow N···Cl–H (Гкомплекс) с увеличением угла α (см. рис. 6). При $\alpha = 50^{\circ}$ межмолекулярный контакт N···H в комплексе "заменяется" контактом N···Cl.

акции взаимопревращения комплексов. Отметим, что при переходе А-комплекса в В-комплекс замена межмолекулярного контакта N····H на контакт N····Cl происходит практически при том же значении угла α ($\alpha = 49^{\circ}$, см. рис. 66). Углам $\alpha = 49^{\circ}$ и 50° при трансформации А- и Б-конфигураций отвечают расчетные значения \angle NHCl равные 106.5° и 109.7°, соответственно. Эти значения хорошо согласуются с предельными углами (\sim 110°) для мостика Y···H—X при водородном связывании, которые известны из литературы [38].

Рисунок 7а показывает, что линия максимальной электронной плотности с КТ, соединяющая взаимодействующие молекулы, при переходе Бкомплекс \rightarrow Г-комплекс меняет свое положение очень плавно. Видно, что при $\alpha = 49^{\circ}$ связевый путь N···H заметно отклоняется к атому Cl, а при $\alpha = 51^{\circ}$ связевый путь N···Cl, наоборот, сближается с атомом H; при этом траектория от атома азота до КТ связи и положение самой КТ в обоих случаях практически одинаковы. При углах $\alpha \sim 50^{\circ}$ КТ находится примерно в "центре" треугольника HNCl на равном расстоянии от атомов H и Cl, что может свидетельствовать о близких по величине вкладах в связывание ван-дер-ваальсового взаимодействия N…Cl и водородного связывания N…H-Cl.

Это подтверждают также данные табл. 4, в которой приведены значения параметров КТ связи и энергии возмущения E(2) для углов α от 45° до 55°. Как видно из таблицы, с увеличением α значения $E_{nN\to\sigma^*HCl}^{(2)}$ уменьшаются, тогда как сумма вкладов $E_{nN\toRy^*Cl}^{(2)}$ и $E_{nCl\to Ry^*N}^{(2)}$ растет (для Б-конфигурации соответствующие значения малы). Данные таблицы показывают, что с увеличением α происходит последовательное уменьшение электронной плотности ρ и плотности потенциальной энергии V_{BCP} в КТ. Об ослаблении межмолекулярного взаимодействия говорит также уменьшение показателя ELF, который характеризует степень локализации электронов.

Наглядную картину сдвига электронной плотности с увеличением α дает рис. 76, на котором видно постепенное смещение области пониженной электронной плотности от атома H к атому Cl; при этом размер этой области и области избыточной электронной плотности, прилегающей к

ИСАЕВ

Угол α	Пара	E ⁽²⁾									
	ρ	$ abla^2 ho$	V _{BCP}	H _{BCP}	ELF	ESP	$nN \rightarrow \sigma^*HCl$	$\sigma HCl \rightarrow Ry^*N$			
H_3N ···HCl (A)											
45	0.0171	0.0584	-0.0108	0.0019	0.0614	0.0158	1.98	1.00 0.26			
47	0.0162	0.0562	-0.0103	0.0019	0.0561	0.0042	1.46	0.91 0.32			
49	0.0154	0.0545	-0.0099	0.0019	0.0515	-0.0071	1.06	0.83 0.36			
51	0.0148	0.0533	-0.0096	0.0019	0.0476	-0.0177	0.89	0.80 0.40			
53	0.0143	0.0525	-0.0093	0.0019	0.0445	-0.0268	0.51	0.70 0.47			
55	0.0140	0.0518	-0.0091	0.0019	0.0425	-0.0342	0.34	0.64 0.52			
	I	I	ľ	NH ₃ …HCl (Б)	I	I	I			
45	0.0064	0.0194	-0.0032	0.0008	0.0238	0.0432	0.24	0.08 <0.05			
47	0.0061	0.0188	-0.0030	0.0008	0.0223	0.0374	0.19	0.07 <0.05			
49	0.0059	0.0183	-0.0029	0.0008	0.0211	0.0314	0.14	0.07 <0.05			
51	0.0057	0.0178	-0.0027	0.0009	0.0201	0.0254	0.10	<0.05 <0.05			
53	0.0055	0.0174	-0.0026	0.0009	0.0193	0.0195	0.07	<0.05 <0.05			
55	0.0054	0.0171	-0.0025	0.0009	0.0188	0.0139	0.05	<0.05 <0.05			

Таблица 4. Изменение свойств критической точки связи при углах α, отвечающих трансформации А- и Б-конфигураций, с переходом от водородной связи к ван-дер-ваальсовой связи

Примечание. Угол α указан в градусах, значения энергии $E^{(2)}$ возмущения второго порядка даны в ккал/моль, остальные параметры – а.е. Вторые числа в последем столбце показывают суммарную величину E(2) для переходов $nN \rightarrow Ry^*Cl$ и $nCl \rightarrow Ay^*N$.

атому N, уменьшается при трансформации Бконфигурации в Г-конфигурацию. При $\alpha \sim 50^{\circ}$ электронодефицитная область занимает среднее положение между атомами H и Cl, что согласуется с геометрией связевого пути на рис. 7а, который на значительном протяжении представлен линией, равноудаленной от атомов H и Cl. Полученные данные можно рассматривать как свидетельство того, что при углах α близких к 50°, оба этих атома участвуют в связывании с азотом аммиака; замыкание связевого пути на атоме Cl или H определяет доминирование одного из каналов взаимодействия, N…Cl или N…H—Cl.

Полезную информацию о природе связывания в комплексах с различной ориентацией мономеров дает анализ поведения потенциальной функции межмолекулярного взаимодействия с изменением расстояния между молекулами. На рис. 8а приведены потенциальные кривые для четырех молекулярных комплексов: H_3N ····HF, H_3N ····HCl (A), NH₃····ClH (Г) и H_3N ····ClF (A), в которых равновесные межмолекулярные расстояния и энергии связи заметно отличаются; два первых комплекса являются комплексами с классической Hсвязью. Вопрос о том, как с расстоянием между мономерами изменяется энергия межмолекулярного взаимодействия в комплексах различной природы, исследовался в работе [9]. Энергии межмолекулярного взаимодействия при удалении молекул друг от друга были выражены в % от

Рис. 8. Потенциальные кривые взаимодействия мономеров при образовании аммиаком А-комплексов с молекулами HCl и CIF с водородной и галогенной связью, а также Г-комплекса NH₃···ClH. Кривая для H-связанного комплекса H₃N···HF приведена для сравнения, $R(N \cdot \cdot Cl)$ – равновесное расстояние между мономерами (а). Масштабированные потенциальные кривые для тех же комплексов, $R(N \cdot \cdot Cl)$ показывает изменение расстояния между мономерами по сравнению с равновесным расстоянием, которому отвечает нулевое значение $R(N \cdot \cdot Cl)$ по оси *Ox*. Масштабирование выполнено относительно энергии связи в равновесном А-комплексе H₃N···HCl (б).

энергии связи в равновесных комплексах и при $R \ge 1$ Å аппроксимированы функцией вида R^{n-} , где R — увеличение межмолекулярного расстояния по сравнению с равновесным расстоянием.

Та же задача сравнительного анализа может быть решена на качественном уровне с использованием более простого подхода масштабирования потенциальных кривых с учетом энергий связи в равновесных комплексах и последующим наложением кривых. Потенциальные кривые, построенные с поправкой на относительную стабильность молекулярных комплексов, представлены на рис. 8б. На рисунке видно, что полученные таким методом потенциальные кривые для комплексов H₃N…HF, H₃N…HCl (A) и NH₃…ClH (Г) практически совпадают, т.е. межмолекулярное взаимодействие в этих комплексах описывается одной и той же потенциальной функцией. Это означает, что природа связывания в комплексе с классической H-связью H_3N ···HCl (A) и в комплексе NH₃····ClH (Г) с обратной ориентацией мономеров оказывается весьма сходной. Действительно, как видно на рис. 8а, при увеличении межмолекулярного расстояния N···Cl на 1 Å больше равновесного энергия связи в обоих комплексах уменьшается в 2 раза.

На рис. 8б также видно, что потенциальная кривая для комплекса H_3N ...ClF (A) с галогенной связью показывает более быстрый подъем при удалении мономеров друг от друга на расстояние,

превышающее равновесное на 1–2 Å. Это может указывать на заметный вклад в связывание в этом комплексе донорно-акцепторного взаимодействия и дисперсионной энергии, которые убывают с расстоянием быстрее, чем электростатическое взаимодействие. Как показал анализ [39] компонент энергии взаимодействия, дисперсионная энергия вносит один из основных вкладов в стабилизацию комплексов с галогенной связью.

Таким образом, рассмотрены комплексы, образованные NH₃ и HCl при различных вариантах взаимной ориентации молекул (неподеленной пары атома азота и ковалентной связи H-Cl): H_3N ···HCl (A), NH₃···HCl (Б), H₃N···ClH (В) и NH₃…ClH (Г). С целью сравнения проведены такквантово-химические расчеты методом же MP2/aug-cc-*pVTZ* В- и Г-комплексов метанида с HCl, а также комплексов H₃N…ClF (A) и NH₃…ClF (Б) с галогенной связью. Комплексы N···H-Cl с водородной связью найдены более стабильными по сравнению с комплексами типа N···Cl-H; NBOанализ показывает доминирование взаимодействия $nN \rightarrow \sigma^*HCl$ в комплексах первого типа и значительный вклад взаимодействия σHCl→ \rightarrow Ry*N в комплексах второго типа. Во всех рассмотренных комплексах отмечается переход электронного заряда на молекулу акцептора электронной пары, HCl или ClF, величина которого коррелирует с энергией возмущения E(2)И заселенностью вакантной σ^* -орбитали акцептора.

А-комплекс H_3N ····ClF с галогенной связью и В-комплекс метанида H_3C^- ···ClH показывают сходство в свойствах с А-комплексом H_3N ···HCl: большое значение электронной плотности ρ и отрицательные значения плотности потенциальной энергии V_{BCP} в критической точке (KT) межмолекулярного контакта. Сдвиг электронной плотности при образовании комплексов показывает во всех случаях принципиально сходную картину с увеличением электронной плотности на атомах N и C и ее уменьшением в области, прилегающей к атомам H и Cl акцептора.

Для комплексов, образованных NH₃ и HCl, потенциальные кривые конфигурационных переходов A \rightarrow B и Б \rightarrow Г имеют сходную форму с максимумом при значении угла α (\angle NClH) равном примерно 90°. Эволюция межмолекулярного связевого пути, сопровождающая трансформацию Бкомплекса NH₃···HCl в Г-комплекс NH₃···ClH, связана с "заменой" КТ контакта N···H на КТ контакта N···Cl при значениях $\alpha \sim 50^{\circ}$, которые близки к значению этого угла в переходном состоянии реакции взаимопревращения комплексов. Геометрия связевого пути, а также сдвиги электронной плотности и расчетные значения энергий *E*(2) указывают на то, что при углах α близких к 50° оба атома молекулы HCl могут участвовать в связывании с азотом аммиака.

Сравнение потенциальных кривых взаимодействия мономеров позволяет сделать вывод о сходной природе межмолекулярных сил, определяющих связывание при сближении молекул NH₃ и HCl с образованием А- и Г-комплексов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Scheiner S.* Hydrogen Bonding: A Theoretical Perspective. New York: Oxford University Press., 1997.
- 2. *Isaev A.N.* // Comput. Theor. Chem. 2017. V. 1117. P. 141.
- 3. Исаев А.Н. // Журн. физ. химии. 2018. Т. 92. С. 1588.
- Isaev A.N. // Comput. Theor. Chem. 2018. V. 1142. P. 28.
- 5. Umeyama H. // J. Am. Chem. Soc. 1977. V. 99. P. 330.
- Roeggen I., Dahl T. // J. Am. Chem. Soc. 1992. V. 114. P. 511.
- Bloemink H.I., Evans C.M., Holloway J.H., Legon A.C. // Chem. Phys. Lett. 1996. V. 248. P. 260.
- 8. Karpfen A. // J. Phys. Chem. A. 2001. V. 105. P. 2064.
- 9. Nepal B., Scheiner S. // Chem. Phys. 2015. V. 456. P. 34.
- Bartashevich E., Tsirelson V. // J. Comput. Chem. 2018. V. 39. P. 573.
- Topp W.C., Allen L.C. // J. Am. Chem. Soc. 1974. V. 96. P. 5291.
- Aldrich H.S., Cusachs L.C., Gary L.P. // Int. J. Quant. Chem., Quantum Biology Symposium. 1974. V. 1. P. 55.
- Latajka Z., Scheiner S. // J. Chem. Phys. 1985. V. 82. P. 4131.
- Panek J.J., Jezierska A. // J. Phys. Chem. A. 2007. V. 111. P. 650.
- 15. Scheiner S. // Int. J. Quant. Chem. 2013. V. 113. P. 1609.
- Andrews L., Wang X., Mielke Z. // J. Phys. Chem. A 2001. V. 105. P. 6054.
- 17. *Ma F., Li Z.-R., Xu H.-L., Li Z.-J. et al.* // Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry. 2009. V. 10. P. 1112.
- 18. Scheiner S. // J. Chem. Phys. 2011. V. 134. P. 164313/1.
- 19. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E. et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.
- 20. Quiñonero D., Estarellas C., Frontera A., Deyà P.M. // Chem. Phys. Lett. 2011. V. 508. P. 144.
- 21. Moller C., Plesset M.S. // Phys. Rev. 1934. V. 46. P. 618.
- 22. Purvis III G.D., Bartlett R.J. // J. Chem. Phys. 1982. V. 76. P. 1910.
- 23. *Scuseria G.E., Schaefer III H.F.* // J. Chem. Phys. 1989. V. 90. P. 3700.
- Kendall R.A., Dunning T.H. Jr., Harrison R.J. // J. Chem. Phys. 1992. V. 96. P. 6796.
- 25. Boys S.F., Bernardi F. // Mol. Phys. 1970. V. 19. P. 553.
- Reed A.E., Weinhold F., Curtiss L.A., Pochatko D.J. // J. Chem. Phys. 1986. V. 84. P. 5687.

- 27. Reed A.E., Curtiss L.A., Weinhold F. // Chem. Rev. 1988. V. 88. P. 899.
- 28. Bader R.F.W. // Chem. Rev. 1991. V. 91. P. 893.
- 29. *Bader R.F.W.* Atoms in Molecules, a Quantum Theory. Oxford: Clarendon Press. 1993.
- 30. Lu T., Chen F. // J. Comp. Chem. 2012. V. 33. P. 580.
- Hydrogen Bonding New Insights. Ed.: Grabowski S.J. New York: Springer, 2006.
- 32. Del Bene J.E., Alkorta I., Elguero J. // Chem. Phys. Lett. 2017. V. 675. P. 46.
- 33. *Reed A.E., Weinstock R.B., Weinhold F.A.* // J. Chem. Phys. 1985. V. 83. P. 735.

- 34. Breneman C.M., Wiberg K.B. // J. Comput. Chem. 1990. V. 11. P. 361.
- Isaev A.N. // Comput. Theor. Chem. 2016. V. 1090. P. 180.
- Cremer D., Kraka E. // Angew. Chem., Int. Ed. Engl. 1984. V. 23. P. 627.
- 37. Novoa J.J., Lafuente P., Mota F. // Chem. Phys. Lett. 1998. V. 290. P. 519.
- 38. Steiner T. // Angew. Chem. Int. Ed. 2002. V. 41. P. 48.
- *Riley K.E., Hobza P.* // Phys. Chem. Chem. Phys. 2013.
 V. 15. P. 17742.