ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2019, том 93, № 12, с. 1913—1916

КРАТКИЕ СООБЩЕНИЯ

УДК 541.8,539.199

СТРУКТУРНЫЕ СВОЙСТВА РАСТВОРОВ ВОДА–ПЭГ–LiOH, NaOH, КОН ПО ДАННЫМ ВИСКОЗИМЕТРИИ И ДЕНСИТОМЕТРИИ

© 2019 г. Э. А. Масимов^а, Б. Г. Пашаев^{а,*}, М. Р. Раджабов^а

^а Бакинский государственный университет, Баку, Азербайджан * e-mail: p.g.bakhtiyar@gmail.com Поступила в редакцию 12.03.2019 г. После доработки 03.05.2019 г. Принята к публикации 14.05.2019 г.

Измерены динамическая вязкость и плотность систем вода–ПЭГ, вода–ПЭГ–LiOH, вода–ПЭГ– NaOH и вода–ПЭГ–КOH в интервале температур 293.15–323.15 К и 0–0.001 мол. доли ПЭГ. Вычислены активационные параметры вязкого течения и парциальные молярные объемы ПЭГ. Определены зависимости этих параметров от концентрации ПЭГ в данном интервале температур и концентраций исследуемых систем. Установлено, что ПЭГ оказывает структурное воздействие как на воду, так и на системы вода–LiOH, вода–NaOH и вода–КOH, при этом присутствие LiOH, NaOH, КOH последовательно ослабляет структурное влияние ПЭГ, что связано с воздействием LiOH, NaOH, KOH на структуры растворов в данной последовательности.

Ключевые слова: полиэтиленгликоль, LiOH, NaOH, KOH, водные растворы, параметры активации вязкого течения, парциальный мольный объем

DOI: 10.1134/S0044453719120197

Известно, что функциональная активность биологических объектов определяется структурой воды, а физические свойства водного раствора сильно зависят от природы компонентов в нем. Следует отметить, что образование водных растворов сопровождается рядом процессов. Эти процессы связаны с взаимодействием молекул воды, молекул растворимого вещества и с взаимодействием между молекулами воды и растворимого вещества. Такие молекулярные взаимодействия за счет водородных, ион-дипольных и других связей в первую очередь влияют на свойства вязкостного течения и объемного свойства раствора [1-6]. Поэтому изучение вязкостного течения и объемных свойств водных растворов имеет большое значение в современной физикохимии и биофизике.

В данной работе исследованы структурные особенности систем вода–ПЭГ, вода–ПЭГ–Li-OH, вода–ПЭГ–NаOH и вода–ПЭГ–КOH методами вискозиметрии и пикнометрии в интервале температур 293.15–323.15 К и 0–0.001 мол. доли ПЭГ. Рассмотрены фракции полиэтиленгликоля (ПЭГ) с молярной массой $M_{\rm PEQ} = 1000$ и $M_{\rm PEQ} = 4000$. Концентрация гидроксидов щелочных металлов (LiOH, NaOH, KOH) в системах вода–ПЭГ–LiOH, вода–ПЭГ–NaOH, вода–ПЭГ– КOH составляла 0.01 мол. доли. Динамическую вязкость и плотность исследуемых растворов измеряли в указанных интервалах температуры и концентрации, на основе экспериментальных оценок вычисляли активационную энергию Гиббса (ΔG_{η}^{\pm}) вязкого течения, энтальпию активации вязкого течения (ΔH_{η}^{\pm}), энтропию активации вязкого течения (ΔS_{η}^{\pm}), парциальный молярный объем ПЭГ в растворе (\tilde{V}) и анализировали их зависимости от концентрации ПЭГ (x).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объекты и методы исследования. Объекты исследования – ПЭГ с молярной массой 1000 и 4000, LiOH, NaOH и КОН. Отметим, что используемые вещества – марки "х.ч.". При приготовлении растворов использовали бидистиллированную воду. Вязкость измеряли капиллярным вискозиметром, а плотность – пикнометром.

По теории Эйринга [7], активационная энер-

гия Гиббса (ΔG_{η}^{\neq}) вязкого течения определяется выражением:

$$\Delta G_{\eta}^{\neq} = RT \ln \frac{\eta}{\eta_0}.$$
 (1)

Здесь $\eta_0 = N_A h \rho / M$, R — универсальная газовая постоянная, N_A — число Авогадро, h — постоян-

Таблица 1. Значения параметров a_1 , b_1 и a_2 , b_2 в зависи-

мостях $\Delta G_{\eta}^{\neq}(x)$ и $\Delta H_{\eta}^{\neq}(x)$ от концентрации ПЭГ в системах вода–ПЭГ (I), вода–ПЭГ–LiOH (II), вода–ПЭГ– NaOH (III) и вода–ПЭГ–KOH (IV) (T = 293.15 K, $x_{\text{LiOH}} = 0.01$, $x_{\text{NaOH}} = 0.01$, $x_{\text{KOH}} = 0.01$)

a_i, b_i	Ι	II	III	IV
	$\Delta G_{\eta}^{\neq}(x)$, Дж/К ($M_{\Pi \Im \Gamma} = 1000$)			
a_1	9287	9598	9535	9470
b_1	777499	776830	760281	715402
	$\Delta H_{\eta}^{\neq}(x),$ Дж/К ($M_{\Pi \ni \Gamma} = 1000$)			
<i>a</i> ₂	17422	17662	17458	16760
b_2	1102836	1057843	1099165	1416460
	$\Delta G^{\neq}_{\eta}(x), {\tt J} {\tt w}/{\tt K} (M_{\Pi \Im \Gamma}=4000)$			
a_1	9368	9625	9566	9491
b_1	3820199	3827971	3829175	3718534
	$\Delta H^{\neq}_{\eta}(x), \exists \mathbb{m}/\mathrm{K} \; (M_{\Pi \exists \Gamma} = 4000)$			
<i>a</i> ₂	17491	17687	17501	16838
b_2	4768504	4785696	4880156	5048465

ная Планка, $M = \sum_{i=1}^{N} x_i M_i$ — молярная масса раствора, x_i и M_i — мольная доля и молярная масса *i*-того компонента соответственно. При абсолютной температуре T динамическую вязкость (η) и плотность (ρ) раствора определяли в эксперименте.

Энтальпия вязкого течения определяется выражением [1–4]:

$$\Delta H_{\eta}^{\neq} = R \frac{\partial \ln(\eta/\eta_0)}{\partial(1/T)}.$$
 (2)

Учитывая выражения (1) и (2) в выражении, известном в термодинамике [1–4]:

$$\Delta G_{\eta}^{\neq} = \Delta H_{\eta}^{\neq} - T \Delta S_{\eta}^{\neq}, \qquad (3)$$

мы можем определить энтропию активации вяз-кого течения.

Парциальный молярный объем (\tilde{V}) в растворе ПЭГ определяли по формуле [1, 3]:

$$\tilde{V} = V_m + (1 - x) \left(\frac{\partial V_m}{\partial x}\right)_{p,T},$$
(4)

где $V_m = \frac{\sum x_i M_i}{\rho}$ – молярный объем раствора.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Вычисления показывают, что в рассмотренном интервале концентрации и температуре для каждого ПЭГ, массы которых 1000 и 4000, системы вода–ПЭГ, вода–ПЭГ–LiOH, вода–ПЭГ– NaOH и вода-ПЭГ-КОН энергии Гиббса активации вязкого течения (ΔG_{η}^{\neq}) и зависимости энтальпии (ΔH_{η}^{\neq}) от концентрации ПЭГ (*x*) носят линейный характер. Эти зависимости можно представить как $\Delta G_{\eta}^{\neq}(x) = a_1 + b_1 x$ и $\Delta H_{\eta}^{\neq}(x) = a_2 + b_2 x$. Для исследуемых растворов при температуре 293.15 К и 0-0.001 мол. доли ПЭГ значение введенных в зависимости $\Delta G_{\eta}^{\neq}(x)$ и $\Delta H_{\eta}^{\neq}(x)$ параметров a_1, b_1 и a_2, b_2 , приведены в табл. 1. В табл. 1 представлены также зависимости энергии Гиббса активации вязкого течения (ΔG_{η}^{\neq}) и энтальпии активации вязкого течения (ΔH_{η}^{\neq}) от концентрации ПЭГ (*x*). На рис. 1 показана зависимость энтропии активации вязкого течения ΔS_{η}^{\neq} от концентрации ПЭГ (х) в исследуемых системах при 293.15 К.

Как видно из табл. 1 и рис. 1, для исследуемых систем активационные параметры вязкого течения ($\Delta G_{\eta}^{\neq}, \Delta H_{\eta}^{\neq}, \Delta S_{\eta}^{\neq}$) увеличиваются с ростом концентрации при данной температуре. Известно, что ΔG_{η}^{\neq} – энергия перехода молекул из связанного состояния в активное, ΔH_{η}^{\neq} характеризу-ет происходящие в растворе изменения энергии, а ΔS_{η}^{\neq} – структурные изменения. Таким образом, увеличение ΔG_{η}^{\neq} с ростом концентрации показывает, что для преодоления потенциального барьера для молекулы понадобится больше энергии. Увеличение ΔH_{η}^{\neq} свидетельствует о более устойчивой структуре системы, а увеличение ΔS_n^{\neq} показывает, что система перешла в более структурированное состояние [1-6]. Согласно зависимостям активационных параметров вязкого течения $(\Delta G_{\eta}^{\neq}, \Delta H_{\eta}^{\neq}, \Delta S_{\eta}^{\neq})$ от концентрации, исследуемые системы при заданной температуре становятся более структурированными с ростом концентрации ПЭГ. Как видно из рис. 1, при добавлении одинако-

вой концентрации LiOH, NaOH и KOH (x = 0.01) в систему вода—ПЭГ значение параметра ΔS_{η}^{\neq} при данной температуре и концентрации уменьшается в соответствующей последовательности. Это указывает на то, что структурирование раствора за счет ПЭГ ослабляется в соответствующей последовательности. Это свидетельствует о том, что LiOH, NaOH и KOH оказывают более разрушительное действие (в соответствующей последова-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 12 2019

Рис. 1. Зависимости энтропии активации вязкого течения от концентрации ПЭГ в системах вода–ПЭГ (*1*), вода–ПЭГ–LiOH (*2*), вода–ПЭГ–NaOH (*3*) и вода–ПЭГ–KOH (*4*); $M_{\Pi \Im \Gamma} = 1000$ (а) и 4000 (б), T = 293.15 K, $x_{\text{LiOH}} = 0.01$, $x_{\text{NaOH}} = 0.01$, $x_{\text{KOH}} = 0.01$.

тельности) на систему вода–ПЭГ. Для объяснения этого необходимо учитывать процесс гидратации, который обусловлен электростатическим взаимодействием между ионами и молекулами воды. Отметим, что по сравнению с ионом Na⁺ ион Li⁺, а по сравнению с ионом Li⁺ ион K⁺ характеризуются относительно слабой гидратацией [8]. Очевидно, что NaOH по сравнению с LiOH, а КOH по сравнению с NaOH системы вода–ПЭГ при данных температурах и концентрациях ока-

PMC. 2. Зависимости парциального молярного объема ПЭГ от концентрации ПЭГ в системах вода–ПЭГ (1), вода–ПЭГ–LiOH (2), вода–ПЭГ–NаOH (3) и вода– ПЭГ–КОН (4); $M_{\Pi \Im \Gamma} = 1000$ (a) и 4000 (6), T = 293.15 K, $x_{\text{LiOH}} = 0.01$, $x_{\text{NaOH}} = 0.01$, $x_{\text{KOH}} = 0.01$.

зывают более разрушительное действие на систему вода-ПЭГ.

На рис. 2 представлены зависимости парциального молярного объема ПЭГ в системах вода– ПЭГ, вода–ПЭГ–LiOH, вода–ПЭГ–NaOH и вода–ПЭГ–КOH при 293.15 К от концентрации ПЭГ. Как видно из рис. 2, парциальный молярный объем ПЭГ (\tilde{V}) в исследуемых системах уменьшается с ростом концентрации ПЭГ. Известно, что парциальный молярный объем *i*-того компонента равен изменению объема при добавлении 1 моля компонента к данной системе [9]. Известно, что объемная доля ассоциатов больших размеров в пространстве меньше, чем сумма объемных долей разделенных на отдельные части ассоциатов в пространстве. Согласно модели двухструктурированной воды [10], вода состоит из кластеров разного размера, связанных водородными связями, и молекул свободной воды межлу кластерами. Согласно зависимости парциального молярного объема от концентрации. можно предположить, что молекулы ПЭГ прежде всего с помощью водородных связей соединяются со своболными молекулами волы. Это приводит к уменьшению парциального молярного объема ПЭГ за счет увеличения концентрации, т.е. за счет увеличения концентрации ПЭГ мы получаем более структурированный раствор.

Таким образом, по зависимости энтропии активированного течения и парциального молярного объема ПЭГ в растворе от концентрации можно считать, что ПЭГ оказывает структурированное влияние и на воду, и на системы вода—LiOH, вода—NaOH и вода—KOH. Но присутствие LiOH, NaOH, KOH последовательно ослабляет структурное влияние ПЭГ.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Масимов Э.А., Гасанов Г.Ш., Пашаев Б.Г. //* Журн. физ. химии, 2013. Т. 87. № 6. С. 969.
- 2. *Масимов Э.А., Пашаев Б.Г., Гасанов Г.Ш., Мусаева С.И. //* Там же. 2013. Т. 87. № 12. С. 2151.
- 3. *Масимов Э.А., Пашаев Б.Г., Гасанов Г.Ш., Гасанов Н.Г.* // Там же. 2015. Т. 89. № 7. С. 1133.
- 4. *Масимов Э.А., Пашаев Б.Г., Гасанов Г.Ш.* // Там же. 2017. Т. 91. № 4. С. 644.
- 5. Дакар Г.М., Кораблева Е.Ю. // Там же. 1998. Т. 72. № 4. С. 662.
- 6. Дакар Г.М. // Там же. 2001. Т. 75. № 4. С. 656.
- 7. Глесстон С., Лейдлер К., Эйринг Г. Теория абсолютных скоростей. М.: Изд-во иностр. лит., 1948. 600 с.
- 8. *Самойлов О.Я.* // Структура водных растворов электролитов и гидратация ионов. М.: Изд-во АН СССР, 1957. С. 76–182.
- 9. *Atkins P., De Paula J.* // Physical Chemistry. Oxford University Press, 2006. 1067 p.
- Nemethy G. // Istituto superiore di sanita-V.le Regina Elena, 299-Roma. Volume VI fascicolo speciale 1, 1970. P. 492–592.