_____ ХИМИЧЕСКАЯ КИНЕТИКА ____ И КАТАЛИЗ

УДК 628.316.12

ОКИСЛИТЕЛЬНАЯ ДЕСТРУКЦИЯ АЗОКРАСИТЕЛЕЙ В КОМБИНИРОВАННЫХ ФЕНТОН-ПОДОБНЫХ ОКИСЛИТЕЛЬНЫХ СИСТЕМАХ

© 2019 г. М. Р. Сизых^{*a*}, А. А. Батоева^{*a*,*}

^а Российская академия наук, Сибирское отделение, Байкальский институт природопользования, Улан-Удэ, Россия

* *e-mail: abat@binm.ru* Поступила в редакцию 21.12.2018 г. После доработки 06.03.2019 г. Принята к публикации 12.03.2019 г.

Изучены кинетические закономерности деструкции красителя метилового оранжевого (MO) под действием персульфата (PS) и квазимонохроматического УФ-излучения (безртутного источника – KrCl-эксилампы, 222 нм, далее – UV) в присутствии и в отсутствие ионов железа. По эффективности и скорости деструкции красителя окислительные системы можно выстроить в следующий ряд: $\{PS/UV/Fe^{2+}\} > \{PS/UV\} > \{PS/Fe^{2+}\} > UV > PS$. Установлено, что лишь в комбинированной системе $\{PS/UV/Fe^{2+}\}$ происходит не только полное превращение MO, но и его глубокая минерализация в водном растворе, при этом снижение содержания общего органического углерода достигает 77%. С использованием ингибиторов радикальных реакций доказано, что в комбинированных системах $\{PS/UV/Fe^{2+}\}$ и $\{PS/Fe^{2+}\}$ в окислительной деструкции принимают участие как гидроксильные, так и сульфатные анион-радикалы, причем роль сульфатных анион-радикалов является доминирующей. Таким образом, экспериментально подтверждена возможность использования квазимонохроматического УФ-излучения для активации персульфата в процессах окислительной деструкции азокрасителей.

Ключевые слова: эксилампа, УФ-излучение, персульфат, азокраситель, окислительная деструкция, гидроксильные радикалы, сульфатные анион-радикалы

DOI: 10.1134/S004445371912029X

Фотоинициированные комбинированные окислительные процессы (Advanced Oxidation Processes – AOP) являются наиболее эффективными для удаления трудноокисляемых органических соединений из водных растворов и в перспективе должны применяться при разработке инновационных технологий водоочистки [1-3]. В качестве источников УФ-излучения, как правило, используются ртутные лампы. Однако, в связи с общей тенденцией сокращения использования ртути в быту и на производствах, закрепленной в Минаматской конвенции [4], наблюдается рост интереса к разработке современных безртутных источников УФ-излучения и изучению возможности их применения в процессах волоочистки.

В последние годы в качестве источников УФизлучения все более широкое применение находят современные газоразрядные эксимерные и эксиплексные лампы (эксилампы), работающие на переходах эксимерных (возбужденных диме-

ров инертных газов R_2^* или галогенов X_2^*) или эксиплексных молекул (возбужденных галогенидов инертных газов RX*) с возбуждением емкостным или барьерным разрядами. Главным отличием эксиламп от других источников спонтанного излучения является их спектр, представляющий собой узкую полосу (не более 10 нм на полувысоте) излучения соответствующей молекулы, в которой сосредоточено 80% и более от общего излучения. Другими достоинствами эксиламп являются большая энергия фотона (3.5-10 эВ), относительно высокая удельная мощность излучения, возможность масштабирования и выбора геометрии излучающей поверхности, безопасность в эксплуатации для оператора (по сравнению, например, с высоковольтными источниками питания лазеров и импульсных ламп), умеренные рабочие температуры [5].

Доказана высокая эффективность применения эксиламп для фотохимического окисления в присутствии пероксида водорода хлорированных фенолов, красителей конго красного, метилового зеленого, 2,4-дифеноксиуксусной кислоты, 5-метоксипсоралена и инактивации микроорганизмов [6–11]. Проведена сравнительная оценка эф-

Рис. 1. Схема экспериментальной установки.

фективности применения эксиплексных (XeCl и KrCl) и ртутной (254 нм) ламп для обесцвечивания растворов красителей Methylene Blue и Eliamine Blue в присутствии пероксида водорода, с учетом удельного энергопотребления [8]. Наилучшие результаты для красителя Methylene Blue были достигнуты при использовании KrCl-эксилампы, что позволило сделать вывод о том, что она может являться альтернативой ртутным лампам низкого давления, широко применяемым в практике водоочистки. При этом отмечалось, что необходимо учитывать тип красителя, входящего в состав обрабатываемых вод [6].

Все больше исследований направлено на изучение возможности применения комбинированных методов, основанных на формировании в растворе сульфатных анион-радикалов (Sulfate Radical Based Advanced Oxidation Processes - SR-AOPs), для обезвреживания микрополлютантов, содержащихся в сточных водах [12–15]. Имея высокий окислительный потенциал (2.6-3.1 В) сульфатные анион-радикалы, по сравнению с гидроксильными радикалами, менее чувствительны к изменению реакции среды и присутствию анионов, характерных для природных и сточных вод (хлоридам, сульфатам, гидрокарбонатам) [16, 17]. Кроме того, прекурсоры сульфатных анион-радикалов – персульфаты, являются стабильными твердыми веществами, не требующими специальных условий хранения, что обеспечивает простоту и технологичность их применения. Известно [18, 19], что при воздействии ультрафиолетового излучения происходит гомолитический распад персульфатов с образованием двух сульфатных анион-радикалов

$$S_2 O_8^{2-} + hv \to 2SO_4^{-\bullet}.$$
 (1)

Квантовый выход этой реакции составляет 0.5–1.4.

При реакции сульфатных анион-радикалов с водой, или в щелочных растворах с гидроксидионами в растворе могут формироваться также и гидроксильные радикалы

$$SO_4^{-\bullet} + H_2O \rightarrow SO_4^{2-} + H^+ + HO^{\bullet},$$
 (2)

$$\mathrm{SO}_4^{-\bullet} + \mathrm{OH}^- \to \mathrm{SO}_4^{2-} + \mathrm{HO}^{\bullet}.$$
 (3)

Установлено, что для фотоактивации персульфатов наиболее целесообразно и эффективно использовать источники света, излучающие на длинах волн менее 300 нм [20]. Анализ спектров поглощения персульфата калия и спектра излучения KrCl-эксилампы [21, 22] свидетельствует о принципиальной возможности использования данного источника УФ-излучения для реализации SR-AOPs процессов.

Настоящая работа посвящена изучению закономерностей комбинированных процессов фотохимической деструкции азокрасителей с применением KrCl-эксилампы и персульфатов, на примере метилового оранжевого (MO).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследования проводили на растворах красителя метилового оранжевого ([4-(4-диметиламинофенилазо) бензолсульфонат натрия]) с концентрацией 30 мкМ, приготовленных на дистиллированной воде (pH 5.7 ± 0.2). Экспериментальная установка включала последовательно расположенные по направлению движения обрабатываемой воды термостатированную емкость-усреднитель, в которой поддерживалась постоянная температура раствора (25°C), химический перистальтический насос и фотореактор для облучения воды в потоке (рис. 1). Фотореактор состоял из трубчатого реактора (изготовленного из кварцевого стекла) максимально приближенного к источнику излучения — KrCl-эксилампе ($\lambda_{\mu_{3,1}}$ = = 222 нм, 23 Bt, KrCl-BD-P model, Институт сильноточной электроники СО РАН, г. Томск) и отражателя. Объем обрабатываемого раствора составлял 0.4 л, скорость циркуляции 0.5 л/мин. Интенсивность поглощенного излучения, измеренная методом химической актинометрии с использованием атразина [23], составила 0.76 мВт/см².

В работе использовали метиловый оранжевый (MO) (99.9%, Merck, Germany), персульфат калия (>99%, Sigma–Aldrich, USA), сульфат железа (II)

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 12 2019

Рис. 2. Изменение концентрации красителя метилового оранжевого (*1, 2*) и обесцвечивание раствора (*3, 4*) при окислении в системе {PS/UV}; *1, 3* – [PS] = = 180 мкM; *2, 4* – [PS] = 360 мкM.

(100%, Scharlab, Spain). Для измерения реакции среды применяли портативный прибор Multi 3410 с электродом SenTix®940(WTW). Изменение концентрации красителя в растворе контролировали методом ВЭЖХ (Agilent 1260 Infinity с диодно-матричным УФ-детектором, колонка Zorbax SB-C18 4.6 × 150 мм). Объем пробы 50 мкл, температура 35°С, элюент — ацетонитрил : 75 мМ раствор уксусной кислоты (40 : 60). Скорость потока 0.5 мл/мин. Перед анализом пробы доводили до рН 7–8 0.1% раствором NaOH и фильтровали через мембранные фильтры ФМПТФЭ-0.45 мкм ("Владисарт").

Степень минерализации органических субстратов оценивали по изменению содержания общего органического углерода (OOУ), определяемого на приборе Shimadzu TOC-L CSN (предел обнаружения 50 мкг/л). Калибровку прибора проводили по стандартным образцам бифталата калия и двууглекислого натрия.

Эффективность процесса окисления оценивали по изменению концентрации МО и растворенного органического углерода (минерализации) в обрабатываемом растворе по формуле:

$$E(\%) = \left(1 - \frac{C_{\tau}}{C_0}\right) \times 100,$$

где C_0 и C_{τ} – исходная и в момент времени τ (мин) концентрация МО или растворенного органического углерода, соответственно.

Степень обесцвечивания раствора оценивали по изменению оптической плотности, измеренной на характеристической длине волны красителя МО (463 нм) до и после обработки.

Рис. 3. Хроматограммы раствора красителя до и после обработки в окислительной системе $\{PS/UV\}$; [PS] = 180 мкM.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Экспериментально установлено, что при прямом фотолизе происходит частичное фотолитическое разложение молекул МО в водном растворе. Однако за 60 мин экспозиции степень превращения красителя не превышала 30%.

Окисление МО персульфатом калия (PS) происходило медленно. При мольном соотношении [PS]: [MO] = 6: 1 концентрация красителя снизилась лишь на 12% после 60 минут взаимодействия, а обесцвечивание раствора не наблюдалось. Однако при одновременном воздействии УФ-излучением, т.е. в фотоактивированной окислительной системе (PS/UV) удалось достичь полного превращения красителя через 60 мин обработки. При увеличении концентрации персульфата в два раза произошло резкое увеличение скорости реакции окисления МО, что привело к повышению степени обесцвечивания раствора до 95% и сокращению времени полного превращения красителя в 4 раза (с 60 до 15 мин) (рис. 2, табл. 1). В то же время необходимо отметить, что изменения концентрации растворенного органического углерода - минерализации МО не наблюдалось. Анализ хроматографических данных (рис. 3) позволяет предположить, что при окислении МО активными формами кислорода, образующимися в растворе при фотоактивации персульфата УФ-излучением эксилампы, на первом этапе происходит разрыв азо-связи (-N=N-) и образование окрашенных ароматических нитросоединений. Далее в растворе накапливаются трудноокисляемые и фотоустойчивые продукты реакции.

[PS], мкМ	[Fe], мкМ	PS/UV/Fe ²⁺				PS/Fe ²⁺			
		<i>W</i> ₀ , мкМ/мин	τ _{1/2} , мин	α*, %	Э*, %	<i>W</i> ₀ , мкМ/мин	τ _{1/2} , мин	α*, %	Э*, %
180	0	2.43	6.6	100	85	0.06	>60	12	0
360	0	3.98	2.8	100	95	0.09	>60	14	0
180	45	2.87	3.3	100	92	2.51	5.0	49	26
180	90	4.20	2.3	100	92	2.96	3.4	63	35
180	180	4.30	2.1	100	100	3.87	2.8	80	51
180	360	4.50	2.1	100	98	3.20	3.1	71	29
360	180	5.10	2.0	100	100	4.19	2.5	85	55
540	180	5.20	2.0	100	100	4.21	2.4	88	63

Таблица 1. Окисление МО в различных окислительных системах

Обозначения: α – степень превращения красителя, * – время реакции 60 мин; Э – эффективность обесцвечивания раствора.

При комбинированной активации персульфата УФ-излучением эксилампы и ионами Fe^{2+} , т.е. в окислительной системе {PS/UV/Fe²⁺}, наряду с полным окислением МО и обесцвечиванием раствора достигается высокая, до 77%, минерализации органического вещества (рис. 4, 5, табл. 1).

 ${\rm Fe}^{2+}$ применяется наиболее часто для активации персульфата [24, 25]. При этом лимитирующими являются реакции (4), (5). В то же время, конкурирующая реакция 6 протекает достаточно быстро, поэтому концентрации ${\rm Fe}^{2+}$ и окислителя являются факторами, определяющими эффективность протекания процесса деструкции органических соединений сульфатными анион-радикалами

Fe²⁺ + S₂O₈²⁻
$$\rightarrow$$
 SO₄[•] + SO₄²⁻ + Fe³⁺,
 $k = 27 \text{ M}^{-1} \text{ c}^{-1},$
(4)

Рис. 4. Изменение концентраций красителя метилового оранжевого (*1–3*) и растворенного органического углерода (*4–6*) в разных окислительных системах: *1*, *4* – {PS/UV}; *2*, *5* – {PS/Fe²⁺}; *3*, *6* – {PS/UV/Fe²⁺}. [Fe²⁺] = 180 мкМ, [PS] : [MO] = 6 : 1.

$$Fe^{3^{+}} + S_2 O_8^{2^{-}} \to 2SO_4^{-\bullet} + Fe^{2^{+}},$$

$$k = 22 M^{-1} c^{-1},$$
(5)

$$Fe^{2+} + SO_4^{\bullet} \to SO_4^{2-} + Fe^{3+},$$

$$k = 4.6 \times 10^9 \text{ M}^{-1} \text{ c}^{-1}.$$
(6)

Оптимальные условия для деструкции красителя в комбинированной системе $\{PS/UV/Fe^{2+}\}$ реализуются при мольном соотношении $[Fe^{2+}]/[PS]$ равном 0.5–1 (табл. 1). Дальнейшее увеличение концентрации железа не оказывает существенного влияния на скорость окислительного процесса. Увеличение концентрации персульфата в 3 раза (с 180 мкМ до 540 мкМ) привело к росту начальной скорости реакции окисления красителя в 1.2 раза (с 4.3 до 5.2 мкМ/мин). Однако характер кинетических кривых минерализации органического вещества при увеличении

Рис. 5. Изменение содержания общего органического углерода в растворе МО при окислении в комбинированной системе {PS/UV/Fe²⁺}; 1 - [PS] = [Fe] = 180 мкM, 2 - [PS] = [Fe] = 360 мкM.

концентрации железа и окислителя меняется незначительно (рис. 5).

Для оценки вклада "Фентон-подобной" окислительной системы {PS/Fe²⁺} в комбинированный процесс проведены "темновые" эксперименты. Несмотря на достаточно высокую начальную скорость реакции окисления метилового оранжевого в "темновых" экспериментах, цветность раствора, обусловленная присутствием окрашенных продуктов реакции, о наличии которых свидетельствуют данные хроматографического анализа раствора после обработки (рис. 6), оставалась все же достаточно высокой и содержание общего органического углерода в растворе не снизилось (рис. 4). Через 5 минут обработки процесс окисления красителя практически останавливается и степень его превращения не превышает 80% вследствие расходования Fe²⁺ по реакциям 4, 6 и дезактивации Fe³⁺ за счет образования гидроксо- и органических комплексов

$$Fe^{3+} + H_2O \rightarrow FeOH^{2+} + H^+, \qquad (7)$$

$$\operatorname{Fe}^{3+} + (\operatorname{OOCR})^{-} \to \operatorname{Fe}(\operatorname{OOCR})^{2+},$$
 (8)

где Fe(OOCR)²⁺ – Fe(III) – комплексы с карбоновыми кислотами.

Увеличение концентрации персульфата привело к незначительному росту начальной скорости реакции окисления красителя (с 3.87 до 4.21 мкМ/мин) и эффективности обесцвечивания раствора (на 12%) (табл. 1). Влияние концентрации Fe²⁺ в "темновых" экспериментах более при мольном существенно, соотношении [Fe]/[PS] > 1 происходит замедление окислительного процесса и снижение степени обесцвечивания раствора. Вероятно, в этом случае реализуются условия для нецелевого расходования образующихся в растворе сульфатных анион-радикалов (реакция 6). Аналогичные результаты были получены исследователями при окислении пропахлора и метилового оранжевого персульфатом, активированным железосодержащими катализаторами и оксидом цинка, соответственно [26, 27].

Для выявления роли сульфатных анион-радикалов при окислительной деструкции красителя метилового оранжевого в комбинированных системах {PS/UV/Fe²⁺} и {PS/Fe²⁺} проведены эксперименты с добавлением ингибиторов радикальных реакций – метилового и трет-бутилового спиртов. Константа взаимодействия метанола с гидроксильными радикалами составляет 1.2 × $10^8-2.8 \times 10^8$ л моль⁻¹ c⁻¹, с сульфатными анионрадикалами – $1.6 \times 10^7-7.7 \times 10^7$ л моль⁻¹ c⁻¹ [28]. Константа взаимодействия трет-бутанола с OH[•]радикалами составляет $3.8 \times 10^8-7.6 \times 10^8$ л · моль⁻¹ c⁻¹, с SO₄[•] сульфатными анион-радикалами $4.0 \times 10^5-9.1 \times 10^5$ л · моль⁻¹ c⁻¹ [28]. Таким об-

Рис. 6. Хроматограммы водного раствора красителя MO до и после окисления в системах $\{PS/Fe^{2+}\}$ (а) и $\{PS/UV/Fe^{2+}\}$ (б). [PS]=[Fe]=180 мкМ.

разом, метанол будет одновременно реагировать как с гидроксильными радикалами, так и сульфатными анион-радикалами, в то время как третбутанол в первую очередь с гидроксильными радикалами.

Установлено, что в окислительной системе $\{PS/Fe^{2+}\}$ при добавлении метанола степень превращения MO снизилась на 28% (с 80% до 52%), начальная скорость реакции окисления красителя уменьшилась в 2.2 раза (с 3.87 до 1.8 мкМ/мин). Добавление *трет*-бутанола практически не повлияло на эффективность и скорость окисления метилового оранжевого (рис. 7а).

В комбинированной окислительной системе $\{PS/UV/Fe^{2+}\}$ при добавлении метанола начальная скорость реакции окисления красителя снизилась в 1.8 раза (с 4.3 до 2.4 мкМ/мин), а степень превращения метилового оранжевого уменьшилась на 13% после 60 мин обработки (рис. 76). При добавлении *трет*-бутанола начальная скорость реакции окисления МО снизилась в 1.1 раза

Рис. 7. Влияние ингибиторов радикальных реакций на окисление красителя MO в комбинированных системах PS/Fe^{2+} (a) и $PS/UV/Fe^{2+}$ (b). [PS] = 180 мкM, [Fe] = 180 мкM; [MeOH] = [BtOH] = 90 мM.

(до 3.84 мкМ/мин), при этом достигнуто полное окисление красителя. Полученные результаты однозначно свидетельствуют о том, что в рассмотренных окислительных системах $\{PS/UV/Fe^{2+}\}$ и $\{PS/Fe^{2+}\}$ окисляющими агентами являются как гидроксильные радикалы, так и сульфатные анион-радикалы, однако вклад сульфатных анион-радикалов является доминирующим.

Гипотетическое уравнение реакции полного окисления МО сульфатными анион-радикалами можно представить следующим образом:

$$C_{14}H_{14}N_{3}SO_{3}Na + 86SO_{4}^{-\bullet} + 38H_{2}O \rightarrow$$

$$\rightarrow 14CO_{2} + 3NO_{3}^{-} + 87SO_{4}^{2-} + 90H^{+} + Na^{+}.$$
(9)

Вероятно, при окислении МО в системе $\{PS/UV/Fe^{2+}\}$ реализуется сопряженный радикально-цепной механизм, включающий процессы активации персульфата Fe^{2+} и УФ–С излучением (1)–(6), фотовосстановление Fe^{3+} из гидроксо- и органических комплексов, образование гидроксильных радикалов и других активных форм кислорода [29–31]:

$$\operatorname{FeOH}^{2+} \xrightarrow{hv} \operatorname{Fe}^{2+} + {}^{\bullet}\operatorname{OH},$$
 (10)

$$\operatorname{Fe}(\operatorname{OOCR})^{2+} \xrightarrow{hv} \operatorname{Fe}^{2+} + \operatorname{CO}_2 + \operatorname{R}^{\bullet}, \qquad (11)$$

$$S_2 O_8^{2-} + SO_4^{-\bullet} \to S_2 O_8^{-\bullet} + SO_4^{2-},$$

$$k = 6.62 \times 10^5 \text{ M}^{-1} \text{ c}^{-1},$$
(12)

$$SO_4^{-\bullet} + H_2O \rightarrow {}^{\bullet}OH + HSO_4^{-},$$

 $k = 9.4 \times 10^3 M^{-1} c^{-1},$
(13)

$$SO_4^{-\bullet} + SO_4^{-\bullet} \to S_2O_8^{2-},$$

$$k = 8.1 \times 10^8 \text{ M}^{-1} \text{ c}^{-1}.$$
(14)

$$S_2O_8^{2-} + {}^{\bullet}OH \rightarrow HSO_4^- + SO_4^{-\bullet} + 0.5O_2,$$

 $k = 1.2 \times 10^7 M^{-1} c^{-1},$
(15)

$$SO_4^{-\bullet} + {}^{\bullet}OH \rightarrow HSO_4^{-} + 0.5O_2,$$

 $k = 1.0 \times 10^{10} \text{ M}^{-1} \text{ c}^{-1}.$ (16)

Возможно также образование, в частности, су-

пероксидного анион-радикала ($O_2^{-\bullet}$), способного активировать персульфат, а также образование внутрисферных комплексов между Fe²⁺ и персульфатом, которые при фотоиндуцированном переносе электронов увеличивают выход сульфатных анион-радикалов [32]. Кроме того, возможно прямое фотоокисление интермедиатов. Все это способствует более быстрому и глубокому протеканию процесса окисления красителя метилового оранжевого, в котором принимают участие как сульфатные анион-радикалы, так и гидроксильные радикалы.

Таким образом, по эффективности окислительной деструкции красителя метилового оранжевого рассмотренные окислительные системы могут быть расположены в следующий ряд: $\{PS/UV/Fe^{2+}\} > \{PS/UV\} > \{PS/Fe^{2+}\} > UV > PS.$ Однако лишь в комбинированной фотокаталитической системе $\{PS/UV/Fe^{2+}\}$ происходит существенное снижение содержания общего органического углерода в растворе. Это является неоспоримым преимуществом системы $\{PS/UV/Fe^{2+}\}$ и свидетельствует о перспективно-

сти ее применения в процессах очистки сточных вод от трудноокисляемых органических соединений, в частности от азокрасителей.

Работа выполнена в рамках государственного задания БИП СО РАН № 0339-2016-0005.

СПИСОК ЛИТЕРАТУРЫ

- 1. Serpone N., Artemev Y.M., Ryabchuk V.K. et al. // Current Opinion in Green and Sustainable Chemistry. 2017. V. 6. P. 33.
- Miklos D.B., Remy Ch., Jekel M. et al. // Water Res. 2018. V. 139. P. 118.
- Wang W.-L., Wu Q.-Y., Huang N. et al. // Water Res. 2018. V. 141. P. 105.
- MinamataConventiononMercury. [Электронный ресурс] – Режим доступа: URL: http://www.mercuryconvention.org/Convention/tabid/3426/language/en-US/Default.aspx – Загл.сэкрана. – Яз. англ.
- 5. Бойченко А.М., Ломаев М.И., Панченко А.Н. и др. Ультрафиолетовые и вакуумно-ультрафиолетовые эксилампы: физика, техника и применения. Томск: STT, 2011. 512 с.
- 6. *Murcia M.D., Vershinin N.O., Briantceva N. //* Chem. Eng. J. 2015. V. 266. P. 356.
- Kang J.-W., Kim S.-S., Kang D.-H. // Food Res. Inter. V. 109. P. 325.
- Aristizábal A., Perilla G., Lara-Borrero J.A., Diez R. // Environ. Technol. 2018. https://doi.org/10.1080/09593330.2018.1494755
- Gomez M., Murcia M.D., Gomez J.L. et al. // Chem. Eng. Process. 2010. V. 49. P. 113.
- Matafonova G., Batoev V. // Chemosphere. 2012. V. 89. P. 637.
- Tchaikovskaya O.N., Bryantseva N.G., Carrasco J.L.G. et al. // Russ. Phys. J. 2016. V. 59. P. 552. https://doi.org/10.1007/s11182-016-0805-9
- Wang J., Wang Sh. // Chem. Eng. J. 2018. V. 334. P. 1502.
- Wacławek S., Lutze H.V., Grübel K. et al. // Chem. Eng. J. 2017. V. 330. P. 44.

- Khandarkhaeva M., Batoeva A., Aseev D. et al. // Ecotoxicol. and Environ. Safety. 2017. V. 137. № 3. P. 35.
- Aseev D.G., Sizykh M.R., Batoeva A.A. // Russ. J. of Phys. Chem. A. 2017. V. 91. P. 2327.
- Tsitonaki A., Petry B., Crimi M. et al. // Crit. Rev. Environ. Sci. Technol. 2010. V. 40. № 1. P. 55.
- Khandarkhaeva M., Aseev D., Sizykh M.R., Batoeva A.A. // Russ. J. of Phys. Chem. A. 2016. V. 90. № 11. P. 2177.
- Herrmann H. // Phys. Chem. Chem. Phys. 2007. V. 9. P. 3935.
- Criquet J., Karpel N., Leitner V. // Chemosphere. 2009. V. 77. P. 194.
- 20. Shih Y.-J., Putra W.N., Huang Y.-H., Tsai J.-Ch. // Chemosphere. 2012. V. 89. P. 1262.
- Anipsitakis G.P., Dionysiou D.D. // Appl. Catal., B: Environ. 2004. V. 54. P. 155.
- Sosnin E.A, Oppenländer T., Tarasenko V.F. // J. Photochem. Photobiol., C: Photochem. Rev. 2006. V. 7. P. 145.
- 23. *Canonica S., Meunier L., Gunten U. //* Water Res. 2008. V. 42. P. 121.
- 24. *Epold I., Trapido M., Dulova N. //* Chem. Eng. J. 2015. V. 279. P. 452.
- Ji Y., Ferronato C., Salvador A. et al. // Sci. Total Environ. 2014. V. 472. P. 800.
- Liu C.S., Shih K., Sun C.X., WangF. // Sci. Total Environ. 2012. V. 416. P. 507.
- 27. *Li H., Guo J., Yang L., Lan Y. //* Sep. Purif. Technol. 2014. V. 132. P. 168.
- Liang H.Y., Zhang Y.-G., Huang S.-B., Hussain I. // Chem. Eng. J. 2013. V. 218. P. 384.
- Kusic H., Peternel I., Ukic S. et al. // Chem. Eng. J. 2011. V. 172. P. 109.
- Brillas E., Martínez C.A. // Appl. Catal. B: Environ. 2015. V. 166–167. P. 603.
- Moreira F.C., Garcia-Segura S., Vilar V.J.P. et al. // Appl. Catal. B Environ. 2013. V. 142–143. P. 877.
- 32. Ahmed M.M., Chiron S. // Water Res. 2014. V. 48. P. 229.