ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2019, том 93, № 12, с. 1851–1859

## — ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ РАЗДЕЛЕНИЯ. ХРОМАТОГРАФИЯ

УДК 539.543.544

# АДСОРБЦИЯ И ХРОМАТОГРАФИЧЕСКОЕ РАЗДЕЛЕНИЕ ПРОИЗВОДНЫХ ТИОФЕНА НА ГРАФИТИРОВАННОЙ ТЕРМИЧЕСКОЙ САЖЕ

© 2019 г. С. Н. Яшкин<sup>*a,b,\**</sup>, Е. А. Яшкина<sup>*a*</sup>, Д. А. Светлов<sup>*c,\*\**</sup>, Б. А. Мурашов<sup>*d,\*\*\**</sup>

<sup>а</sup> Самарский государственный технический университет 443100, Самара, Россия <sup>b</sup> Самарский национальный исследовательский университет имени академика С.П. Королева 443086, Самара, Россия <sup>c</sup> Испытательная лаборатория по Самарской области ФГБУ "ЦЛАТИ по ПФО" 443093, Самара, Россия <sup>d</sup> ООО "Газпромнефть НТЦ" 190000, Санкт-Петербург, Россия

\* e-mail: snyashkin@mail.ru \*\* e-mail: dasvetlov@mail.ru \*\*\* e-mail: borismurashov@rambler.ru Поступила в редакцию 05.02.2019 г. После доработки 12.02.2019 г. Принята к публикации 12.02.2019 г.

В условиях равновесной газо-адсорбционной хроматографии (ГАХ) на колонках с графитированной термической сажей (ГТС) марки Carbopack C НТ определены термодинамические характеристики адсорбции (ТХА) тиофена и его производных. Показано, что значения ТХА существенно зависят от числа и природы заместителей в основном структурном фрагменте. Установлено, что поверхность ГТС характеризуется низкой структурной селективностью в отношении изомеров положения в ряду производных тиофена. Впервые установлен и исследован эффект полярного удерживания на графите из газовой фазы, обусловленный реализацией дополнительных к дисперсионным специфических межмолекулярных взаимодействий полярных групп в адсорбате с легкополяризуемой поверхностью базисной грани графита. Сделан вывод о применимости модели двумерного идеального газа для описания подвижности сильнополярных молекул производных тиофена на поверхности графита и о существенных ограничениях этой модели применительно к адсорбции молекул тиофена, а также его метил- и галогенпроизводных.

*Ключевые слова:* производные тиофена, графитированная термическая сажа, газовая хроматография, термодинамические характеристики адсорбции, модель двумерного идеального газа, эффект полярного удерживания на графите

**DOI:** 10.1134/S0044453719120355

Адсорбция тиофена и некоторых его производных на поверхности графитоподобных материалов не раз становилась предметом исследований методом равновесной газо-адсорбционной хроматографии (ГАХ) на колонках с графитированной термической сажей (ГТС) [1–7]. Интерес к этой группе соединений обусловлен их относительно широким распространением среди других гетероциклических соединений, большим числом функциональных производных, а также проявлением разнообразных свойств. в том числе и различных видов биологической активности. Термодинамические характеристики адсорбции (ТХА) в условиях равновесной ГАХ на колонках с ГТС были определены для тиофена [1, 2], алкили галогентиофенов [3, 4], арилтиофенов [5] и некоторых других соединений [6]. Кроме того, были рассчитаны параметры потенциальной функции

межмолекулярного взаимодействия атомов S с атомами С базисной грани графита, позволившие выполнить априорный расчет равновесных величин ТХА, а также осуществить хроматоструктурный анализ геометрии ряда тиофенсодержащих соединений, адсорбированных на плоской поверхности графита [5]. Среди серосодержащих соединений не тиофенового ряда, исследованных методом ГАХ на ГТС, следует отметить стереоизомерные пергидротиоксантены и пергидро-4тиа-*s*-индацены [8, 9]. С помощью ГАХ и молекулярно-статистических расчетов показаны уникальные возможности микронасадочных колонок с ГТС для полного разделения и идентификации отдельных изомеров этой группы соединений. В дополнение к экспериментальным исследованиям также были выполнены молекулярно-статистические расчеты равновесных ТХА, которые позволили не только однозначно идентифицировать отдельные изомеры, но и определить вклад различных по устойчивости конформаций отдельных изомеров в суммарную энергию адсорбции.

Вместе с тем, несмотря на уникальные 2D-селективные характеристики графитоподобных адсорбентов, их высокую химическую инертность и термическую стабильность, количество работ по применению этой группы материалов в газовой хроматографии в настоящее время невелико. Значительный прогресс в этом направлении наметился после создания аналогов ГТС для ВЭЖХ пористого графитоподобного материала Hypercarb. Колонки с этим адсорбентом широко применяются для разделения близких по свойствам структурных и пространственных изомеров разных классов органических соединений, включая и производные тиофена [10]. Как и в случае адсорбции из газовой фазы, при сорбции из водноорганических растворов ключевую роль играет способность молекул адсорбата к планарному расположению на плоской поверхности графита, что позволяет сделать вывод о доминировании 2D-структурной селективности несмотря на активную роль подвижной фазы при сорбции из среды жидких элюентов.

Цель настоящей работы — газохроматографическое определение равновесных значений ТХА молекул тиофена и его различных функциональных производных на поверхности ГТС. Представляла интерес оценка селективности и возможности разделения изомерных соединений производных тиофена на колонках с ГТС, а также исследование способности сильнополярных молекул замещенных тиофенов к специфическим межмолекулярным взаимодействиям с легко поляризуемой поверхностью графита.

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Экспериментальное определение удельных удерживаемых объемов ( $V_{A,1}$ , см<sup>3</sup>/м<sup>2</sup>) для исследованных в работе адсорбатов проводили на газовом хроматографе "Кристалл-4000" с пламенно-ионизационным детектором. Газом-носителем служил гелий (объемная скорость 18-25 см<sup>3</sup>/мин). В качестве несорбирующегося вещества использовали метан. Пробы веществ вводили не менее 5 раз в виде разбавленных паровоздушных смесей или сильно разбавленных растворов в этаноле и диэтиловом эфире. Разделение проводили на стеклянной микронабивной колонке, размером 1.00 м × 1.5 мм. В качестве адсорбента применяли Carbopack C HT (Supelco) с удельной поверхностью 10 м<sup>2</sup>/г [11]. Масса адсорбента в колонке 2.08 г. Размер зерен адсорбента составлял 60-80 меш. Относительные времена удерживания адсорбатов во всем исследованном интервале температур не зависели от концентрации адсорбата в газовой фазе, что свидетельствовало о достижении линейного участка изотермы адсорбции (область Генри). В пользу этого также свидетельствовали симметричные пики сорбатов на хроматограммах (рис. 1). Расчет основных ТХА осуществляли по стандартной методике, в соответствии с основным постулатом равновесной хроматографии:  $V_{A,1}$  [12–15]. Для обработки первичных хроматографических данных применяли уравнение:

$$K_{1,c} = \lim_{\Gamma_{i}^{gas}, c_{i}^{gas} \to 0} \left( \frac{\Gamma_{i}^{ads} / \Gamma_{i,st}^{ads}}{c_{i}^{gas} / c_{i,st}^{gas}} \right) \equiv V_{A,1} = \frac{(t_{R} - t_{M}) F_{p_{a}, T_{a}}}{m_{A} S_{N_{2}}} \frac{T}{T_{a}} \frac{3(p_{i} / p_{a})^{2} - 1}{2(p_{i} / p_{a})^{3} - 1} \frac{p_{a} - p_{w}}{p_{a}},$$
(1)

где  $\Gamma_i^{gas}$  и  $\Gamma_{i,st}^{gas}$  – равновесная и стандартная величины гиббсовской адсорбции (мкмоль/м<sup>2</sup>); c<sub>i</sub><sup>gas</sup> и  $c_{i,st}^{gas}$  – равновесная и стандартная концентрации адсорбата в газовой фазе соответственно (мкмоль/см<sup>3</sup>); t<sub>R</sub> – время удерживания сорбата (мин); *t*<sub>M</sub> – время удерживания несорбирующегося вещества (мин); *p*<sub>i</sub> – давление газа-носителя на входе в колонку (атм);  $p_{\rm a}$  – атмосферное давление (атм); *T* – температура колонки (К); *T*<sub>a</sub> – комнатная температура (K);  $p_{\rm w}$  – давление паров воды при температуре  $T_{\rm a}$  (атм);  $F_{\rm p_a,T_a}$  – объемная скорость газа-носителя, измеренная с помощью пенного расходомера при давлении  $p_{\rm a}$  и температуре  $T_{\rm a}$  (см<sup>3</sup>/мин);  $m_{\rm A}$  — масса адсорбента в колонке (г); S<sub>N2</sub> – величина удельной поверхности адсорбента, измеренная статическим объемным методом по адсорбции азота при температуре 77 К (м<sup>2</sup>/г). При определении ТХА использовали следующие величины для стандартного состояния адсорбата:  $c_{i,st}^{gas} =$ = 1 мкмоль/см<sup>3</sup> (в газовой фазе);  $\Gamma_{i,st}^{gas} = 1$  мкмоль/м<sup>2</sup> (в адсорбированном состоянии) [14, 15].

Для определения значений мольных дифференциальных стандартных теплот  $\bar{q}_{dif,1}$  (Дж/моль) и изменения энтропии  $\Delta(\bar{S}_{1,c}^{o})^{s}$  (Дж/(моль К)) адсорбции использовали два известных приближения, основанных на зависимостях  $\ln K_{1,c}$  от 1/T [16]:

$$-\Delta \overline{C}_{l,v}^{s} \approx 0:$$

$$\ln K_{l,c} = \frac{(\Delta \overline{S}_{l,c}^{o})^{s} + R}{R} + \frac{\overline{q}_{dif,l}}{RT} = A_{l} + B_{l}/T, \quad (2)$$

$$-\Delta \overline{C}_{l,v}^{s} = \text{const} \neq 0:$$

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 12 2019

$$\ln K_{1,c} = \frac{(\Delta \bar{S}_{1,c}^{o})^{s} - \Delta \bar{C}_{1,v}^{s} (\ln T_{av} + 1) + R}{R} + \frac{\bar{q}_{dif,1} + T_{av} \Delta \bar{C}_{1,v}^{s}}{RT} + \frac{\Delta \bar{C}_{1,v}^{s}}{R} \ln T = (3)$$
$$= A_{2} + B_{2}T + C \ln T,$$

где  $\Delta \overline{C}_{l,v}^{s} = \overline{C}_{ads}^{o} - \overline{C}_{gas,v}^{o}$  – разность между величинами мольной дифференциальной теплоемкости вещества в адсорбированном состоянии ( $\overline{C}_{ads}^{o}$ , Дж/(моль К)) и мольной теплоемкости вещества в равновесной газовой фазе при  $V = \text{const} (\overline{C}_{gas.v}^{o})$ Дж/(моль К)); *T*<sub>av</sub> – середина исследованного температурного интервала (К); *R* – универсальная газовая постоянная (8.314 Дж/(моль К)). Погрешность экспериментально определенных величин ТХА, приведенных в табл. 1, не превышала 3.5% для *K*<sub>1.c</sub>, 1 кДж/моль и 6.0 Дж/(моль К) для величин  $\overline{q}_{dif,1}$  и  $\Delta(\overline{S}_{1,c}^{o})^{s}$  соответственно. Приведенные в табл. 2 некоторые физико-химические параметры исследованных соединений были взяты из справочной литературы [17-19], либо рассчитаны с помощью известных аддитивных схем [20, 21].

## ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В табл. 1 приведены полученные в настоящей работе значения ТХА тиофена, бензола и их функциональных производных. Из представленных данных видно, что значения  $\ln K_{1,c}$  и  $\overline{q}_{dif 1}$  для производных тиофена заметно ниже соответствующих величин для производных бензола. Так, различие в величинах  $\overline{q}_{{
m dif},1}$  для бензола и тиофена составляет 3.5 кДж/моль, что превышает величину экспериментальной погрешности определения  $\overline{q}_{dif,1}$ . В ряду метил-, хлор-, бром- и иодпроизводных бензола и тиофена различие в величинах  $\overline{q}_{
m dif,1}$  уменьшается от 3.2 до 1.9 кДж/моль соответственно. Причина наблюдаемых особенностей, вероятно, связана с тем, что значение ван-дер-ваальсова радиуса атома S, равное 0.185 нм [22], полутолщины бензольного больше кольца (0.177 нм) [23]. В связи с этим СН-группы в молекуле тиофена, находящиеся в непосредственной близости к атому S (2 и 5 положения кольца) оказываются приподнятыми над плоской поверхностью графита, что приводит к ослаблению их взаимодействия с адсорбентом и, как следствие, к уменьшению величин  $\ln K_{1,c}$  и  $\overline{q}_{dif,1}$ . Вывод о том, что атом серы "приподнимает" плоскость тиофенового кольца над поверхностью графита подтверждает наличие двух отдельных зависимостей  $\overline{q}_{\text{dif},1} = f(\alpha_{\text{M}})$  для монопроизводных бензола и тиофена (рис. 2): зависимость для производных тиофена в координатах графика  $\overline{q}_{dif,1} = f(\alpha_M)$  располагается ниже соответствующей зависимости для производных бензола. Аналогичные эффекты наблюдались и ранее [24, 25], при изучении адсорбции других ароматических соединений с объемными заместителями на поверхности графита. Различия в адсорбции основных структурных фрагментов (бензольного и тиофенового колец) оказывают влияние и на вклады функциональных групп в величину  $\overline{q}_{dif,1}$ . Из табл. 3 видно, что величины  $\delta \overline{q}_{dif,1}$ , равные вкладу различных заместителей в теплоту адсорбции, в ряду производ-

ных тиофена выше по сравнению с соответствую-

щими производными бензола.

В отличие от монозамещенных бензола, в ряду монозамещенных тиофена возможна изомерия положения, обусловленная различием в относительном расположении атома S и заместителя в кольце (2- и 3-изомеры соответственно). Из данных табл. 1 следует, что 2- и 3-изомеры характеризуются близкими значениями ТХА, что не позволяет добиться их удовлетворительного разделения на использованных в данной работе микронасадочных колонках с ГТС. Несмотря на это, значения  $\ln K_{1,c}$  для 2-изомера немного выше величин  $\ln K_{1,c}$  для 3-изомера (например, 2- и 3метилтиофены). Однако увеличение ван-дер-ваальсова радиуса заместителя приводит к тому, что различие в величинах ln K<sub>1,c</sub> для 2-/3-изомеров практически исчезает (например, 2- и 3-бромтиофены). В случае дизамещенных производных

Рис. 1. Хроматограмма разделения смеси монозамещенных тиофенов (T = 393 K,  $F_{P_i,T_a} = 25$  см<sup>3</sup>/мин) на колонке с Carbopak C HT.



| A                            |                        | $\ln K_{1,c}  [\mathrm{cm}^3/\mathrm{m}^2]$ |            | По уравнению (2)                |                                       | По уравнению (3)          |                                       |                                                   |
|------------------------------|------------------------|---------------------------------------------|------------|---------------------------------|---------------------------------------|---------------------------|---------------------------------------|---------------------------------------------------|
| Адсороат                     | $\Delta I, \mathbf{K}$ | $T_{\rm av}$                                | T = 373  K | $\overline{q}_{\mathrm{dif},1}$ | $-\Delta(\overline{S}_{1,c}^{o})^{s}$ | $\overline{q}_{ m dif,1}$ | $-\Delta(\overline{S}_{1,c}^{o})^{s}$ | $\Delta \overline{\mathrm{C}}_{\mathrm{l,v}}^{s}$ |
| Тиофен (1)                   | 333-373                | 0.401                                       | -0.305     | 30.8                            | 93.5                                  | 30.8                      | 93.4                                  | 109.0                                             |
| 2-Метилтиофен (2)            | 353-413                | 1.080                                       | 1.395      | 37.4                            | 96.9                                  | 37.3                      | 96.9                                  | 48.0                                              |
| 3-Метилтиофен (3)            | 353-413                | 1.025                                       | 1.338      | 37.0                            | 96.4                                  | 37.0                      | 96.4                                  | 38.8                                              |
| 2-Хлортиофен (4)             | 353-433                | 1.035                                       | 1.677      | 39.1                            | 99.4                                  | 39.0                      | 99.1                                  | 65.4                                              |
| 2-Бромтиофен (5)             | 353-433                | 1.709                                       | 2.392      | 41.4                            | 99.4                                  | 41.3                      | 99.2                                  | 62.9                                              |
| 3-Бромтиофен (6)             | 353-433                | 1.706                                       | 2.393      | 41.4                            | 99.5                                  | 41.3                      | 99.3                                  | 47.5                                              |
| 2-Иодтиофен (7)              | 373-433                | 2.251                                       | 3.324      | 44.5                            | 100.1                                 | 44.5                      | 100.1                                 | 24.6                                              |
| 2.4-Динитро-5-иодотиофен (8) | 470-530                | 2.055                                       | 6.773      | 57.6                            | 106.4                                 | 57.6                      | 106.5                                 | 88.3                                              |
| 2.2'-Битиофен (9)            | 440-520                | 3.144                                       | 7.601      | 61.9                            | 111.3                                 | 61.9                      | 111.2                                 | 70.2                                              |
| 2-Нитротиофен (10)           | 393-483                | 1.527                                       | 3.364      | 46.7                            | 102.2                                 | 46.4                      | 101.6                                 | 35.6                                              |
| 2-Ацетилтиофен (11)          | 413-493                | 1.612                                       | 4.354      | 48.1                            | 101.2                                 | 48.1                      | 101.0                                 | 47.0                                              |
| 2-Ацетамидотиофен (12)       | 443-503                | 2.329                                       | 6.449      | 60.4                            | 116.5                                 | 60.5                      | 116.9                                 | 78.6                                              |
| 2.4-Динитротиофен (13)       | 443-513                | 3.052                                       | 7.246      | 59.2                            | 106.8                                 | 59.1                      | 106.7                                 | 96.4                                              |
| 2.5-Динитротиофен (14)       | 443-513                | 3.062                                       | 7.272      | 59.4                            | 107.2                                 | 59.1                      | 106.7                                 | 174.6                                             |
| 2-Нитро-3-бромтиофен (15)    | 433-493                | 2.687                                       | 6.305      | 57.6                            | 110.4                                 | 57.6                      | 110.4                                 | 54.2                                              |
| 2-Ацето-5-нитротиофен (16)   | 443-503                | 2.796                                       | 6.776      | 58.3                            | 108.3                                 | 57.3                      | 106.2                                 | 41.2                                              |
| 2-Иодо-5-нитротиофен (17)    | 443-503                | 3.364                                       | 7.423      | 59.5                            | 106.0                                 | 59.6                      | 106.2                                 | 59.8                                              |
| Бензол (18)                  | 333-373                | 1.124                                       | -0.279     | 34.4                            | 96.3                                  | 34.3                      | 96.2                                  | 68.7                                              |
| Толуол (19)                  | 353-433                | 1.582                                       | 2.233      | 40.4                            | 98.1                                  | 40.5                      | 98.3                                  | 38.0                                              |
| Хлорбензол (20)              | 353-433                | 1.758                                       | 2.460      | 42.2                            | 101.1                                 | 42.2                      | 101.1                                 | 23.2                                              |
| Бромбензол (21)              | 373-463                | 1.600                                       | 3.142      | 43.9                            | 100.0                                 | 43.3                      | 98.6                                  | 26.7                                              |
| Иодбензол (22)               | 373-473                | 2.289                                       | 4.105      | 46.5                            | 99.2                                  | 46.4                      | 99.1                                  | 41.6                                              |
| Нитробензол (23)             | 373-463                | 2.654                                       | 4.339      | 47.6                            | 100.0                                 | 47.5                      | 99.9                                  | 54.1                                              |

**Таблица 1.** Экспериментальные значения ТХА молекул тиофена и его функциональных производных на поверхности Carbopack C HT ( $\bar{q}_{dif 1}$ , кДж/моль;  $-\Delta(\bar{S}_{1c}^{o})^{s}$  и  $\Delta \bar{C}_{1v}^{s}$ , Дж/(моль K))

тиофена величины ТХА практически неразличимы, в чем легко убедиться, сопоставив величины ТХА для молекул 2,4- и 2,5-динитротиофенов.

Анализ величин  $\ln K_{1,c}$  показывает (табл. 1), что ГТС может быть использована для эффективного разделения рассмотренных производных тиофена с различными функциональными группами. Приведенная на рис. 1 хроматограмма разделения модельной смеси подтверждает этот вывод. Вместе с тем, соединения с близкими величинами молекулярной поляризуемости (метил- и хлортиофены, а также изомеры положения 2-; 5-; 13-14) характеризуются практически одинаковыми значения ТХА, и поэтому смеси этих соединений не могут быть разделены на использованных в работе микронасадочных колонках с Carbopack C HT. Таким образом, поверхность ГТС характеризуется низкой структурной селективностью в отношении изомеров положения в ряду моно- и дизамещенных производных тиофена, что хорошо согласуется с низкой *орто-/мета-/пара*-селективностью в ряду соответствующих производных бензола [24].

При переходе к производным, содержащим несколько различных заместителей (в частности, молекулы 2-иод-5-нитротиофен, 2-нитро-3-бромтиофен, 2-ацето-5-нитротиофен) наблюдается аддитивность вкладов заместителей в величину  $\overline{q}_{dif,1}$  (незначительное различие между экспериментальными и рассчитанными по вкладам значениями  $\overline{q}_{dif,1}$  укладывается в рамки погрешности ее газохроматографического определения). Исключение из этой закономерности – молекула

| Адсорбат $\alpha_M, Å^3$ |      |                           | Р <sub>с</sub> , бар | $T_{\rm c}/\sqrt{P_{\rm c}}$ ,<br>K/бар $^{0.5}$ | $\overline{q}_{ m dif,1},$ кДж/моль |           |      | $\delta \overline{q}_{ m dif,1}$ |      |      |
|--------------------------|------|---------------------------|----------------------|--------------------------------------------------|-------------------------------------|-----------|------|----------------------------------|------|------|
|                          | μ, D | <i>T</i> <sub>c</sub> , K |                      |                                                  | эксп.                               | расчет по |      | (4)                              | (5)  |      |
|                          |      |                           |                      |                                                  |                                     | (4)       | (5)  | (+)                              | (5)  |      |
| 1                        | 9.8  | 0.54                      | 580                  | 59.6                                             | 75.1                                | 30.8      | 32.7 | 33.5                             | -1.9 | -2.6 |
| 2                        | 11.7 | 0.67                      | 609                  | 49.0                                             | 86.9                                | 37.4      | 37.4 | 38.8                             | 0.0  | -1.4 |
| 3                        | 11.7 | 0.82                      | 613                  | 49.0                                             | 87.5                                | 37.0      | 37.4 | 39.0                             | -0.4 | -2.0 |
| 4                        | 11.7 | 1.48                      | 636                  | 52.3                                             | 87.9                                | 39.2      | 37.4 | 39.2                             | 1.8  | 0.0  |
| 5                        | 12.8 | 1.35                      | 677                  | 57.4                                             | 89.3                                | 41.4      | 40.2 | 39.8                             | 1.2  | 1.6  |
| 6                        | 12.8 | 1.13                      | 690                  | 57.4                                             | 91.0                                | 41.4      | 40.2 | 40.6                             | 1.2  | 0.8  |
| 7                        | 14.9 | 1.20                      | 725                  | 51.8                                             | 100.8                               | 44.6      | 45.2 | 44.9                             | -0.6 | -0.4 |
| 8                        | 18.4 | 5.23                      | _                    | 37.0                                             | _                                   | 57.6      | 53.7 | _                                | 3.9  | _    |
| 9                        | 18.9 | 0.96                      | 807                  | 40.2                                             | 127.4                               | 62.0      | 54.9 | 56.8                             | 7.1  | 5.2  |
| 10                       | 12.4 | 4.22                      | 751                  | 50.1                                             | 106.1                               | 46.7      | 39.1 | 47.3                             | 7.6  | -0.6 |
| 11                       | 13.7 | 3.37                      | 729                  | 43.6                                             | 110.4                               | 48.1      | 42.4 | 49.2                             | 5.7  | -1.1 |
| 12                       | 15.4 | 2.69                      | 874                  | 44.0                                             | 131.7                               | 60.4      | 46.5 | 58.7                             | 13.9 | 1.6  |
| 13                       | 15.0 | 3.70                      | 833                  | 42.6                                             | 127.7                               | 59.2      | 45.4 | 56.9                             | 13.8 | 2.3  |
| 14                       | 15.0 | 2.17                      | 801                  | 42.6                                             | 122.8                               | 59.4      | 45.4 | 54.8                             | 14.0 | 4.7  |
| 15                       | 15.4 | 5.36                      | 748                  | 47.1                                             | 109.1                               | 57.6      | 46.5 | 54.6                             | 11.1 | 3.0  |
| 16                       | 15.0 | 3.03                      | 817                  | 42.0                                             | 126.0                               | 58.3      | 45.6 | 56.2                             | 12.7 | 2.1  |
| 17                       | 17.5 | 5.96                      | 828                  | 43.2                                             | 126.0                               | 59.5      | 51.5 | 56.2                             | 8.0  | 3.3  |

Таблица 2. Некоторые физико-химические параметры и теплоты адсорбции исследованных производных тиофена на Carbopack C HT

2,4-динитро-5-йодтиофена, для которой рассчитанная по вкладам величина  $\overline{q}_{\rm dif,1}$  (~76 кДж/моль) оказывается существенно выше экспериментальной величины, равной 57.6 кДж/моль. Объяснением этого факта, по-видимому, может быть большой ван-дер-ваальсов размер атома I (0.215 нм [22]), приподнимающий плоское тиофеновое кольцо с двумя сопряженными NO<sub>2</sub>группами над поверхностью графита, в результате чего энергия межмолекулярного взаимодействия "адсорбат—графит" резко уменьшается.

Особый интерес в свете поставленной в настоящей работе задачи, представляет изучение характера межмолекулярных взаимодействий различных по полярности производных тиофена с поверхностью графита. Известно, что по классификации А.В. Киселева, ГТС принадлежит к адсорбентам I типа [24], на поверхности которых могут реализовываться только дисперсионные межмолекулярные взаимодействия. Надежным критерием реализации преимущественно дисперсионных межмолекулярных взаимодействий в адсорбции служит наличие корреляции между величинами  $\overline{q}_{dif,1}$  адсорбатов и их молекулярной поляризуемостью ( $\alpha_{\rm M}$ ). Действительно, в случае молекул тиофена, метилтиофенов, галогентиофенов (группа слабополярных соединений, для которых величина  $\mu \leq 1.5$  D), а также *н*-алканов корреляция экспериментальных значений  $\overline{q}_{\rm dif,1}$ (рис. 3) с величинами  $\alpha_{\rm M}$  характеризуется высоким коэффициентом детерминации ( $r^2 = 0.98$ ). При этом отклонения величин  $\overline{q}_{\rm dif,1}$  этих соединений от зависимости  $\overline{q}_{\rm dif,1} = f(\alpha_{\rm M})$  для *н*-алканов невелики. Все это свидетельствует о доминирующем вкладе дисперсионных межмолекулярных взаимодействий молекул тиофена, метилтиофе-

**Таблица 3.** Вклады различных функциональных групп в величины теплот адсорбции ( $\delta \bar{q}_{dif,1}$ , кДж/моль) монопроизводных тиофена и бензола на поверхности Carbopack C HT

| Производные | CH <sub>3</sub> - | Cl- | Br-  | I-   | NO <sub>2</sub> - |
|-------------|-------------------|-----|------|------|-------------------|
| Тиофена     | 6.5               | 8.2 | 10.5 | 13.7 | 15.6              |
| Бензола     | 6.2               | 7.5 | 9.0  | 12.1 | 13.2              |



**Рис. 2.** Зависимости теплот адсорбции ( $\bar{q}_{dif,1}$ , кДж/моль) от молекулярной поляризуемости ( $\alpha_{M}$ , Å<sup>3</sup>) в ряду монопроизводных тиофена ( $\bigcirc$ ) и бензола

нов и галогентиофенов с поверхностью базисной грани графита.

Совершенно иная картина наблюдается в случае адсорбции молекул, содержащих сильнополярные функциональные группы (нитро-, ацетил-, ацетамидо- и др. (группа сильно полярных соединений, для которых  $\mu \ge 2.5$  D)). Как видно из рис. 3 значения  $\overline{q}_{dif,1}$  этих соединений плохо коррелируют с величиной α<sub>м</sub>. Соответствующие им точки в координатной плоскости  $\overline{q}_{dif,1} = f(\alpha_M)$ лежат значительно выше прямой, соответствующей *н*-алканам и малополярным производным тиофена. Столь неожиданное адсорбционное поведение нитро-, ацетил- и других сильнополярных производных тиофена свидетельствует о проявлении дополнительных к дисперсионным специфических межмолекулярных взаимодействий. Наиболее вероятным объяснением наблюдаемой особенности может быть тот факт, что полярные (NO<sub>2</sub>-, CH<sub>3</sub>CO- и др.) группы наряду с дисперсионными взаимодействиями способны вступать в специфическое индукционное взаимодействие с легко поляризуемой системой  $\pi$ -электронов поверхности графита. Подобное взаимодействие относительно недавно было обнаружено при исследовании адсорбции сильнополярных адсорбатов на графитоподобной поверхности в условиях ВЭЖХ [26-28]. Такое взаимодействие получило



**Рис. 3.** Зависимость теплоты адсорбции ( $\bar{q}_{dif,1}$ , кДж/моль) от молекулярной поляризуемости ( $\alpha_M$ , Å<sup>3</sup>) исследованных производных тиофена.

название "эффект полярного удерживания на графите" (обнаружен на графитоподобном адсорбенте Hypercarb для ВЭЖХ) [28]. На рис. 4 схематично показана деформация делокализованной системы *р*-электронов под действием сильнополярной группы.

В настоящей работе предпринята попытка количественной оценки эффекта полярного удерживания. С помощью зависимости  $\overline{q}_{dif,1} = f(\alpha_M)$ , полученной для *н*-алканов:

$$\overline{q}_{\rm dif,1} = 2.4383\alpha_{\rm M} + 8.9158,$$
 (4)

на основании известных величин α<sub>M</sub> были рассчитаны теоретические значения  $\overline{q}_{{
m dif},1}$ , соответствующие вкладу только дисперсионных взаимодействий в теплоту адсорбции. Полученные значения приведены в табл. 2 (колонка I). Из табл. 2 видно, что значения  $\delta \overline{q}_{\text{dif},1} = \overline{q}_{\text{dif},1}$  (теор.) –  $\overline{q}_{\text{dif},1}$ (эксп.) в случае молекул тиофена, метилтиофенов и галогентиофенов сопоставимы с погрешностью экспериментального определения  $\overline{q}_{\rm dif,1}$ . Напротив, для соединений 8-17 это различие изменяется в интервале от 3.9 до 14.0 кДж/моль. Таким образом, в случае адсорбатов с сильнополярными группами (в частности, нитротиофенов) при адсорбции на ГТС имеет место специфическое взаимодействие, вклад которого в величину  $\overline{q}_{dif,1}$  увеличивается с ростом числа таких групп. Найденные значения  $\delta \overline{q}_{dif,1}$ ΜΟΓΥΤ служить количественной характеристикой "эффекта полярного удерживания на графите" рассмотренных сильнополярных производных тиофена на графите.

(●).



**Рис. 4.** Схематичное изображение недеформированной поверхности графита в случае неспецифической адсорбции (а) и деформации делокализованной системы *p*-электронов под действием сильнополярной группы (б).

Наряду с величиной  $\alpha_{\rm M}$  в корреляциях "свойство-удерживание" широкое распространение получил параметр  $T_c/\sqrt{P_c}$ , где  $T_c$  и  $P_c$  – критические константы веществ. Уравнение, связывающее  $T_c/\sqrt{P_c}$  и  $\bar{q}_{\rm dif,1}$  получено в работе [29]:

$$\overline{q}_{\rm dif,1} = DT_{\rm c} / \sqrt{P_{\rm c}} \,, \tag{5}$$

где D = 0.446 кДж бар<sup>0.5</sup>/К в случае графита. Рассчитанные по уравнению (5) значения  $\overline{q}_{dif,1}$  (теор.) приведены в табл. 2 (колонка II). На рис. 5 приведена полученная зависимость  $\bar{q}_{\rm dif,l} = f(T_{\rm c}/\sqrt{P_{\rm c}})$ . Видно, что местоположение точек для сильнополярных соединений относительно точек для малополярных производных тиофена отличается от аналогичного графика в координатах  $\overline{q}_{dif,1} = f(\alpha_M)$ (рис. 3). Также были рассчитаны значения  $\delta \overline{q}_{dif,1}$ (табл. 2, колонка II). Из представленных данных видно, что величины  $\delta \overline{q}_{\rm dif,1}$ , полученные на основе параметра  $T_{\rm c}/\sqrt{P_{\rm c}}$ , гораздо хуже различают молекулы рассмотренных адсорбатов по их способности к специфическим взаимодействиям с поверхностью графита. Причина этого заключается в том, что значения  $T_{\rm c}$  и  $P_{\rm c}$  не только содержат информацию о способности веществ к дисперсионным взаимодействиям, но и отражают весь спектр возможных межмолекулярных взаимодействий. Поэтому при определении вклада специфических взаимодействий в суммарную теплоту адсорбции в качестве коррелируемого параметра наилучшим образом подходит молекулярная поляризуемость ( $\alpha_{\rm M}$ ).

Подвижность молекул исследованных производных тиофена на поверхности Carbopack C HT оценена в рамках модели двумерного идеального

газа с помощью величин  $\Delta(\overline{S}_{1,c}^{\circ})^{s}$  (теор.), рассчитанных по формуле [30]:

$$\Delta(\overline{S}_{1,c}^{o})^{s}(\text{reop.}) = R \ln(MT_{av})^{0.5} + 56.95 + R.$$
(6)

В рамках этой модели принимается, что при адсорбции молекул на плоской поверхности молекула теряет лишь одну степень свободы поступательного движения, направленного перпендикулярно поверхности. Рассчитанные таким образом значения  $\Delta(\overline{S}_{1,c}^{o})^{s}$  (теор.) приведены в табл. 4. Видно, что  $\Delta(\overline{S}_{1,c}^{o})^{s}$  (эксп.) заметно ниже  $\Delta(\overline{S}_{1,c}^{o})^{s}$ (теор.), что свидетельствует о сохранении части колебательных степеней свободы при переходе адсорбата из равновесной газовой фазы в адсорбированное на ГТС состояние. Следует отметить, что наибольшие различия в величинах  $\Delta(\overline{S}_{1,c}^{o})^{s}$ (эксп.) и  $\Delta(\overline{S}_{l,c}^{o})^{s}$  (теор.) наблюдаются в случае соединений, для которых реализуются преимущественно дисперсионные взаимодействия с поверхностью графита. Вместе с тем, для соединений с несколькими функциональными группами (8, 12–17) и битиофена (9) величина  $\delta\Delta(\overline{S}_{l,c}^{o})^{s}$  сопоставима с экспериментальной погрешностью



**Рис. 5.** Зависимость теплоты адсорбции ( $\bar{q}_{dif,1}$ , кДж/моль) от критических параметров ( $T_c/\sqrt{P_c}$ , К/бар<sup>0.5</sup>) исследованных производных тиофена (светлые точки – эксперимент; темные – расчет (уравнение (5))).

| Адсорбат | М     | T <sub>av</sub> , K | $-\Delta(\dot{z})$ | $\delta \Lambda (\overline{S}^{0})^{s}$ |       |  |  |
|----------|-------|---------------------|--------------------|-----------------------------------------|-------|--|--|
|          |       |                     | эксп.              | теор.                                   |       |  |  |
| 1        | 84.1  | 353.0               | 93.5               | 108.0                                   | -14.5 |  |  |
| 2        | 98.0  | 383.0               | 96.9               | 109.1                                   | -12.2 |  |  |
| 3        | 98.0  | 383.0               | 96.4               | 109.1                                   | -12.7 |  |  |
| 4        | 118.6 | 393.0               | 99.4               | 110.0                                   | -10.6 |  |  |
| 5        | 163.0 | 393.0               | 99.4               | 111.3                                   | -11.9 |  |  |
| 6        | 163.0 | 393.0               | 99.5               | 111.3                                   | -11.8 |  |  |
| 7        | 210.0 | 403.0               | 100.1              | 111.7                                   | -11.6 |  |  |
| 8        | 300.0 | 500.0               | 106.4              | 114.8                                   | -8.4  |  |  |
| 9        | 167.0 | 480.0               | 111.3              | 112.2                                   | -0.9  |  |  |
| 10       | 129.1 | 438.0               | 102.2              | 110.8                                   | -8.6  |  |  |
| 11       | 126.2 | 453.0               | 101.2              | 110.8                                   | -9.6  |  |  |
| 12       | 141.2 | 473.0               | 116.5              | 111.4                                   | 5.1   |  |  |
| 13       | 174.1 | 478.0               | 106.8              | 112.4                                   | -5.6  |  |  |
| 14       | 174.1 | 478.0               | 107.2              | 112.4                                   | -5.2  |  |  |
| 15       | 208.0 | 463.0               | 110.4              | 113.0                                   | -2.6  |  |  |
| 16       | 157.2 | 473.0               | 108.3              | 111.9                                   | -3.6  |  |  |
| 17       | 255.0 | 473.0               | 106.2              | 113.9                                   | -7.7  |  |  |

**Таблица 4.** Сравнение значений  $\Delta(\overline{S}_{1,c}^{o})^{s}$  (эксп. и теор.) для исследованных производных тиофена

определения величины  $\Delta(\overline{S}_{1,c}^{o})^{s}$  (границы экспериментальной погрешности обозначены пунктирной линией на рис. 6), что делает модель двумерного идеального газа применимой к описа-



**Рис. 6.** Зависимость величин  $\Delta(\overline{S}_{1,c}^0)^s$  (светлые точки – эксперимент; темные – расчет (уравнение (6))) от молекулярной массы исследованных производных тиофена.

нию адсорбции данных соединений на графите. Можно предположить, что реализующееся выше специфическое взаимодействие полярных групп с поверхностью графита препятствует реализации колебаний перпендикулярно плоской поверхности адсорбента. Таким образом, в адсорбированном состоянии молекулы тиофенов с полярными группами более "прижаты" к плоской поверхности Carbopack C HT по сравнению с малополярными соединениями. Можно заключить, что для малополярных молекул производных тиофена модель двумерного идеального газа оказывается достаточно грубым приближением. Последнее хорошо согласуется с результатами работы [7] по анализу величин  $\Delta(\overline{S}_{1,c}^{0})^{s}$  для молекул незамещенного тиофена и 2,2'-битиофена.

## ЗАКЛЮЧЕНИЕ

В условиях равновесной ГАХ на ГТС марки Carbopack C НТ в широком интервале температур впервые определены значения ТХА молекул тиофена и его различных производных; показано, что значения ТХА существенно зависят от числа и природы заместителей в основном структурном фрагменте. Установлено, что поверхность ГТС характеризуется низкой структурной селективностью в отношении изомеров положения в ряду производных тиофена.

Изоструктурные исследованным производным тиофена и близкие по физико-химическим характеристикам замещенные бензолы характеризуются более высокими значениями ТХА, что обусловлено меньшей площадью контакта производных тиофена с графитоподобной поверхностью вследствие больших ван-дер-ваальсовых размеров атома S. На основании хроматографически определенных теплот адсорбции нитро-, ацето- и ацетамидотиофенов впервые установлен и исследован эффект полярного удерживания на графите из газовой фазы, обусловленный реализацией дополнительных к дисперсионным специфических межмолекулярных взаимодействий полярных групп в адсорбате с легкополяризуемой поверхностью базисной грани графита; определен количественный вклад этого эффекта в значения теплот адсорбции.

Показано, что модель двумерного идеального газа удовлетворительно описывает экспериментальные значения  $\Delta(\overline{S}_{1,c}^{o})^{s}$  в случае адсорбции полярных молекул производных тиофена на поверхности Carbopack C HT, однако для описания подвижности молекул тиофена и его метил- и галогенпроизводных эта модель имеет серьезные ограничения и не может быть использована для априорного расчета величин  $\Delta(\overline{S}_{1,c}^{o})^{s}$ .

Авторы выражают искреннюю признательность А.В. Юдашкину и В.В. Мешковой за предоставленные для исследования образцы некоторых изученных производных тиофена.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 16-43-630634 р\_а) и Министерства науки и высшей школы РФ в рамках базовой части государственного задания ФГБОУ ВО "СамГТУ" ("Термодинамика межмолекулярных взаимодействий в системах с 2D- и 3D-типами структурной селективности" № 4.6328.2017/8.9).

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Киселев А.В., Мигунова И.А., Яшин Я.И. // Журн. физ. химии. 1968. Т. 42. № 5. С. 1235.
- Elkington P.A., Curthoys G. // J. Phys. Chem. 1969.
   V. 78. № 7. P. 2321.
- 3. Буряк А.К., Даллакян П.Б., Киселев А.В. // Докл. АН СССР. 1985. Т. 282. № 2. С. 350.
- Даллакян П.Б. Связь структуры некоторых гетероциклических соединениий с их адсорбцией на графитированной термической саже: Автореф. дис.... канд. хим. наук. М.: МГУ, 1986. 22 с.
- 5. Даллакян П.Б., Киселев А.В. // Журн. физ. химии. 1985. Т. 59. № 5. С. 1277.
- 6. Даллакян П.Б., Киселев А.В. // Там же. 1985. Т.59. № 5. С. 1278.
- 7. Лопаткин А.А., Даллакян П.Б. // Там же. 1997. Т. 71. № 7. С. 1333.
- Adeeva V.G., Bobyleva M.S., Kulikov N.S., Kharchenko V.G. // J. Chem. Soc., Perkin Trans. 2. 1992. № 6. P. 965.
- 9. *Kulikov N.S., Bobyleva M.S.* // J. Chem. Soc., Perkin Trans. 2. 2000. № 3. P. 571.
- 10. Емельянова Н.С. Адсорбция тиофенсодержащих гетероциклов из растворов на пористом графитированном углероде и гексадецилсиликагеле в условиях жидкостной хроматографии: Автореф. дис.... канд. хим. наук. Саратов: СГУ, 2013. 21 с.
- Bernes S., Davila-Jimenez M.M., Elizalde-Gonzalez M.P. et al. // Materials Chemistry and Physics. 2004. V. 85. P. 347.

- Экспериментальные методы в адсорбции и молекулярной хроматографии / Под ред. Ю.С. Никитина и Р.С. Петровой. М.: Изд-во МГУ, 1990. 318 с.
- 13. Яшкин С.Н., Светлов Д.А., Новоселова О.В., Яшкина *Е.А.* // Изв. АН. Сер. хим. 2008. Т. 57. № 12. С. 2422.
- 14. *Лопаткин А.А.* // Рос. хим. журн. 1997. Т. 41. № 3. С. 85.
- 15. *Яшкин С.Н.* // Изв. АН. Сер. хим. 2014. Т. 63. № 3. С. 582.
- 16. *Яшкин С.Н., Светлов Д.А., Мурашов Б.А. //* Журн. прикл. химии. 2013. Т. 86. № 3. С. 463.
- 17. The Chemistry of Heterocyclic Compounds. V. 44. Thiophene and Its Derivatives / Ed. by S. Gronowitz. New-York: John Wiley & Sons, Inc, 1991. P. 1–294.
- Thermophysical Properties of Chemicals and Hydrocarbons / Ed. by *C.L. Yaws*. Amsterdam: Elsevier, 2014. 991 p.
- Айвазов Б.В., Петров С.М., Хайруллина В.Р., Япрынцева В.Г. Физико-химические константы сераорганических соединений. М.: Химия, 1964. 280 с.
- 20. *Todeschini R., Consonni V.* Handbook of Molecular Descriptors. Weinheim: Wiley-VCH, 2000. 667 p.
- 21. http://www.chemspider.com
- Зефиров Ю.В. // Кристаллография. 1997. Т. 42. № 1. С. 122.
- 23. *Реутов О.А., Курц А.Л., Бутин К.П.* Органическая химия. Ч. 1. М.: Изд-во МГУ, 1999. С. 78.
- Киселев А.В., Яшин Я.И. Адсорбционная газовая и жидкостная хроматография. М.: Химия, 1979. 288 с.
- Яшкин С.Н., Мурашов Б.А., Климочкин Ю.Н. // Журн. физ. химии. 2011. Т. 85. № 4. С. 758.
- West C., Elfakir C., Lafosse M. // J. Chromatogr. A. 2010. V. 1217. № 19. P. 3201.
- 27. Pereira L. // Journal of Liquid Chromatography & Related Technologies. 2008. V. 31. № 11. P. 1687.
- Knox J.H., Ross P. // Advances in Chromatogr. 1997. V. 37. P. 73.
- 29. Березин Г.И. // Докл. АН. 1974. Т. 217. № 4. С. 843.
- 30. *Лопаткин А.А.* // Росс. хим. журн. 1996. Т. 40. № 2. С. 5.