ФОТОХИМИЯ И МАГНЕТОХИМИЯ

УДК (535.21 + 541.14 + 541.61) : 556.33

ФОТОДИССОЦИАЦИЯ ПРОТОНИРОВАННЫХ ФОРМ АМИНО-И ДИМЕТИЛАМИНОАЗОБЕНЗОЛА ПО ДАННЫМ РЕЗОНАНСНОЙ РАМАНОВСКОЙ СПЕКТРОСКОПИИ

© 2019 г. Ю. А. Михеев^{*a*,*}, Ю. А. Ершов^{*b*}

^а Российская академия наук, Институт биохимической физики им. Н.М. Эмануэля, Москва, Россия ^b Московский государственный технический университет им. Н.Э. Баумана, Москва, Россия *e-mail: mik@sky.chph.ras.ru Поступила в редакцию 15.03.2018 г.

Приведен анализ литературных данных по резонансной рамановской спектроскопии амино- и диметиламиноазобензола на основе ранее сформулированных представлений о ридимерном строении аминоазокрасителей. Показана несостоятельность традиционной мономерно-хиноидной теории таутомерии и цветности при отнесении полос в рамановских спектрах протонированных форм амино- и диметиламиноазобензола. Резонансные рамановские спектры адекватно охарактеризованы в рамках ридимерного строения протонированных форм. Установлен ранее неизвестный факт, что при фотовозбуждении протонированных ридимеров происходит их переход в сильные кислоты.

Ключевые слова: аминоазобензольные красители, ридберговские димеры, резонансная рамановская спектроскопия, фотохимия протонированных ридимеров

DOI: 10.1134/S0044453719010205

Проведенный в работах [1-5] анализ UV-Visспектров аминоазокрасителей, в частности, аминоазобензола (ААВ), диметиламиноазобензола (DAB) и различных их С- и аминопроизводных, обнаружил наличие ранее неизвестного фундаментального свойства: аминоазокрасители в своем основном состоянии являются субнаночастицами – ридберговскими димерами (ридимерами). Ридимеры (например, AAB₂ и DAB₂) стабилизируются межмономерной ковалентной связью нового типа. Эта связь образуется в результате спаривания электронов, промотированных с *sp*²-орбиталей атомов N азогрупп на ридберговские 3*s*-орбитали азогрупп. При этом характерная для данных азокрасителей цветность связана не с их мономерными хиноидными таутомерами, как полагали более 100 лет, а с катионами фениламинильного типа хромогенными группами ридимеров.

Ридимеры, попадая в среду с достаточно высокой кислотностью, распадаются на протонированные мономерные фрагменты с хиноидным строением, которые, вопреки сложившемуся мнению, не имеют окраски, так как не поглощают Vis-света. При этом углубление окраски растворов азокрасителей, наблюдаемое при низких кислотностях, обусловлено протонированием ридимерных аминогрупп без распада ридимеров. Для таких ридимеров характерны специфические хромогены — смежные катионы фениламинильного типа. В отдельности каждый из этих катионов сам по себе имеет полосу поглощения в Visобласти спектра. Вместе с тем, ридимерная фиксация катионов в смежном положении (при отсутствии между ними π-сопряжения по Хюккелю в основном состоянии) превращает их в спаренные резонаторы с вырожденными π^* -уровнями. Между ними в фотовозбужденном состоянии возникает энергетическое взаимодействие по типу квантово-волновых резонаторов (механизм Симпсона [6]). При этом происходит расщепление вырожденных π^* -уровней и появление Visполос, батохромно смешенных относительно Visполос одиночных катионов [1-5]. Такой механизм характерен также для смежных катионов фениламинильного типа, образующихся в дипротонированном азобензоле (phN^+H-HN^+ph) [7] и фотовозбужденном азобензоле [8].

Результаты работ [1–5] открывают возможность корректировать представления, сложившиеся в предшествующем длительном периоде накопления экспериментальных данных. Такая коррекция проведена в настоящей работе. Здесь рассмотрены результаты исследования аминоазобензола (ААВ) и диметиламиноазобензола (DAB) и их протонированных форм, полученные в работе [9] методом резонансной рамановской спектроскопии (RRS). Следует отметить, что этот вид спектроскопии был впервые зафиксирован как научное

где $R = H, CH_3$

Схема 1.

открытие в "Государственном реестре открытий СССР" и получил название "Явление резонансного комбинационного рассеяния света" [10].

В методе RRS [9, 10] используется фактор значительного усиления интенсивности комбинационного рассеяния (в ~100 раз) при приближении частоты падающего света к максимуму полосы поглощения спектра вещества. Метод RRS интересен не только тем, что позволяет определять RRS-полосы ридимеров AAB_2 и DAB_2 , но и тем, что излучение, генерирующее RRS, может одновременно индуцировать фотохимические реакции ридимеров и демонстрировать образование новых частиц по их собственным RRS-полосам. Следует отметить, что возможность фотоиндуцированных реакций в условиях метода RRS для AAB и DAB в [9] не рассматривалась.

Резонансные рамановские (RR) спектры AAB₂ и DAB₂[9]

Авторы [9] преследовали цель показать эффективность метода RRS для демонстрации обратимых превращений протонированных форм азо-

Рис. 1. Спектры UV–1Vis-поглощения аминоазобензола (*1*) и диметиламиноазобензола (*1*'), а также их протонированных форм (*2* и *2*' соответственно). Данные [9].

красителей ААВ и DAB. Обсуждение RRS-результатов, полученных для протонированных форм, они вели на основе общепринятой схемы таутомерного равновесия между аммониевыми и азониевыми мономерами $Am^+ \leftrightarrow Az^+$:

Регистрацию RR-спектров ААВ₂, DAB₂ и их протонированных форм в [9] осуществляли, используя растворы красителей в ацетонитриле (CH₃CN) при концентрации ~10⁻⁴ моль/л (в расчете на индивидуальные молекулы). Для реализации равновесия $Am^+ \leftrightarrow Az^+$ в растворы вводили минимальные количества кислоты HCl, достаточные для получения монопротонированных (в расчете на молекулы) катионов, контролируя процесс по UV-Vis-спектрам. Полученные для растворов красителей в ацетонитриле UV-Visспектры ([9], рис. 1) представлены в настоящем сообщении на рис. 1 с их реальным отнесением к ридимерам [1–5]. Так, кривые 1, 1' характеризуют непротонированные ридимеры красителей ААВ₂ и DAB₂, кривые 2, 2' – дипротонированные по аминогруппам ридимеры (ААВ⁺Н)₂ и (DAB⁺H)₂.

В [9] желтый цвет растворов исходных красителей традиционно считали свойством молекул (схема 1). Молекулам ААВ приписывали полосу поглощения с максимумом 382 нм (рис. 1, кривая I), а молекулам DAB – полосу 411 нм (рис. 1, кривая 1'). Возникающие при протонировании красителей UV-полосы при 318 нм традиционно отнесли к мономерным формам с аммониевыми катионами Am⁺, а Vis-полосы при 500 нм (ААВ⁺Н)₂ и 515, 535 нм (DAB⁺H)₂ – к мономерным Az⁺-формам с хиноидной структурой (рис. 1, кривые 2, 2'). При всей неадекватности трактовок работы [9], вид UV-Vis-спектров на рис. 1 свидетельствует о практически полном смещении равновесия в сторону протонированных форм. Это доказывается отсутствием в спектрах 2, 2' поглощения непротонированных ридимеров со спектрами 1 (ААВ₂) и 1' (DAB₂).

Возбуждение RR-спектров в [9] осуществляли с помощью пучков непрерывного излучения лазера (на Ar⁺) с длинами волн 351, 458 и 514 нм. Мощность пучков находилась в пределах 25— 50 мВт (~ 10^{16} – 10^{17} фотон/с). Образцы, на которые

Рис. 2. Резонансные рамановские спектры непротонированных аминоазобензола (*1*, *2*) и диметиламиноазобензола (кривые *l*', *2*), а также их протонированных форм (соответственно *3*, *4* и *3*, *4*). Данные [9].

фокусировали излучение, охлаждали во избежание локального нагрева. Для спектрального анализа измеряли интенсивность света, рассеянного под углом 90°, в качестве референтной служила ацетонитрильная RRS-полоса с волновым числом v = 920 см⁻¹. RR-спектры, опубликованные в [9, рис. 3], приведены на рис. 2. Обсуждение этих спектров и квантово-химические расчеты авторы [9] вели в привязке к мнимым мономерным структурам схемы 1, сфокусировав свое внимание главным образом на свойствах ААВ и их катионов (AAB⁺H_{Am} \leftrightarrow AAB⁺H_{Az}). При этом использовали традиционные представления об n,π^* -состояниях азокрасителей, неадекватность которых показана в [1, 4].

Изложенное выше и то, что результаты метода RRS объективно отражают свойства ридимеров азокрасителей, требует нового подхода к рассмотрению RRS-данных [9] на базе результатов [1–5].

RRS-полосы непротонированных ридимеров

RR-спектры непротонированных красителей (рис. 2, кривые *1*, *2* (AAB₂) и *I'*, *2'* (DAB₂)), получены при возбуждении лазерным светом с длинами волн $\lambda_e = 514$ (кривые *1*, *I'*) и 458 нм (кривые *2*, *2'*). Все они имеют отчетливое сходство, а низкая интенсивность спектров *1*, *I'* обусловлена большей удаленностью $\lambda_e = 514$ нм от максимумов Vis-полос поглощения AAB₂ (382 нм) и DAB₂ (411 нм) по сравнению с $\lambda_e = 458$ нм (кривые *2*, *2'*).

В спектре AAB_2 (рис. 2, кривая 2) наиболее сильные полосы отнесены к связям: 1143 см⁻¹– ν (C–N_{AZO}); 1421 см⁻¹– ν (N=N); 1467 см⁻¹–

ν(N=N), δ (C–H), здесь v – валентные колебания (stretch), а δ – плоскостные деформационные колебания (bend). (Те же полосы v(C–N_{AZO}) 1143 [11] и 1142 см⁻¹ [12] вместе с сильной полосой 1440 см⁻¹ [11, 12] присутствуют также в RRS-системе азобензола AB). Отнесение слабых полос (рис. 2, кривая 2): 1189 см⁻¹– δ (C–H); 1312 см⁻¹– δ (C–H), v(C–NH₂); 1596, 1603 см⁻¹ – bend/stretch С–С в Ph-кольцах: v(C–C) + δ (С–С–H). (B RRSсистеме AB тоже присутствуют слабые δ (С–H) 1183, 1315 см⁻¹ и "v(С–С) + δ (С–С–H)" 1594, 1593 см⁻¹ [11, 12].)

На рис. 2 видно, что спектр 2' (DAB₂) качественно повторяет спектр 2 (AAB₂) и, вероятно, поэтому авторы [9] не уделили спектру 2' особого внимания, хотя на нем отметили без объяснения очень слабую полосу 1623 см⁻¹, которая по частоте совпадает с RRS-полосами 1624 см⁻¹ в спектре 3 и 1623 см⁻¹ в спектре 3', отнесенными к сигналам хиноидных структур протонированных мономеров.

е-Таутомеры непротонированных ААВ₂ и DAB₂

Формулы строения непротонированных *е*-таутомеров [1-5] приведены на схеме 2.

На схеме 2 символом R обозначены атомы H или CH₃-группы; точками под атомами N азогруппы обозначены электроны на sp^2 -орбиталях, а точками над N азогруппы — электроны на p_z -орбиталях. Между азогруппами мономеров показаны ридберговские ковалентные связи из двух электронов, промотированных с sp^2 -орбиталей азогрупп на R_{3s}-орбитали. В каждом мономере

Схема 2.

 sp^2 -орбиталь, потерявшая электрон, наделяет свой атом N положительным зарядом. На p_z -орбиталь этого атома N стягивается электрон с p_z -орбитали соседнего атома N (имеющего неподеленную электронную пару на sp^2 -орбитали). И получается, что потерявший sp^2 -электрон атом N, восстанавливает электронейтральность, заряжая положительным зарядом p_z -орбиталь соседнего атома N; получив положительный заряд, p_z -орбиталь (в каждом мономере) поляризует электронную p_z -систему в сопряженных с ней фенильном (Ph) или фениленовом (Ph) кольцах, образуя катионы фениламинильного типа.

В схеме 2а на аминных азотах (R_2N) обозначены *p*_z-орбитали, подающие электроны в соседние фениленовые кольца. Фениленовые кольца, получив электрон, становятся донорами электронов для катионов PhN⁺ в противолежащих мономерах (согласно схеме 2, PhN⁺=Ph⁽⁺⁾ ...(+)N_(··). В результате этого в ридимерах ААВ₂, DAB₂ возникает по два комплекса с переносом заряда (КПЗ), усиливающих связь между мономерами. Характерные для КПЗ кулоновские и обменные взаимодействия между фениленовыми анионами и фениламинильными катионами PhN⁺ в итоге создают более устойчивые е-таутомеры (схема 2б) с катионами $R_2^+ N P \hbar \equiv R_2^{(+)} N_{(\bullet)} \cdots P \hbar^{(+)} -$. В них между противолежащими катионами обоих мономеров действуют одноэлектронные связи по типу

связей, существующих в катионе H_2^+ [3–5, 13].

Индуцированные по схеме 26 положительные заряды делокализуются в *орто-* и *пара*-положениях колец Ph⁽⁺⁾ и Pħ⁽⁺⁾, как в бензильных и фениламинильных катионах [7, 8]. Катионы подобного типа имеют не только связывающие и разрыхляющие молекулярные π -орбитали (MO), но и вакантные несвязывающие MO (HCMO) с нулевой энергией. В таких катионах переход электронов с высших занятых π -орбиталей (B3MO) происходит на HCMO под действием VIS-света ($\pi \rightarrow \pi^*$ -переход). В результате этого в спектрах красителей ААВ₂ и DAB₂ появляются VIS-полосы при 400–410 нм [1–5, 7, 8] (рис. 1 спектры *1*, *1*').

Согласно [3–5], VIS-поглощение при 400 нм у ридимеров DAB₂, растворенных в гептане, обусловлено наложением двух близко расположенных VIS-полос с $\lambda_{max} = 396$ и 384 нм. Они принадлежат неодинаковым по строению катионам фениламинильного типа И претерпевают батохромное смещение при замене гептана этанолом, сливаясь в одну интенсивную уширенную VIS-полосу при $\lambda_{max} = 408$ нм. Сходная полоса с $\lambda_{\text{max}} = 411$ нм наблюдается в спектре раствора DAB₂ в ацетонитриле (рис. 1, кривая 1'). Естественно ожидать, что такая же ситуация имеет место с VIS-полосой в спектре раствора ААВ₂ (рис. 1, кривая *1*).

е-Таутомеризация и RRS-полосы AB и ридимеров AAB₂, DAB₂

е-Таутомеризация ридимеров (схема 2) связана с обменом электронов между орбиталями: $(:sp^2) + R_{3s} \leftrightarrow (:sp^2) + R_{3s}^{\bullet})$, как в ситуации с АВ [8]. Согласно [8], для АВ характерен процесс *е*-таутомеризации, протекающий под влиянием ридберговской 3*s*-орбитали (R_{3s}), которая исполняет роль акцептора электрона, находящегося на *sp*²орбитали того или другого атома азота азогруппы. Благодаря этому обеспечивается чередование актов акцептирования и возврата *sp*²-электрона с участием то одного, то другого атома N азогруппы (*е*-волновой механизм) (схема 3).

Действие этого механизма вызывает непрерывную осцилляцию электрона между электронейтральной формой молекул AB (схема 3A) и двумя поляризованными формами (схема 3B), отличающимися положением заряда в молекуле, причем частота этих актов на многие порядки превосходит частоту электромагнитных UV–Visколебаний [1, 8]. Следует отметить, что вследствие своей ультравысокой частоты *e*-волновая поляризация подключается к актам UV–Vis-аб-

Схема 3.

сорбции одновременно, с частотой электромагнитных колебаний, тем самым усиливая интенсивность RRS-полос AB, AAB₂, DAB₂.

В схеме 3 *е*-таутомер (А) относится к преобладающей по концентрации неполяризованной форме AB с UV-полосой поглощения при 320 нм. Форма В невозбужденного AB имеет низкую концентрацию и обеспечивает AB слабую $\pi \to \pi^*$ -полосу поглощения при 440 нм ($S_0 \to S_1$), эту полосу долгое время приписывали $n \to \pi^*$ -переходу.

Указанные выше RRS-полосы AB возбуждали непрерывным лазерным излучением в Vis-полосе при 440 нм [11]. В [12] использовали пикосекундные импульсы UV-возбуждения в полосе 273 нм и зондовые импульсы в Vis-полосе поглощения с λ_e = 410 нм транзитного S_1 -состояния. (В [8] показано, что S_1 -состояние AB это π,π^* -состояние B* (схема 3)). В [12] установлено, что возбуждение AB в полосе 273 нм (переход $S_0 \rightarrow S_2$) сопровождается мгновенным переходом из франк-кондоновского (FC) состояния S_2 в FC-состояние S_1 (B*), испускающее RRS-полосу v(N=N) = 1428 см⁻¹ и релаксирующее в состояние S_0 , которое имеет RRS-полосу v(N=N) = 1440 см⁻¹.

Таким образом, появление в спектре AB этих интенсивных RRS-полос, как и полос $v(C-N_{AZO}) =$ = 1143 [11] и 1142 см⁻¹ [12], отражает осцилляцию электронов между *sp*²- и R_{3s}-орбиталями азо-групп [8].

В молекуле AB, в отличие от ридимеров AAB₂ и DAB₂, процесс переполяризации фенильных колец создает одинаковые фениламинильные катионы (схема 3B): $({}^{(+)}ph \dots {}^{(+)}N \dots N-ph)R_{3s}^{(-)} \leftrightarrow$ $(ph-N \dots N(+) \dots ph^{(+)})R_{3s}^{(-)}$.

В ридимерах процесс переполяризации охватывает оба мономера и межмономерные ковалентные связи из R_{3s} -электронов. Эти R_{3s} -электроны, вовлекаясь в *e*-обмен (:*sp*²) + $R_{3s} \leftrightarrow$ (:*sp*²) +

 R_{3s}^{\bullet}), способны создавать энергетически неустойчивые *e*-таутомеры с хиноидными мономерами (схема 2в). Такие таутомеры имеют крайне низкую стационарную концентрацию и обладают в спектре 2' (рис. 2) очень слабой RRS-полосой v = 1623 см⁻¹.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 2 2019

Схема 2, позволяет связать дублетные RRS-полосы в спектрах 2, 2' на рис. 2, отнесенные в [9] к v(N=N): 1421, 1467 см⁻¹ (ААВ₂) и 1411, 1462 см⁻¹ (DAB₂), с чередованием *е*-таутомеров (2a) \leftrightarrow (2б). Азогруппы в (2а) должны испытывать некоторое сжатие из-за кулоновского притяжения колец с отрицательным и положительным зарядами. Наоборот, в (26) азогруппы должны испытывать некоторое растяжение из-за отталкивания связанных с ними положительно заряженных колец. Не исключено, что *е*-таутомеризация "а \leftrightarrow б" (схема 2), изменяя электромеханическое состояние азогруппы, приводит к появлению двух RRSполос v(N=N): 1421, 1467 см⁻¹ (ААВ₂) вместо полосы с v(N=N) 1440 см⁻¹, характерной для AB (и, соответственно 1411, 1462 см⁻¹ в случае DAB₂).

Строение, RRS-полосы и UV—Vis-спектры протонированных ридимеров

Представляет интерес заново обсудить отнесение полос RR-спектров, полученных в [9] с λ_e = 514 нм для протонированных красителей (AAB⁺H)₂ и (DAB⁺H)₂ (рис. 2, кривые 3, 3'). Как уже отмечалось, авторы [9] в своем обсуждении и расчетах RRS-полос ограничились примером с $(AAB^+H)_2$ (рис. 2, кривая 3), базируясь на неадекватном механизме $Am^+ \leftrightarrow Az^+$ (схема 1). Наиболее существенным RRS-полосам на кривой 3 авторы дают следующее отнесение, см⁻¹: 896– δ (N– N); 1171, 1177 – δ (C–H); 1276 – ν (C–N_{AZO}); 1328 – δ(С-Н) и ν(N-N); 1492 – δ(С-Н); 1594 – ν(N-N), причем одинарные связи N-N и C-N_{AZO} приписаны хиноидной структуре Az⁺. Кроме того, полоса 1594 см⁻¹ отнесена еще к внутренним валентным и деформационным движениям атомов в бензеноидном кольце хиноидного таутомера Az^+ , а полоса 1624 см⁻¹ – к таким же движениям в хиноидном кольце таутомера Az⁺ (схема 1). Была также отмечена особенно высокая интенсивность полос 1594 и 1624 см⁻¹ на рис. 2 (спектр 3') у мнимого хиноидного таутомера Az⁺.

Выше отмечалось, что UV–Vis-спектры данных протонированных красителей (рис. 1, кривые 2, 2') свидетельствуют о практически полном смещении равновесия протонирования в сторону ридимеров (AAB⁺H)₂, (DAB⁺H)₂. Согласно [1–5],

Схема 4.

е-таутомеры этих ридимеров характеризуются формулами строения, представленными на схеме 4.

На схеме 4 показано, что *е*-таутомерный обмен в ридимерах (4а) \leftrightarrow (4б) идет путем ультрабыстрой переполяризации мономеров с вовлечением в этот обмен и R_{3s} -электронов. Именно такие *е*-таутомеры генерируют UV–Vis-спектры 2, 2', представленные на рис. 1 [1–3, 5]. В частности, отмеченные на схеме 4 светлыми треугольниками смежные пары фенильных и фениленовых колец (не имеющие зарядов) ответственны за UV-полосы при 318 нм дипротонированных ридимеров (AAB⁺H)₂, (DAB⁺H)₂ (рис. 1, кривые 2, 2'). Эти спаренные кольца взаимодействуют друг с другом в возбужденном состоянии по механизму Симпсона [1–3, 5].

Отмеченные черными треугольниками смежные пары фенильных и фениленовых колец ответственны за уширенную Vis-полосу ридимера (AAB⁺H)₂ при 500 нм (рис. 1, спектр 2) и две налагающиеся друг на друга Vis-полосы ридимера (DAB⁺H)₂ с максимумами при 515 и 535 нм (рис. 1, спектр 2'). Указанные Vis-полосы тоже появляются в результате взаимодействия положительно заряженных парных фенильных и парных фениленовых фрагментов по механизму Симпсона [1–5].

Таким образом, UV-полосы при 320 нм и Visполосы с $\lambda_{max} \ge 500$ нм принадлежат не мономерным катионам Am⁺ и Az⁺, а протонированным по аминогруппам ридимерам.

Идентификация RRS-полос, генерируемых светом $c \lambda = 514$ нм

Согласно утверждению авторов [9, табл. 4], все полосы в спектре 3 (рис. 2) принадлежат хиноидным формам (к ним же, по умолчанию, отнесены и полосы спектра 3'). Это утверждение нельзя признать оправданным в отношении всех полос спектра 3 в связи с реальным отсутствием хиноидных структур в основном состоянии протонированных ридимеров [1–5]. В спектре 3 могут присутствовать как RRS-полосы протонированных ридимеров (схема 4), так и RRS-полосы хиноидных структур, образующихся в результате фотохимической реакции.

В связи с этим для идентификации RRS-полос следует привлечь данные инфракрасной спектроскопии (IRS). Лело в том, что области частот колебаний химических связей (группировок) в методе RRS должны соответствовать областям частот колебаний тех же связей (группировок) в IRS-области. Появление RRS-полос (в форме смещения их частот v от частоты возбуждающего электромагнитного излучения V_e) определяется способностью связей (группировок) испытывать поляризацию, тогда как IR-полосы отражают наличие дипольных моментов у связей (группировок). Вместе с тем, несмотря на разную электрофизическую природу, единая механика колебаний атомов предопределяет наличие общих частотных областей для RRS и IRS-полос. Иначе говоря, учет данных IRS может облегчить идентификацию RRS-полос.

В связи с изложенным следует обратить внимание на очень интенсивную RRS-полосу $v = 1623 \text{ см}^{-1}$ (рис. 2, кривая 3') и менее интенсивную $v = 1624 \text{ см}^{-1}$ (рис. 2, кривая 3), которые четко характеризуются как сигналы хиноидных форм [9]. Согласно данным IRS, указанные частоты присутствуют в том же интервале 1639–1600 см⁻¹, где находится сильная IR-полоса, характеристичная для анилиновых производных с C=N-связями [14]. В [15] указано, что валентным колебаниям двойной связи C=N, сопряженной с фенильным кольцом в бензилиденанилине C₆H₅–N=CH– C₆H₅ соответствует полоса 1627 см⁻¹, практически совпадающая по частоте с RRS-полосами хиноидных форм [9].

На рис. 2 в спектрах 3, 3' рядом с полосами с v = 1623 и 1624 см⁻¹ находятся полосы 1595 и 1594 см⁻¹, которые отнесены к внутренним валентным и деформационным колебаниям атомов в бензеноидном кольце хиноидного таутомера Az⁺ [9]. Существенно, что интенсивность полос 1595 и 1594 см⁻¹ в спектрах 3, 3' (рис. 2) значительно выше, чем у таких же полос в спектрах непротонированных ридимеров (рис. 2, кривые 2, 2').

Таким образом, сопоставление данных IRS и RRS подтверждает факт образования хиноидных структур в условиях облучения ридимеров лазерным светом с $\lambda_e = 514$ нм.

Схема 5.

Все остальные полосы в спектре 3 (рис. 2) тоже отнесены к RR-полосам мономерной формы Az⁺ (хиноидный таутомер) [9], что весьма сомнительно. Например, полоса $\delta(C-H) = 1492 \text{ см}^{-1}$ (рис. 2. спектр 3), отнесенная к Az^+ (схема 1) [9], характерна для колебаний связей в бензольных кольцах АВ: ν(С-С) + δ(ССН) [11]. В спектре З' (рис. 2) эта ситуация имеет место для полосы 1494 см⁻¹. Иначе говоря, полосы при 1492 и 1494 см⁻¹ могут принадлежать бензольным кольцам ридимеров (отмечены светлыми треугольниками в схеме 4).

Сомнительно и отнесение полосы 896 см⁻¹ (спектр 3, рис. 2) к $\delta(N-N)$ хиноидной структуры Az^+ (схема 1). Дело в том, что интенсивность референтной RRS-полосы растворителя – ацетонитрила (v = 920 см⁻¹) в спектре *З* значительно ниже, чем в спектре 3. Это связано с тем, что высоты всех полос на графике спектра З' были по необходимости снижены. Если бы в спектре З' референтная полоса ($v = 920 \text{ см}^{-1}$) имела ту же интенсивность, что и в спектре 3, то полоса 900 см⁻¹ превысила бы полосу 896 см⁻¹, а полоса реальной хиноидной структуры ($v = 1623 \text{ см}^{-1}$) не поместилась бы на рисунке. При этом полоса при 896 см^{-1} примерно равна по высоте хиноидной полосе 1624 см⁻¹ (спектр 3, рис. 2), тогда как полоса 900 см⁻¹ несоизмеримо ниже полосы 1623 см⁻¹ (спектр З', рис. 2).

Иначе говоря, между интенсивностями полос при 896 (900) и 1624 см⁻¹ (1623 см⁻¹) нет прямой пропорциональности, необходимой в случае их принадлежности одной и той же хиноидной структуре. Таким образом, полосы 896 и 900 см⁻¹ требуют другого отнесения.

Пользуясь данными метода IRS, можно принять, что за RRS-полосы 896 см⁻¹ (900 см⁻¹) ответственны маятниковые колебания групп H₃N⁺-(R₂HN⁺-), являющихся важнейшими элементами протонированных ридимеров (схема 4). Частота маятниковых колебаний H₃N⁺-группы (установленная для аминокислот) составляет ~800 см⁻¹ [14, с. 372]. В случае протонированных ридимеров эти положительно заряженные группы испытывают кулоновское отталкивание со стороны положительно заряженных фенилено-

вых колец (схема 4). Обусловленное этим отталкиванием механическое напряжение может стать причиной повышения RRS-частоты до 900 см⁻¹.

Из изложенного выше следует, что RRS-полосы в спектрах 3, 3' (рис. 2) принадлежат протонированым по аминогруппам ридимерам и хиноидным продуктам их фотохимического депротонирования.

Фотохимические реакции протонированных ридимеров

Реакцию, индуцированную непрерывным излучением лазера с длиной волны 514 нм можно выразить упрошенно в виде схемы, включающей в себя акты депротонирования и обратимого восстановления исходных ридимеров (схема 5)

Согласно схеме 5, поглощение света с λ_{e} = = 514 нм вызывает частичное депротонирование рилимеров с образованием в них одного мономерного хиноидного фрагмента. Она же объясняет причину появления RRS-полос при 1492 (в спектре *3*) и 1494 см⁻¹ (в спектре *3*), принадлежаших бензольным кольцам частично депротонированных ридимеров (отмечены светлыми треугольниками в схеме 5), но отсутствующих в спектрах 2 и 2'.

Характерно, что фотохимическая реакция депротонирования (схема 5) протекает в среде с достаточно высокой кислотностью и параллельно с генерацией RRS-полос исходных протонированных ридимеров. Это свидетельствует о том, что вызванное фотовозбуждением ридимеров перераспределение электронной плотности и локализация избыточного положительного заряда на аминогруппах ридимеров (по типу $a \rightarrow 6$, схема 5) превращает ридимеры в очень сильные кислоты.

Усиление кислотной функции протонированных ридимеров при их фотовозбуждении – общее свойство протонированных ароматических аминов. Например, протонированный β-нафтиламин $(NpNH_3^+)$ в основном состоянии имеет pK = 4.07 (равновесие: NpNH₃⁺ + H₂O \leftrightarrow NpNH₂ + H₃O⁺). В возбужденном состоянии он имеет рК* на 5-6 единиц меньше, т.е. становится гораздо более сильной кислотой [16].

Сопоставляя спектры 3 и 3' (рис. 2), можно видеть, что интенсивность RRS-полосы хиноидной формы (DAB⁺H)₂ (спектр 3', v = 1623 см⁻¹) значительно выше, чем у хиноидной формы (AAB⁺H)₂ (спектр 3, v = 1624 см⁻¹). Из этого следует, что возбужденное состояние (DAB⁺H)₂^{*} – значительно более сильная кислота, чем (AAB⁺H)₂^{*}.

320

Интересное изменение в RRS-системе происходит при возбуждении (AAB⁺H)₂ непрерывным лазерным излучением с $\lambda_e = 351$ нм. Так, в спектре 4 практически нет полос, отнесенных в [9] к хиноидным структурам Az⁺ (схема 1), и превалируют полосы, отнесенные в [9] к нехиноидным формам (Am⁺) (схема 1): 1148 – v(C–N_{Azo}), δ (C–H); 1185, 1314 – δ (C–H); 1428, 1449, 1471 – v(N=N), а также очень слабая полоса 1595. Характерно, что все эти полосы попадают в частотные RRS-области сигналов непротонированных ридимеров AAB₂ (спектры *1, 2* на рис. 2).

Полученный с $\lambda_e = 351$ нм для (DAB⁺H)₂ спектр 4 (рис. 2) еще более беден по числу полос, имеющих более низкую интенсивность относительно полос $(AAB^+H)_2$ (спектр 4, рис. 2). Вместе с тем, наблюдаемое качественное сходство спектров 4 и 4 друг с другом и со спектрами 2 и 2' (рис. 2) свидетельствует о том, что излучение с $\lambda_{\rm e} = 351$ нм, несущее более высокую энергию, смещает равновесие депротонирования ридимеров сильнее, чем излучение с $\lambda_e = 514$ нм. Излучение с $\lambda_e = 351$ нм поглощается смежными незаряженными фенильными и фениленовыми кольцами (отмечены светлыми треугольниками на схемах 4 и 5). Энергия возбуждения этих колец, скорее всего, частично переносится на смежные заряженные кольца, вызывая быстрое депротонирование одного из ридимерных мономеров по направлению (5а) \rightarrow (5б) в схеме 5.

Следующий акт поглощения излучения с $\lambda_e = 351$ нм уже ридимером (5б) приводит к депротонированию второго ридимерного мономера с образованием дихиноидного *e*-таутомера, изображенного на схеме 2в. Затем дихиноидный *e*-таутомер (энергетически крайне неустойчивый) быстро релаксирует в равновесное состояние ридимерных структур (2а) \leftrightarrow (2б), чьи RRS-полосы преобладают в спектрах 4, 4 (рис. 2). Относительно низкие интенсивности RRS-полос 4, 4[°] (рис. 2), особенно в спектре 4[°], можно связать с наличием побочных фотохимических реакций разрушения ридимеров, протекающих под действием достаточно жесткого UV-излучения с $\lambda_e = 351$ нм.

Таким образом, анализ опубликованных в [9] данных по резонансной рамановской спектроскопии, осуществленный в настоящей работе в рамках концепции ридимерного строения аминоазокрасителей [1-5], показывает применимость этой концепции не только для UV-Visспектроскопических исследований аминоазокрасителей, но и для RRS-исследований. В частности, учет строения протонированных ридимеров позволил уточнить отнесение полученных в [9] RRS-полос. Кроме того, он позволил установить наличие фотохимической реакции в условиях RRS с образованием хиноидных структур, что свидетельствует об усилении кислотных свойств протонированных ридимеров при их фотохимическом возбужлении.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. //* Журн. физ. химии. 2017. Т. 91. № 4. С. 672.
- 2. *Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. //* Там же. 2017. Т. 91. № 10. С. 1683.
- 3. *Михеев Ю.А., Ершов Ю.А. //* Там же. 2018. Т. 92. № 2. С. 267.
- 4. *Михеев Ю.А., Ершов Ю.А. //* 2018. Т. 92. № 8. С. 1251.
- 5. Михеев Ю.А., Ершов Ю.А. // 2018. Т. 92. № 10. С. 1552.
- Robin M.B., Simpson W.T. // J. Chem. Phys. 1962.
 V. 36. № 3. P. 580.
- 7. *Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. //* Журн. физ. химии. 2015. Т. 89. № 2. С. 243.
- 8. *Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. //* Там же. 2015. Т. 89. № 11. С. 1773.
- Matazo D.R.C., Ando R.A., Borin A.C., Santos P.S. // J. Phys. Chem. A 2008. V. 112. № 19. P. 4437.
- 10. <u>www.ross-nauka.narod.ru/06/06-151.html</u>. Авторы: Шорыгин П.П., Иванова Т.М.: Гос. реестр открытий СССР. Научное открытие "Явление резонансного комбинационного рассеяния света". Номер и дата приоритета № 151 от 18 июня 1952 г.
- 11. *Stuart Ch.M., Frontiera R.R., Mathies R.A.* // J. Phys. Chem. A. 2007. V. 111. № 48. P. 12072.
- Fujino T., Tahara T. // J. Phys. Chem. A. 2000. V. 104. № 18. P. 4203.
- Грей Г. Электроны и химическая связь. М.: Мир, 1967. С. 52.
- Беллами Л.Б. Инфракрасные спектры сложных молекул. М.: Изд-во иностр. лит., 1963. С. 368.
- 15. Наканиси К. Инфракрасные спектры и строение органических соединений. М.: Мир, 1965. С. 207.
- 16. *Паркер С.* Фотолюминесценция растворов. М.: Мир, 1972. С. 314.