СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 542.87+543.422.3-74

О ДОПИРОВАНИИ АЭРОГЕЛЯ ОКСИДА ГРАФЕНА АЗОТОМ В ХОДЕ ВОССТАНОВЛЕНИЯ ПАРАМИ ГИДРАЗИНА И НИЗКОТЕМПЕРАТУРНОГО ОТЖИГА НА ВОЗДУХЕ

© 2019 г. Ю. М. Шульга^{*a,b,**}, Е. Н. Кабачков^{*a,c,***}, С. А. Баскаков^{*a*}, Ю. В. Баскакова^{*a*}

^а Российская академия наук, Институт проблем химической физики, Московская обл., г. Черноголовка, Россия ^b Национальный исследовательский технологический университет "МИСиС", Москва, Россия ^c Российская академия наук, Научный центр в Черноголовке, Московская обл., г. Черноголовка, Россия

> *e-mail: yshulga@icp.ac.ru **e-mail: 9610151344@mail.ru Поступила в редакцию 22.03.2018 г.

Методами элементного анализа и рентгеновской фотоэлектронной спектроскопии в аэрогеле оксида графена, который отжигали на воздухе, зафиксировали присутствие азота. Установлено, что азот в заметных количествах появляется в образцах при температуре отжига 125°С. Концентрация азота в аэрогеле достигает максимума (0.17 мас. %) при температуре отжига 225°С. В случае восстановления аэрогеля в парах гидразина концентрация азота в нем достигает 3 мас. %. Для восстановленного гидразином аэрогеля спектр N1s аппроксимируется тремя пиками (399.5, 401.3 и 403.6 эВ). В аэрогеле, отожженном на воздухе, азот присутствует только в двух состояниях, которые соответствуют фотоэлектронным пикам N1s с энергиями связей 399.7 и 401.2 эВ.

Ключевые слова: аэрогель из оксида графена, нагрев на воздухе, восстановление гидразином, элементный анализ, рентгеновская фотоэлектронная спектроскопия **DOI:** 10.1134/S0044453719010278

Известно, что восстановление оксида графена аммиаком или гидразином приводит к тому, что на поверхности нанолистов из атомов углерода появляются азотсодержащие функциональные группы и/или атомы азота, встроенные в углеродную решетку [1-6]. Модифицирование азотом восстановленного оксида графена имеет положительный аспект, поскольку такие образцы в принципе можно использовать в качестве катализаторов реакции восстановления кислорода [7–10] или носителя для металлсодержащих катализаторов. В последнем случае координация металлической частицы с атомом азота подложки будет препятствовать агрегации металлических частиц в ходе катализа (смотри, например, работу [11] и ссылки к ней).

В нашей работе [12] установлено, что гранулированный аэрогель оксида графена в результате отжига на воздухе при умеренных температурах (до 300°С) восстанавливается (карбонизируется) с потерей веса (до 40%), но с сохранением как внешней формы, так и внутренней пористой структуры. Как следствие карбонизации цвет аэрогеля меняется с коричневого до черного. При температуре отжига 175°С и выше аэрогель теряет способность впитывать большие объемы воды. Контактный угол смачивания для капли воды на поверхности аэрогеля растет с увеличением температуры отжига T_0 , при $175^{\circ}C \le T_0 \le 300^{\circ}C$.

Удивительным образом оказалось, что после отжига на воздухе в некоторых образцах методом элементного анализа обнаруживается азот. В настоящей работе мы поставили своей целью рассмотреть закономерности допирования аэрогеля оксида графена азотом в ходе его отжига на воздухе и изучить состояние атомов азота в допированных образцах методом рентгеновской фотоэлектронной спектроскопии. Для сравнения исследовали также аэрогель оксида графена, который был восстановлен парами гидразина и в котором заведомо, как известно из литературы, присутствуют азотсодержащие функциональные группы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез ОГ. Оксид графита был получен модифицированным методом Хаммерса [13]. Суспензия оксида графена была получена путем микромеханической эксфолиации оксида графита в ультразвуковом поле в воде.

Получение аэрогеля оксида графена (АОГ). Методика получения гранулированного АОГ состояла в следующем: гелеобразную суспензию оксида

2.96

	*			· •	
Образец	[С], мас. %	[Н], мас. %	[N], мас. %	[S], мас. %	[O]*, мас. %
Исходный	47.53	3.101	0.00	1.156	48.21

Таблица 1. Элементный состав аэрогеля оксида графена до и после восстановления гидразином

2.243

* Содержания кислорода оценивали по формуле [O] = $100 - \sum_{i} [C_i]$, где $[C_i] -$ содержание *i*-элемента из таблицы.

графена с концентрацией 15 мг/мл медленно прикапывали с помощью шприца-дозатора в стеклянный сосуд Дьюара, заполненный жидким азотом. После замерзания, капли в виде гранул опускаются на дно сосуда. Замороженные гранулы сушили при температуре жидкого азота в течение 3-х суток на установке Martin Christ ALPHA 1–2 LD plus Laboratory Freeze-Dryer. Удельная масса сухих гранул составляла 20 мг/см³.

63.10

Отжиг. Отжиг гранул аэрогеля проводили в печи СШ-80-01 СПУ на воздухе при температурах в диапазоне 25–300°С с шагом 25 градусов. Время отжига составляло 2 часа.

Восстановление. Восстановление гранул проводили в парах гидразина. Для этого на дно герметично закрывающейся емкости из полипропилена объемом 1 л помещали две чашки Петри. В первую чашку помещали навеску АОГ (0.5 г), а во вторую наливали гидразин гидрат (1 мл). Емкость закрывали и помещали в сушильный шкаф на 24 ч при температуре 60°С. При восстановлении гранулы меняют цвет с серо-коричневого на черный. Через сутки гранулы изымали из емкости и сушили на воздухе 3–4 ч при 60–70°С.

Экспериментальное оборудование. Элементный анализ образцов проводили на CHNS/O анализаторе "Vario Micro cube" Elementar GmbH. Спек-

Рис. 1. Обзорный РФЭС спектр аэрогеля, восстановленного гидразином.

тры РФЭС получены, используя электронный спектрометр Specs PHOIBOS 150 MCD, рентгеновская трубка с магниевым анодом (hv = 1253.6 эВ). При съемке спектров вакуум в камере спектрометра не превышал 3 × 10⁻¹⁰ torr. Спектры регистрировались в режиме постоянной энергии пропускания (40 эВ для обзорного спектра и 10 эВ для отдельных линий). Обзорный спектр записывался с шагом 1 эВ, спектры отдельных линий – с шагом 0.03 эВ.

1.538

30.16

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Прежде всего обсудим результаты, полученные при исследовании образца АОГ, восстановленного гидразином. Данные об элементном составе этого образца до и после восстановления представлены в табл. 1. Видно, что восстановление АОГ гидразином сопровождается увеличением содержания углерода и уменьшением содержания кислорода. В восстановленном образце также появляется азот, концентрация которого достаточно высокая — около 3 мас. %.

Обзорный РФЭС спектр восстановленного образца можно видеть на рис. 1. Помимо интенсивных пиков, обусловленных атомами углерода и кислорода, в спектре присутствуют малоинтенсивные пики азота и серы. Состав образца в зоне анализа методом РФС, рассчитанный из интегральных интенсивностей аналитических линий с учетом сечений ионизации, соответствует брутто формуле $C_{0.80}O_{0.16}N_{0.03}S_{0.01}$. Достаточно хорошее соответствие данных о составе образца, полученных поверхностно-чувствительным методом РФС и объемным методом элементного анализа, указывают близкое к гомогенному распределение элементов в образце.

Сразу возникает вопрос, в каком состоянии азот присутствует в аэрогеле. На рентгеновском фотоэлектронном спектре линия N1s (рис. 2) аппроксимируется тремя пиками с энергиями связей ($E_{\rm cB}$) 399.5, 401.3 и 403.6 эВ. Согласно имеющимся в литературе данным [2, 4, 6] пики с $E_{\rm cB}$ = 399.5 и 401.3 эВ обусловлены азотом пиридиновых и пиррольных групп, соответственно. Третий пик многие авторы (см., например, [4, 6, 14–18]) относят к азоту в графеновом слое.

Рентгеновские фотоэлектронные спектры C1s оксида графена (рис. 3) хорошо известны [19–23].

Восстановленный

Рис. 2. *N*1*s* РФЭС спектр аэрогеля, восстановленного гидразином.

Он состоит из трех четко выраженных пиков. Пик 1 (284.6 эВ) обусловлен атомами углерода, в ближайшем окружении которого находятся только атомы углерода (С–С). Это пик графеновых кластеров, которые присутствуют в оксиде графена. Пик 2 (286.6 эВ), приписывают атомам углерода, имеющим одну одинарную связь с атомом кислорода, т.е. гидроксильным и эпоксидным функциональными группам на поверхности графенового листа. Пик 3 (288.3 эВ) связывают с атомами углерода, имеющими двойную связь с атомом кислорода (С=О).

После восстановления гидразином форма C1s спектра меняется (рис. 3). Пик 1 (284.5 эВ) становится более узким и несколько сдвигается в сторону более низких энергий связи. Пик 2 (286.7 эВ). наоборот, становится более широким. Между пиком 1 и 2 появляется дополнительный пик N (285.5 эВ), который можно было бы приписать атомам углерода, связанным с атомом азота. Такое отнесение соответствует литературным данным (см., например, [4, 15, 24-26]). Однако, относительная интенсивность этого пика в спектре $(I_{N}(\text{отн}) = I_{N} / \sum_{i} [I_{i}],$ где $[I_{i}]$ – интенсивность *i*-пи-ка) заметно превышает содержание азота в образце. Следовательно, вклад в интенсивность этого пика могут давать также атомы углерода, связанные с атомами кислорода, которые по энергии связи оказались близки к энергии связи пика N. Это не удивительно, поскольку расстояние между пиками 1 и 2 в оксиде графена меняется и, видимо, зависит от концентрации кислорода в образце. Пики З (287.9 эВ) и 4 (289.5 эВ) по их положению можно отнести к карбонильным и карбок-

Рис. 3. *С*1*s* РФЭС спектр аэрогеля до (а) и после восстановления (б).

Как уже сообщалось, данные об изменении элементного состава образцов АОГ при их отжиге на воздухе, были описаны и обсуждены с точки зрения карбонизации образца в ходе отжига в работе [12]. Приведем здесь только табличные данные о составе исследованных образцов (табл. 2) и график изменения содержания азота в зависимости от температуры отжига (рис. 4). Как можно видеть из графика, содержание азота достигает максимума при температуре отжига 225°С. Именно этот образец был выбран для исследования методом РФЭС.

Линия N1s (рис. 5) этого образца аппроксимируется двумя пиками с энергиями связей 399.7 и 401.2 эВ. От линии N1s AOC, восстановленного гидразином, линия N1s образца, отожженного на воздухе при 225°C, отличается меньшей интенсивностью и отсутствием третьего пика с $E_{\rm cB} =$ = 403.6 эВ. Соотношением пиков, обусловлен-

сильным группам.

T, °C	[С], мас. %	[Н], мас. %	[N], мас. %	[S], мас. %
25	47.42	3.129	0.00	1.183
50	47.53	3.101	0.00	1.156
75	48.17	2.904	0.01	1.292
100	51.74	3.194	0.00	1.270
125	51.08	2.474	0.04	1.267
150	53.73	2.278	0.08	1.326
175	66.87	1.382	0.08	1.911
200	68.73	1.192	0.10	1.747
225	71.97	0.941	0.17	0.955
250	74.27	0.912	0.13	0.909
275	73.94	0.805	0.13	0.445
300	74.52	0.744	0.11	0.412

Таблица 2. Элементный состав исследуемых образцов (*T* – температура отжига)

ных пиридиновыми и пиррольными группами, также изменилось в пользу последних.

Если связывать появление в составе отожженных на воздухе образцов АОГ азотсодержащих функциональных групп с азотом воздуха, то сразу возникает вопрос об активационном центре, поскольку молекулярный азот принято считать инертным газом, который при комнатной температуре реагирует только с металлическим литием. С другой стороны, известно, что биологические объекты могут фиксировать азот при нормальных условиях. В настоящее время полагают, что в ферментативной фиксации молекулярного азота участвуют соединения молибдена и железа (железо-молибденовый кофактор). Понятно, что в нашем случае присутствие молибдена исключено. Но проведенные методом рентгеновской флюо-

Рис. 4. Зависимость содержания азота в АОГ от температуры нагрева в атмосфере воздуха (согласно данным элементного анализа).

ресценции анализы разных образцов АОГ показали присутствие в них небольшого количества марганца (0.01-0.17 мас. %). Причина присутствия марганца в АОГ обусловлена использованием КМпО₄ в синтезе оксида графита по методу Наммерса [13]. Другие переходные элементы, если и присутствуют в АОГ, то их содержание меньше порога чувствительности метода РФА. Таким образом, установленное нами образование пиридиновых и пиррольных групп в аэрогелях из оксида графена при отжиге на воздухе является примером небиологической фиксации молекулярного азота из воздуха при умеренных температурах.

Таким образом, в результате проделанной работы было установлено, что гранулированный аэрогель оксида графена можно допировать азотсодержащими функциональными группами в ходе отжига на воздухе при умеренных температурах. Методом элементного анализа показано, что азот в заметных количествах появляется в образцах АОГ при температуре отжига 125°С. Концентрация азота в аэрогеле достигает максимума (0.17 мас. %) при температуре отжига 225°С. В случае восстановления аэрогеля в парах гидразина концентрация азота в нем достигает 3 мас. %. Для восстановленного гидразином аэрогеля спектр N1s аппроксимируется 3-мя пиками (399.5, 401.3 и 403.6 эВ). В АОГ, отожженном на воздухе, азот присутствует только в двух состояниях, которые соответствуют фотоэлектронным пикам N1s с энергиями связей 399.7 и 401.2 эВ.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта № 17-43-500093 р а).

Рис. 5. N1s спектр АОГ, отожженного на воздухе при 225°C.

СПИСОК ЛИТЕРАТУРЫ

- Lee S.H., Kim H.W., Hwang J.O. et al. // Angew. Chem. 2010. V. 122. P. 10282.
- Xue Y., Liu J., Chen H. et al. // Angew. Chem. Int. Ed. 2012. V. 51. P. 12124.
- Kondo T., Casolo S., Suzuki T. et al. // Phys. Rev. 2012. V. B86. P. 035436.
- Wang R., Xu C., Sun J. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. P. 3427.
- Qin Y., Yuan J., Li J. et al. // Adv Mater. 2015. V. 27. P. 5171.
- Iamprasertkun P., Krittayavathananon A., Sawangphruk M. et al. // Carbon. 2016. V. 102. P. 455.
- Liu R.L., Wu D.Q., Feng X.L. et al. // Angew. Chem. Int. Ed. 2010. V. 49. P. 2565.
- Wang S.Y., Yu D.S., Dai L.M. et al. //ACS Nano. 2011. V. 5. P. 6202.
- Li Y., Zhao Y., Cheng H. et al. // J. Am. Chem. Soc. 2012. P. 15, 134.
- 10. Wang S., Iyyamperumal E., Roy A. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 11756.
- Wu Z.S., Yang S., Sun Y. et al. // J. Amer. Chem. Soc. 2012. V. 134. V. 9082.
- 12. Баскаков С.А., Баскакова Ю.В., Блинова Л.Н. и др. // ХВЭ. 2018. Т. 52. (в печати).
- Hummers W.S., Offman R.E. // J. Am. Chem. Soc. 1958. V. 80. P. 1339.

- 14. Yang S., Zhi L., Tang K. et al. // Adv. Funct. Mater. 2012. V. 22. P. 3634.
- 15. *Hu H., Zhao Z., Wan W. et al.* // Adv. Mater. 2013. V. 25. P. 2219.
- 16. *Jeong H.M., Lee J.W., Shin W.H. et al.* // Nano Lett. 2011. V. 11. P. 2472.
- Sui Z., Wang C., Shu K. et al. // J. Mater. Chem. 2015. V. A3. P. 10403.
- Wang H., Wu Z., Meng F. et al. // Chem. Sus. Chem. 2013. V. 6. P. 56.
- Yang D., Velamakanni A., Bozoklub G. et al. // Carbon. 2009. V. 47. P. 145.
- 20. Stankovich S., Dikin D.A., Piner R.D. et al. // Carbon. 2007. V. 45. P. 1558.
- Park S., An J., Potts J.R. et al. // Carbon. 2011. V. 49. P. 3019.
- 22. Shulga Y.M., Baskakov S.A., Knerelman E.I. et al. // RSC Adv. 2014. V. 4. P. 587.
- 23. *Voylov D.N., Agapov A.L., Shulga Y.M. et al.* // Carbon. 2014. V. 69. P. 563.
- 24. *Reddy A.L.M., Srivastava A., Gowda S.R. et al.* // ACS Nano. 2010. V. 4. P. 6337.
- 25. *Wang X., Cao X.Q., Bourgeois L. et al.* // Adv. Funct. Mater. 2012. V. 22. P. 2682.
- 26. Wohlgemuth S.-A., White R.J., Willinger M.-G. et al. // Green Chem. 2012. V. 14. P. 1515.