_____ ФИЗИЧЕСКАЯ ХИМИЯ __ РАСТВОРОВ

УДК 541. 11:536.7

СТАНДАРТНАЯ ЭНТАЛЬПИЯ РАСТВОРЕНИЯ КРИСТАЛЛИЧЕСКОГО DL-АЛАНИЛ-DL-НОРВАЛИНА

© 2019 г. А. И. Лыткин^{*a*}, В. В. Черников^{*a*}, О. Н. Крутова^{*a*,*}, В. Г. Баделин^{*b*}, Г. Н. Тарасова^{*b*}

^аИвановский государственный химико-технологический университет, Иваново, Россия ^bРоссийская академия наук, Институт химии растворов им. Г.А. Крестова, Иваново, Россия *e-mail: kdvkonkpd@yandex.ru Поступила в редакцию 18.04.2018 г.

Определены тепловые эффекты растворения кристаллического DL-аланил-DL-норвалина в воде и в растворах гидроксида калия при 298.15 К калориметрическим методом. Рассчитаны стандартные энтальпии образования пептида и продуктов его диссоциации в водном растворе.

Ключевые слова: термодинамика, кислота, растворы, калориметр, энтальпия **DOI:** 10.1134/S0044453719020183

Одной из центральных задач современной физической химии является всестороннее исследование различного рода систем, состоящих из биоорганических молекул, что объясняется неослабевающим интересом к поиску путей создания новых перспективных материалов с заданными свойствами [1]. Подобные системы могут выступать в качестве биодатчиков, оптических фильтров, носителей лекарственных препаратов и др. Дипептиды – соединения, состоящие из двух остатков аминокислот, соединенных друг с другом амидной (пептидной) связью. В водном растворе они существуют в виде цвиттер-ионов. Пептидная связь характеризуется сопряжением π -электронов атомов азота, углерода и кислорода [2], вследствие чего она имеет характер частично двойной связи, что проявляется в уменьшении ее длины (1.32×10^{-10} м) по сравнению с длиной ординарной связи C–N (1.47×10^{-10} м).

Целью настоящей работы является определение стандартных энтальпий образования DL-аланил-DL-норвалина и продуктов его диссоциации в водном растворе по тепловым эффектам растворения пептида в воде и в водных растворах КОН при 298.15 К.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали препарат DL-аланил-DL-норвалина ($C_8H_{16}N_2O_3$) фирмы Acros Organics, USA.

Измерения теплот растворения кристаллического DL-аланил-DL-норвалина проводили на калориметре с изотермической оболочкой и автоматической записью температуры [3]. Калориметр калибровали по току. Объем калориметрической жидкости составлял 42.32 мл. Работа калориметрической установки была проверена по общепринятым калориметрическим стандартам теплоте растворения кристаллического хлорида калия в воде. Препарат КСІ очищали двукратной перекристаллизацией реактива марки "х.ч." из бидистиллята. Согласование экспериментально полученных теплот растворения KCl (кр.) в воде $\Delta_{\rm sol}H_{(\infty {\rm H}_{2}{\rm O})} = -17.25 \pm 0.06$ кДж/моль с наиболее надежными литературными данными [4] свидетельствует об отсутствии заметной систематической погрешности в работе калориметрической установки. Навески пептидов взвешивали на весах марки ВЛР-200 с точностью 2×10^{-4} г. Перед взятием навески препарат высушивали до постоянной массы при 150°С. Содержание H₂O в пептиде составляло не более 0.2-0.3%. Бескарбонатный раствор КОН приготавливали из реактива марки "х.ч." по обычной методике [5]. Доверительный интервал среднего значения ΔH вычисляли с вероятностью 0.95. Равновесный состав растворов рассчитывали с использованием программы RRSU [6].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Процесс растворения DL-аланил-DL-норвалина в воде можно представить схемой:

$$HL^{\pm}(\kappa p.) + nH_2O = HL^{\pm}(p-p, nH_2O).$$
 (1)

	$m \times 10^3$ моль	с моль			$m \times 10^3$ моль	с моль	
Навеска	$HL^{\pm}/1000 \text{ kg}$	H ₂ O/моль	$-\Delta_{\rm sol}H$	Навеска	$HL^{\pm}/1000 \text{ kg}$	Н₂О/моль	$-\Delta_{\rm sol}H$
пептида, г	H ₂ O	HL^{\pm}	301	пептида, г	H_2O	HL^{\pm}	301
	_				_		
0.0081	1.021	54342	4138	0.0139	1.752	31667	4625
0.0082	1.034	53679	4155	0.0205	2.585	21472	4602
0.0083	1.046	53032	4192	0.0207	2.610	21264	4689
0.0106	1.336	41525	4202	0.0209	2.635	21061	4612
0.0108	1.361	40756	4230	0.0412	5.195	10684	4814
0.0109	1.374	40382	4260	0.0413	5.208	10658	4820
0.0135	1.702	32605	4430	0.0418	5.271	10530	4888
0.0137	1.727	32129	4560				

Таблица 1. Тепловые эффекты растворения DL-аланил-DL-норвалина в воде при 298.15 К (Дж/моль), *с* – величина разведения

Стандартные энтальпии образования раствора DL-аланил-DL-норвалина при различных разведениях рассчитывали по уравнению:

$$\Delta_{\rm f} H^0 ({\rm HL}^{\pm}, {\rm p-p}, n{\rm H}_2{\rm O}, 298.15 {\rm K}) = \Delta_{\rm f} H^0 ({\rm HL}^{\pm}, {\rm Kp.}, 298.15 {\rm K}) + \Delta_{\rm sol} H ({\rm HL}^{\pm}, {\rm Kp.}, 298.15 {\rm K}), \qquad (2)$$

где $\Delta_f H^0(HL^{\pm}, \kappa p., 298.15 \text{ K})$ – стандартная энтальпия образования кристаллического DL-аланил-DL-норвалина; $\Delta_{sol}H(HL^{\pm}, 298.15 \text{ K})$ – теплота растворения пептида (табл. 1).

Величины стандартных энтальпий сгорания и образования DL-аланил-DL-норвалина были рассчитаны по аддитивно групповому методу [7—9] основанному на групповой систематике с классификацией фрагментов типа классификации Бенсона, которая учитывает влияние первоначального окружения для атомов. Расчет энтальпии сгорания и образования исследуемого соединения проводили по формуле:

$$_{c(f)}H^{\circ}(TB) = \sum A_i \Delta_{c(f)} H_i^{\circ}, \quad i = 1, 2, 3...n,$$
 (3)

Таблица 2. Численные значения энергетических вкладов в величины энтальпий образования по классификации Бенсона

Группа	п	$-\Delta_{\rm f} H^0({ m kp.})_i,$ кДж/моль	−∆ _с <i>Н</i> ⁰ (кр.) _{<i>і</i>} , кДж/моль
(С)–СООН	1	435.30	100.7
$(C)-NH_2$	1	50.8	232.1
(C)–CH ₃	2	64.3	758.2
$(N)(C)_2-CH$	2	21.6	516.7
(N) (C)–C=O	1	182.3	211.7
$(C)_2 - NH$	1	-28.9	168.1
$CH_2 - (C)_2$	2	27.8	651.7

Обозначения: *n* – количество групп.

где $\Delta_{c(f)}H_i^{\circ}$ — энергетический вклад в теплоту сгорания и образования определенной атомной группы, A_i — число таких атомных групп в молекуле, n — число типов атомных групп в молекуле.

Исходные данные для расчета $\Delta_{\rm f} H^{\circ}_{\rm (TB)}({\rm C_8H_{16}N_2O_3}) = -866.9$ кДж/моль представлены в табл. 2.

Из табл. 1 видно, что теплота образования DLаланил-DL-норвалина в водном растворе в исследуемом интервале концентраций практически не зависит от величины разведения, что неудивительно для столь больших разбавлений.

Стандартную энтальпию образования цвиттер-иона DL-аланил-DL-норвалина в состоянии гипотетически недиссоциированном при конечном разведении в водном растворе находили по уравнению:

 $\Delta_{\rm f} H^0 ({\rm HL}^{\pm}, \, {\rm p-p}, \, n{\rm H}_2{\rm O}, \, {\rm гип., \, недисс.,}$ 298.15 K) = $\Delta_{\rm f} H^0 ({\rm HL}^{\pm}, \, {\rm p-p}, \, n{\rm H}_2{\rm O}, \, 298.15 \, {\rm K}) + (4)$ + $\alpha ({\rm H}_2{\rm L}^+) \Delta_{\rm dis} H^0 ({\rm H}_2{\rm L}^+) - \alpha ({\rm L}^-) \Delta_{\rm dis} H^0 ({\rm HL}^{\pm}),$

где $\alpha(H_2L^+)$, $\alpha(L^-)$ – доли частиц H_2L^+ , L^- соответственно; $\Delta_{dis}H(H_2L^+)$, $\Delta_{dis}H(HL^{\pm})$ – тепловые эффекты ступенчатой диссоциации частицы H_2L^+ . Значения $\Delta_{dis}H^0(H_2L^+)$ и $\Delta_{dis}H^0(HL^{\pm})$ определены ранее [10]. Суммарный вклад второго и третьего слагаемых правой части уравнения (3) не превышал 0.16 кДж/моль и практически не изменялся в исследуемой области концентраций.

Стандартную энтальпию образования DL-аланил-DL-норвалина в гипотетическом недиссоциированном состоянии при бесконечном разведении находили экстраполяцией величин, полученных по уравнению (4), на нулевое значение моляльности раствора m. В результате по МНК найдена величина:

0

$$\Delta_{\rm f} H^0({\rm HL}^{\pm}, {\rm p-p}, {\rm H}_2{\rm O}, {\rm станд. c., гип. недисс.},$$

298.15 K) = -870.2 ±1.9 кДж/моль.

Стандартную энтальпию образования частицы L^- в водном растворе определяли, используя данные по теплоте растворения пептида в растворах щелочи при соотношении эквивалентов не менее 1 : 2 (табл. 3). Процесс растворения пептида в растворе КОН можно представить схемой:

$$HL^{\pm}(\kappa p.) + OH^{-}(p-p, nH_2O) =$$

= L^{-}(p-p, nH_2O) + H_2O(x). (5)

Расчет показал, что полнота протекания реакции (5) составляла не менее 99.9%.

Поскольку в реакции (5) $\Delta z^2 = 0$, тепловые эффекты растворения пептида при нулевой ионной силе рассчитывали по уравнению: [11]

$$\Delta_{\rm r} H_{(5)} = \Delta_{\rm r} H_{(5)}^0 + iI, \tag{6}$$

где $\Delta_{\rm r} H_{(5)}$ и $\Delta_{\rm r} H_{(5)}^0$ – тепловые эффекты процесса (5) при конечном и нулевом значениях ионной силы.

Используя полученные величины $\Delta_r H_{(5)}^0$ и значеня $\Delta_f H^{\circ}(OH^-, p-p H_2O, станд. с., 298.15 K), \Delta_f H^{\circ}(H_2O, ж, 298.15 K), рекомендованные справочником [12], рассчитали стандартную энтальпию образования аниона:$

$$\Delta_{\rm f} H^0({\rm L}^-, \text{ p-p, H}_2{\rm O}, \text{ станд. c., 298.15 K}) =$$

= $\Delta_{\rm f} H^0({\rm HL}^{\pm}, \text{ кр., 298.15 K}) + \Delta_{\rm f} H^0({\rm OH}^-, \text{ p-pH}_2{\rm O}, \text{ станд. c., 298.15 K}) + \Delta_{\rm r} H^0_{(5)} -$ (7)
- $\Delta_{\rm f} H^0({\rm H}_2{\rm O}, \text{ ж, 298.15 K}) = -866.9 - 230.04 -$

 $-17.99 + 285.83 = -829.1 \pm 1.9$ кДж/моль.

Стандартную энтальпию образования частицы HL^{\pm} в состоянии станд. с., гип. недисс. рассчитывали также по уравнению:

$$\Delta_{\rm f} H^0 ({\rm HL}^{\pm}, {\rm p-p}, {\rm H}_2{\rm O}, {\rm станд. c., {\rm гип. недисс.,}$$
298.15 K) = $\Delta_{\rm f} H^0 ({\rm L}^-, {\rm p-p}, {\rm H}_2{\rm O}, {\rm станд. c.,}$
298.15 K) – $\Delta_{\rm dis} H^0 ({\rm HL}^{\pm}, 298.15 {\rm K}) =$
= -829.1 – 41.0 = -870.1 ± 1.9 кДж/моль. (8)

Значение стандартной энтальпии образования цвиттер-иона пептида удовлетворительно согласуется с ранее полученной величиной. В качестве наиболее вероятной принята средневзвешенная величина по результатам двух независимых определений $\Delta_f H^0$ (HL[±], p-p, H₂O, станд. с., гип. недисс., 298.15 K) = -870.2 ± 1.9 кДж/моль.

Таблица 3. Тепловые эффекты растворения DL-аланил-DL-норвалина кон при 298.15 К (Дж/моль)

Масса навески, г	$C_{\text{кон}}^{0}$, моль/л	$-\Delta H_{ m sol},$ кДж/моль	α
0.0075	0.00213	18.27 ± 0.20	0.9960
0.0075		18.24 ± 0.20	0.9954
0.0080		18.12 ± 0.20	0.9962
0.0156	0.00418	18.60 ± 0.21	0.9981
0.0158		18.69 ± 0.20	0.9981
0.0156		18.75 ± 0.21	0.9982
0.0407	0.01080	19.54 ± 0.20	0.9993
0.0408		19.51 ± 0.20	0.9993
0.0407		19.58 ± 0.21	0.9995

Таблица 4. Стандартные энтальпии образования DLаланил-DL-норвалина и продуктов его диссоциации в водном растворе

Частица	Состояние	−∆ _f H°(298.15К), кДж/моль
HL^{\pm}	Крист.	866.9 ± 1.9
	р-р, H ₂ O, станд. с., гип. недисс.	870.2 ± 1.9
H_2L^+	р-р, H ₂ O, станд. с., гип. недисс.	878.1 ± 1.9
L-	р-р, H ₂ O, станд. с.	829.1 ± 1.9

Стандартную энтальпию образования частицы H_2L^+ рассчитывали по уравнению:

$$\Delta_{\rm f} H^0({\rm H}_2{\rm L}^+, {\rm p-p}, {\rm H}_2{\rm O}, {\rm станд. c., гип. недисс.,}$$

298.15 K) = $\Delta_{\rm f} H^0({\rm HL}^\pm, {\rm p-p}, {\rm H}_2{\rm O}, {\rm станд. c.,}$
гип. недисс., 298.15 K) – (9)
 $-\Delta_{\rm dis} H^0({\rm H}_2{\rm L}^+, 298.15 {\rm K}) =$
= -870.2 - 7.9 = -878.1±1.9 кДж/моль.

Значения стандартных энтальпий образования DL-аланил-DL-норвалина и продуктов его диссоциации в водном растворе (табл. 4) получены впервые. Они являются ключевыми величинами в термохимии пептида, открывают возможности проведения строгих термодинамических расчетов в системах с DL-аланил-DLнорвалина.

Работа выполнена в НИИ Термодинамики и кинетики химических процессов Ивановского государственного химико-технологического университета в рамках Государственного задания (базовая часть), проект № 4.7104.2017/89.

СПИСОК ЛИТЕРАТУРЫ

- Кобаяси Н. Введение в нанотехнологию / Под ред. Н. Кобаяси М.: изд-во БИНОМ. Лаб. Знаний, 2008. 134 с.
- 2. Паладе Д.М., Шаповалов В.В., Борейко М.К. // Координац. химия. 1975. Т. 1. № 10. С. 1346.
- Васильев В.П., Кочергина Л.А., Крутова О.Н. // Изв. вузов. химия и хим. технология. 2003. Т. 46. Вып. 6. С. 69.
- Parcker W.B. Thermal Properties of Aqueous Uni-Univalent Electrolytes. Washington: NSRDS-NBS, 1965. B. 2. P. 342.
- Коростелев П.П. Приготовление растворов для химико-аналитических работ. М.: Изд-во АН СССР, 1962. 398 с.

- Бородин В.А., Васильев В.П., Козловский Е.В. "Применение ЭВМ в химико-аналитических расчетах". М.: Высш. школа, 1993. 112 с.
- 7. Васильев В.П., Бородин В.А., Копнышев С.Б. // Журн. физ. химии. 1991. Т. 65. № 1. С. 55.
- Кизин А.Н., Лебедев Ю.А. //Докл. АН СССР 1982. Т. 262. № 4. С. 914.
- 9. Тахистов А.В., Пономарев Д.А. Органическая массспектрометрия. С.-Петербург: BBM, 2002. С. 346.
- Arbad B., Jahagirdar D. // Indian J. Chem. 1986. 25A. P. 253.
- 11. Васильев В.П. Термодинамические свойства растворов электролитов, М.: Высшая школа, 1982. С. 200, 313.
- 12. Термические константы веществ. Вып. III / Под ред. В.П. Глушко и др. М.: ВИНИТИ. 1965–1971.