СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 535.37 : 547.7

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ЛЮМИНЕСЦЕНЦИЯ НОВОГО ПРОИЗВОДНОГО ТЕТРАГИДРОИНДОЛА С ФРАГМЕНТОМ БАРБИТУРОВОЙ КИСЛОТЫ

© 2019 г. Б. В. Буквецкий^{*a*}, А. В. Андина^{*b,c,**}, А. Г. Мирочник^{*a,***}

^а Российская академия наук, Дальневосточное отделение, Институт химии, Владивосток, Россия ^bДальневосточный федеральный университет, Владивосток, Россия ^cМорской государственный университет им. адм. Г.И. Невельского, Владивосток, Россия *e-mail: andina@ich.dvo.ru **e-mail: mirochnik@ich.dvo.ru Поступила в редакцию 18.05.2018 г.

Определена кристаллическая структура и изучены спектрально-люминесцентные свойства 5-(6,6диметил-1-(1-нафтил)-4-оксо-2-фенил-4,5,6,7-тетрагидро-1Н-индол-3-ил)-2,4,6(1H,3H,5H)-пиримидинтриона ($C_{30}N_3H_{25}O_4$). В структуре выявлено наличие сильных межмолекулярных водородных связей NH-групп фрагментов барбитуровой кислоты с атомами кислорода соседних молекул, объединяющих молекулы в бесконечную зигзагообразную цепочку. Квантово-химическими методами установлена природа B3MO–HCMO-орбиталей, отвечающих за люминесцентные свойства соединения.

Ключевые слова: тетрагидроиндолы, барбитураты, люминесценция, кристаллическая структура, квантово-химическое моделирование

DOI: 10.1134/S0044453719030026

В настоящее время большое внимание уделяется синтезу и изучению полифункциональных соединений, содержащих в своей структуре различные фармакофорные фрагменты и обладающих люминесцентными свойствами, с целью их дальнейшего применения в молекулярной оптической электронике, химическом анализе, медицинской диагностике, а также для создания оптических хемо- и биосенсоров [1–4].

Особое место среди соединений-фармакофоров, обладающих люминесцентными свойствами занимают азотистые гетероциклы, включающие фрагменты пиррола, тетрагидроиндола и барбитуровой кислоты. Соединения, содержащие в своей структуре пиррольный цикл, проявляют эффективную анальгетическую активность [5]. Замещенные полиарилпирролы обладают разнообразным спектром биологического действия, они перспективны для поиска противоартритных средств [6]. средств лечения диабета и атеросклероза [7], а также болезни Альцгеймера [8]. Тетрагидроиндолы проявляют выраженные антидиабетические свойства [9, 10]. Производные барбитуровой кислоты оказывают эффективное действие на центральную нервную систему, а в последнее время нашли новые биомедицинские применения в таких областях, как терапия рака и СПИДа [11], зубное протезирование, лечение туберкулеза и сахарного диабета, антимикробная терапия, анальгетическое и антидепрессантное воздействие на организм [12].

Сочетание перечисленных фармакофорных фрагментов обусловливает уникальную биологическую активность полифункциональных азотсодержащих гетероциклов. С другой стороны, наличие люминесцентных свойств у многих соединений, включающих фрагменты тетрагидроиндола, пиррола и барбитуровой кислоты позволяет использовать их в качестве флуоресцентных меток в медицинской диагностике. Выявление связи кристаллической структуры указанных соединений с их спектрально-люминесцентными свойствами актуальная задача. В связи с этим ведется обширное исследование кристаллического строения замещенных тетрагидроиндолов и арилпирролов [13–25].

Данная работа посвящена изучению строения и спектрально-люминесцентных свойств нового замещенного тетрагидроиндола: 5-(6,6-диметил-1-(1-нафтил)-4-оксо-2-фенил-4,5,6,7-тетрагидро-1*Н*-индол-3-ил)-2,4,6(1*H*,3*H*,5*H*)-пиримидинтриона (**I**).

Рис. 1. Структура молекулы І.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез соединения I детально описан в работе [26]. Соединение представляет собой бесцветные кристаллы и имеет высокую температуру плавления (т. пл. 307–308°С), обладает яркой люминесценцией в растворе и кристаллическом состоянии.

Электронные спектры поглощения измерены на спектрометре Shimadzu UV,2550 в растворе этанола. Спектры возбуждения люминесценции и люминесценции кристаллов и растворов в этаноле записаны на спектрофлуориметре Shimadzu RF-5301PC.

Для рентгеноструктурного исследования использован изометричный хорошо ограненный прозрачный и бесцветный монокристалл. Полное рентгеноструктурное исследование проведено в системе KAPPA APEXII CCD (Мо K_{α} -излучение, графитовый монохроматор). Сбор экспериментальных данных проведен комбинированным по ϕ - и ω -сканированием с шагом 0.3° , расстоянием кристалл-детектор 45 мм и экспозицией по 20 с на каждый кадр. Обработка, редактирование данных, уточнение параметров элементарной ячейки и пересчет интегральных интенсивностей в модули структурных амплитуд проведены с использованием пакета программ Apex2 [27]. Структура определена прямым методом с последующим уточнением позиционных и тепловых параметров в анизотропном приближении для всех атомов, кроме атомов водорода, по программам [28]. Положения атомов водорода, хотя и выявлены на заключительных синтезах электронной плотности, однако при этом не достигнуто принципиальной новизны, и для дальнейшей работы использованы расчетные и уточненные по модели "наездника".

СІГ-файл, содержащий полную информацию по исследованной структуре, депонирован в ССDС под номером 1546565, откуда может быть получен по запросу на следующем интернет-сайте: www.ccdc.cam.ac.uk/data_request/cif (ССDС 1517748).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Основу структуры кристаллов соединения I составляют молекулы состава $C_{30}N_3H_{25}O_4$, представленные полифункционализированным 4-кето-4,5,6,7-тетрагидроиндолом (рис. 1). Молекула содержит экваториально ориентированный бициклический фрагмент: шестичленный карбоцикл и пятичленный пиррольный гетероцикл, сопряженные по связи C2–C3.

Частью структуры молекулы является фрагмент барбитуровой кислоты (пиримидиновый цикл), NH-группы фрагмента вступают в межмолекулярную водородную связь с атомами кислорода O1 и O3 пиримидинового цикла соседних

Рис 2. Система водородных связей в I.

молекул. Геометрические параметры таких связей составляют величины: при стандартно расчетном расстоянии N–H, равном 0.880 Å, для связи N1–H1...O1 расстояния N1–O1 = 2.906(4), H1–O1 = 2.036(3) Å, \angle N1H1O1 = 169.5° ; для связи N2–H2...O3 расстояния N2–O3 = 2.841(4), H2–O3 = 1.879(3) Å, \angle N2H2O3 = 166.2° . Наличие водородных связей между фрагментами барбитуровой кислоты в (I) приводит к объединению молекул в бесконечную зигзагообразную цепочку в направлении [001] (рис. 2). Действием ван-дерваальсовских взаимодействий бесконечные цепочки объединяются в трехмерный каркас.

Основные кристаллографические параметры I, характеристики рентгеновского дифракционного эксперимента и детали уточнения модели структуры методом наименыших квадратов приведены в табл. 1, а основные межатомные расстояния и валентные углы в табл. 2. Квантово-химические расчеты выполнены в программном пакете Gamess—Us с использованием метода функционала плотности в базисе 6-311 (d, p), с использованием функционала b3lyp.

Согласно расчетным данным, различие между ВЗМО и НСМО составляет –4.15 эВ. Показано, что в основном состоянии молекулы электронная плотность ВЗМО в большей мере локализована на фрагменте тетрагидроиндола и фенильном кольце (рис. 3). Небольшая часть электронной плотности локализована на фрагменте барбитуровой кислоты. При переходе молекулы из основного состояния в возбужденное электронная плотность (НСМО-орбиталь) полностью локализуется на нафтильном фрагменте. Таким образом, за люминесцентное состояние отвечает переход НСМО–ВЗМО, связанный с переносом электронной плотности с нафтильного фрагмента на фрагмент тетрагидрориндола.

Параметр	Значение	
Молекулярная масса	491.53	
Температура	173(2) K	
Длина волны	MoK_{α} (0.71073 Å)	
Сингония	Ромбический	
Пространственная группа	Fdd2	
<i>a</i> , Å	22.7492(8)	
b, Å	38.033(1)	
<i>c</i> , Å	12.0358(4)	
$V, Å^3$	10413.6(6)	
Ζ	16	
<i>d</i> _{выч.} , г/см ³	1.254	
μ, мм ⁻¹	0.084	
F(000)	4128	
Форма кристалла	Призма (0.20 × 0.15 × 0.07 мм)	
Область сбора данных по θ, град.	1.99–25.05	
Интервалы индексов отражений	$-26 \le h \le 26, -45 \le k \le 44, -14 \le l \le 14$	
Измерено отражений	16857	
езависимых отражений $4575 \ (R_{\text{int}} = 0.0524)$		
Хомплектность при $\theta = 25.05$ 99.5%		
Отражений с <i>I</i> > 2σ(<i>I</i>)	3353	
Метод уточнения	Полноматричный МНК по <i>F</i> ²	
Переменных уточнений	337	
GooF	1.047	
<i>R</i> -факторы по $F^2 \ge 2\sigma(F^2)$	R1 = 0.0491, wR2 = 0.1010	
<i>R</i> -факторы по всем отражениям	R1 = 0.0809, wR2 = 0.1150	
Остаточная эл. пл. (min/max), е/Å ³	-0.218/0.296	

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структуры I (брутто-формула $C_{30}H_{25}N_3O_4$)

Рис. 3. Граничные орбитали молекулы I.

Связь	<i>d</i> , Å	Угол	ω, град.
O1-C8	1.233(3)	C6-N1-C7	126.5(3)
O2–C7	1.207(3)	C8-N2-C7	126.1(3)
O3–C6	1.215(3)	N3-C2-C3	107.8(2)
O4–C31	1.230(3)	N3-C2-C34	126.2(3)
N1-C6	1.363(4)	C3-C2-C34	125.9(3)
N1-C7	1.377(4)	C2-C3-C4	107.8(2)
N2-C8	1.358(4)	C2-C3-C31	121.5(3)
N2-C7	1.377(4)	C4-C3-C31	130.6(3)
N3-C2	1.359(4)	C1-C4-C3	106.9(2)
N3-C1	1.398(4)	C1-C4-C5	126.0(3)
N3-C21	1.454(4)	C3-C4-C5	127.1(2)
C1-C4	1.373(4)	C4-C5-C6	112.0(3)
C1-C11	1.481(4)	C4-C5-C8	112.8(3)
C2–C3	1.382(4)	C6-C5-C8	114.6(2)
C2-C34	1.485(4)	O3-C6-N1	120.8(3)
C3–C4	1.432(4)	O3-C6-C5	121.1(3)
C3–C31	1.440(4)	N1-C6-C5	118.1(3)
C4–C5	1.499(4)	O2-C7-N1	122.2(3)
C5-C6	1.506(4)	O2-C7-N2	122.0(3)
C5–C8	1.516(4)	N1-C7-N2	115.8(2)
C31-C32	1.516(4)	O1-C8-N2	120.8(3)
C32–C33	1.537(4)	O1-C8-C5	121.1(3)
C33–C35	1.526(5)	N2-C8-C5	118.0(3)
C33–C36	1.529(4)	C30-C21-N3	118.8(3)
C33–C34	1.547(5)	C22-C21-N3	119.8(3)
		O4-C31-C3	122.8(3)
		O4-C31-C32	122.1(3)
		C3-C31-C32	115.0(3)
		C31-C32-C33	115.4(3)
		C35-C33-C36	109.8(3)
		C35-C33-C32	109.8(3)
		C36-C33-C32	109.2(3)
		C35-C33-C34	110.4(3)
		C36-C33-C34	107.4(3)
		C32-C33-C34	110.2(3)
		C2-C34-C33	110.0(3)

Таблица 2. Основные межатомные расстояния и валентные углы в структуре I

Рис. 4. Спектр возбуждения люминесценции (*1*) и люминесценции (*2*) кристаллов **I**.

На рис. 4 представлены спектры возбуждения люминесценции и люминесценции кристаллов соединения I. Спектр возбуждения люминесценции представлен несколькими полосами с $\lambda_{max} = 413$ нм. Эмиссионный спектр представлен классической широкой диффузной полосой с $\lambda_{max} = 460$ нм. При УФ-облучении раствора I наблюдается голубая люминесценция с $\lambda_{max} = 420$ нм.

Спектр возбуждения люминесценции и люминесценции соединения I в этаноле представлены на рис. 5. Спектр возбуждения люминесценции I представлен двумя полосами с $\lambda = 245$ и 290 нм. Спектр люминесценции I представлен широкой полосой с $\lambda = 420$ нм. Характерной особенностью исследуемого соединения является зависимость спектра люминесценции от длины волны возбуждающего света. Как видно из данных рис. 5, при переходе от $\lambda_{B036} = 290 \text{ к} \lambda_{B036} = 245 \text{ нм спектр лю-$ минесценции существенно изменяется: появляется узкая интенсивная полоса с $\lambda_{max} = 375$ нм. По-видимому, эволюция спектра люминесценции при изменении длины волны возбуждающего света может быть связана с наличием в растворе сильных водородных связей между соседними молекулами I, а также молекулами люминофора и растворителя.

Для молекул, содержащих в структуре фрагмент барбитуровой кислоты, характерно наличие сильных водородных связей, способствующих формированию супрамолекулярной архитектуры и появлению уникальных люминесцентных свойств. Для таких соединений характерно формирование сложных молекулярных ансамблей, в частности "розеток" [29–31]. Обнаруженная зависимость спектра люминесценции I от длины возбуждаю-

Рис. 5. Спектры поглощения (1), возбуждения люминесценции (2) и люминесценции ($3 - \lambda_{BO36} = 245$ нм, $4 - \lambda_{BO36} = 290$ нм) раствора I в этаноле ($C = 10^{-5}$ моль/л).

щего света может быть полезна для разработки флуоресцентных меток.

СПИСОК ЛИТЕРАТУРЫ

- 1. Braun R.U., Muller T.J.J. // Synthesis. 2004. V. 14. P. 2391.
- He L.W., Lin W.Y., Xu Q.Y., Wei H.P. // ACS Appl. Mater. Interfaces. 2014. V. 6. P. 22326.
- Nabavi S., Alizadeh N. // Sensors and Actuators (B). 2014. V. 200. P. 76.
- 4. *Liu X.-T., Guo J.-F., Ren A.-M. et al.* // Org. Biomol. Chem. 2012. V. 10. P. 7527.
- 5. Gabel N.W. // J. Med. Chem. 1968. V. 11. P. 403.
- Laszlo S.E., Visco D., Agarwal L. et al. // Bioorg. Med. Chem. Lett. 1998. V. 8. P. 2689.
- Sulsky R., Magnin D.R., Huang Y. et al. // Ibid. 2007. V. 17. P. 3511.
- Cole D.C., Stock J.R., Chopra R. et al. // Ibid. 2008. V. 18. P. 1063.
- Nagarajan K., Shenoy S.J., Talwalker P.K. // Ind. J. Chem. 1989. Sect. B. V. 28. P. 326.
- Nagarajan K., Talwalker P.K., Goud A.N. et al. // Ind. J. Chem. 1988. Sect. B. V. 27. P. 1113.
- 11. Moussier N., Bruche L., Viani F. et al. // Current Organic Chemistry. 2003. V. 7. № 11. P. 1071.
- 12. *Vijaya Laxmi S., Janardhan B., Rajitha B.* // Int. J. Current Research and Review. 2012. V. 4. P. 89.
- Choudhury A.R., Nagarajan K., Guru Row T.N. // Acta Cryst.Section P. 2004. C. 219.
- 14. *Chopra D., Nagarajan K., Guru Row T.N.* // J. Mol. Struct. 2008. V. 888. P. 70.
- 15. Varghese B., Srinivasan S., Radmanabhan S. et al. // Acta Cryst. 1986. V. 42. P. 1549.

- Shi Q.Q., Fu L.P., Shi Y. et al. // Tetrahedron Letters. 2013. V. 54. P. 3176.
- Nagarajan K., Shenoy S.J. // Z. Kristallographie. 1996. V. 211. P. 409.
- Pattabhi V., Vasundara S., Nethaji M. // Ibid. 1996. V. 211. P. 407.
- Chopra D., Nagarajan K., Guru Row T.N. // Acta Cryst. 2005. V. 61. P. 3092.
- Chopra D., Nagarajan K., Guru Row T.N. // Ibid. 2005. V. 61. P. 3089.
- 21. Deepthi S., Pati'abhi V., Nagarajan K. // Ibid. 1999. V. 55. P. 100.
- 22. Lu X.-M., Cai Z.-J., Li J. // RSC Adv. 2015. V. 5. P. 51501.
- 23. Fu L.P., Shi Q.Q., Shi Y. et al. // ACS Comb. Sci. 2013. V. 15. P. 135.
- 24. *Maity S., Pramanik A. //* SYNTHESIS 2013. V. 45. P. 2853.
- 25. Chopra D., Nagarajan K., Guru Row T.N. // Crystal Growth & Design, 2005. V. 5. P. 1035.
- 26. Андина А.В., Мирочник А.Г., Андин А.Н. // Журн. общ. химии. 2017. Т. 87. № 1. С. 37.
- Bruker (1998), SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc. Madison, Wisconsin, USA.
- Sheldrick G.M. (1998) SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Bruker AXS Inc. Madison, Wisconsin, USA.
- 29. Deepak D. Prabhu, Keisuke Aratsu, Mitsuaki Yamauchi et al. // Polymer Journal. 2016. P. 1.
- 30. *Shiki Yagai, Yusaku Goto, Xu Lin et al.* // Angew. Chem. 2012. № 51. P. 6643.
- Ina Bolz, Mirko Bauer, Anja Rollberg, Stefan Spange // Macromol. Symp. 2010. № 287. P. 8.