———— КРАТКИЕ СООБЩЕНИЯ ———

УДК 563.63

ВЫСОКОТЕМПЕРАТУРНАЯ ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА Tm₂Ge₂O₇ И TmInGe₂O₇ В ОБЛАСТИ 350-1000 К

© 2019 г. Л. Т. Денисова^{а,*}, Л. А. Иртюго^а, Н. В. Белоусова^а, В. В. Белецкий^а, В. М. Денисов^а

^аСибирский федеральный университет, Институт цветных металлов и материаловедения, Красноярск, Россия *e-mail: antluba@mail.ru

Поступила в редакцию 09.05.2018 г.

Германаты $Tm_2Ge_2O_7$ и $TmInGe_2O_7$ получены твердофазным синтезом из стехиометрических смесей исходных оксидов многоступенчатым обжигом в интервале температур 1273—1473 К. Методом дифференциальной сканирующей калориметрии измерена теплоемкость оксидных соединений. На основании полученных экспериментальных данных рассчитаны температурные зависимости изменения энтальпии, энтропии и приведенной энергии Гиббса.

Ключевые слова: германаты тулия, высокотемпературная теплоемкость, термодинамические функции

DOI: 10.1134/S004445371903004X

Уникальные свойства германатов редкоземельных элементов в течение длительного времени привлекают к себе внимание исследователей как компоненты новых материалов [1-6]. В зависимости от природы РЗЭ по типу структур соединения $R_2Ge_2O_7$ разделяются на четыре структурных подгруппы: La-Pr, Nd-Gd, Tb-Lu, Sc [1]. Германаты с общей формулой A2Ge2O7 и ABGe2O7 (А и В – редкоземельные и трехвалентные элементы, переходные металлы) идентифицируются в двух типах кристаллической структуры тортвейтитоподобной и тортвейтитовой [5]. При этом соединения ABGe₂O₇ кристаллизуются в четырех разных пространственных группах в зависимости от отношения ионных радиусов $r_{\rm B}/r_{\rm A}$. К таким материалам относятся $Tm_2Ge_2O_7$ и $TmInGe_2O_7$, которые к настоящему времени являются наименее изученными. В первую очередь это относится к теплофизическим свойствам, которые для этих соединений отсутствуют. Фазовые взаимоотношения в системе $Tm_2Ge_2O_7$ — $In_2Ge_2O_7$ не построены. В то же время для оптимизации условий твердофазного синтеза и уточнения фазовых равновеметодами термодинамики необходимы сий сведения об их термодинамических свойствах.

Настоящая работа посвящена экспериментальному определению высокотемпературной теплоемкости $Tm_2Ge_2O_7$ и $TmInGe_2O_7$ в интервале 350—1000 К и расчету, на основании этих данных, их термодинамических функций (изменения энтальпии, энтропии и приведенной энергии Гиббса).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для измерения теплоемкости германаты Tm₂Ge₂O₇ и TmInGe₂O₇ получены твердофазным методом. Предварительно прокаленные при 1173 К оксиды Tm₂O₃ ("х.ч."), In₂O₃ ("ос.ч.") и GeO₂ (99.999%) тщательно перетирали в агатовой ступке и обжигали на воздухе при 1273 К (40 ч), 1373 К (100 ч) и 1473 К (60 ч). Относительно высокие температуры твердофазного синтеза приводят к частичному испарению GeO₂ [2], поэтому синтез проводили в тиглях с крышкой. Кроме того, количество добавляемого сверх стехиометрии GeO₂ и время синтеза подбирали экспериментально. Для достижения полноты протекания твердофазного взаимодействия реагентов таблетки через каждые 20 ч перетирали и снова прессовали. Контроль фазового состава синтезированных образцов проводили с использованием рентгенофазового анализа (дифрактометр X'Pert Pro MPD PANalytical, Нидерланды; Со K_{α} -излучение). Регистрацию дифрактограмм выполняли высокоскоростным детектором PIXcel в угловом интервале $2\theta = 10 - 120^{\circ}$ с шагом 0.013° . Дифрактограммы синтезированных однофазных образцов приведены на рис. 1. Параметры решеток синтезированных соединений определены подобно [6]. Для $Tm_2Ge_2O_7$ они в сравнении с данными других авторов приведены в табл. 1. Можно отметить, что наблюдается достаточно хорошее совпадение па-

Рис. 1. Экспериментальный (I), расчетный (2) и разностный (3) профили рентгенограмм $Tm_2Ge_2O_7$ (a) и $TmInGe_2O_7$ (б) (штрихи указывают расчетные положения рефлексов).

раметров решетки полученного нами $Tm_2Ge_2O_7$ с литературными значениями.

Полученный нами германат TmInGe₂O₇ имел следующие параметры элементарной ячейки: a == 6.8060(1) Å, b = 8.8715(2) Å, c = 9.8221(2) Å, $\beta =$ = 101.90(1)°, V = 580.30(2) Å³, пр. гр. C2/с. Сравнить их с данными других авторов не представлялось возможным вследствие их отсутствия [5].

Таблица 1. Параметры элементарной ячейки Tm₂Ge₂O₇ (пр. гр. *P*4₁2₁2)

a, Å	c, Å	<i>V</i> , Å ³	Ссылки
6.755(1)	12.272(2)		[2]
6.764(2)	12.293(2)	562.4(4)	[7]
6.7645(1)	12.2930(2)	562.51(2)	Наши данные

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 3 2019

Высокотемпературная C_n теплоемкость Tm₂Ge₂O₇ и TmInGe₂O₇ была измерена в области 350-1000 К методом дифференциальной сканирующей калориметрии с помошью термоанализатора STA 449 C Jupiter (NETZSCH. Германия). Измерения проводили в платиновых тиглях с крышкой, при этом использовали специальный держатель TG + DSC 6.226.1-72 + S. Прибор калибровали по температуре и чувствительности при помощи набора солей: RbNO₃, KClO₄, CsCl, K₂Cr₂O₄, BaCO₃ (чистота 99.99%). В качестве эталонного образца использовали синтетический сапфир (Al₂O₃ чистотой 99.99%) для С_р калибровки (сертификат NETZSCH). Исследуемые материалы перетирали в агатовой ступке и прессовали в таблетки диаметром 6×10^{-3} м на лабораторном прессе ПЛГ-20, после чего подвергали отжигу для исключения процессов спекания. Образцы для измерений предварительно взвешивали на аналитических весах METTLER TOLEDO XP205 Delta Rang с точностью 10^{-5} г. Масса образцов была близка массе эталона. Внутренний объем печи и весов продувался инертным газом, измерение C_n проводили на воздухе. Скорость нагревания при измерении теплоемкости составляла 10 К/мин. Для каждой серии образцов производили не менее трех измерений. Методика экспериментов описана ранее [8, 9]. Погрешность измерения теплоемкости не превышала 2.8%. Экспериментальные результаты обрабатывали с помощью пакета анализа NETZSCH Proteus Thermal Analysis и лицензионного программного инструмента Systat Sigma Plot 12 ("Systat Software Inc", CIIIA).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Влияние температуры на теплоемкость $Tm_2Ge_2O_7$ и $TmInGe_2O_7$ показано на рис. 2. Видно, что с ростом температуры значения C_p закономерно увеличиваются, а на зависимостях $C_p = f(T)$ в интервале температур 350–1000 К нет экстремумов. Можно предположить, что это свидетельствует об отсутствии в этой области температур полиморфных превращений у данных германатов. Полученные данные по теплоемкости хорошо описываются уравнением Майера–Келли [10]:

для Tm₂Ge₂O₇,

$$C_p = (235.1 \pm 0.61) + (35.29 \pm 0.60) \times 10^{-3}T - (12.98 \pm 0.60) \times 10^{5}T^{-2},$$
(1)

для TmInGe₂O₇.

$$C_p = (234.8 \pm 0.49) + (36.19 \pm 0.51) \times 10^{-3}T - (15.91 \pm 0.54) \times 10^5 T^{-2}.$$
 (2)

Рис. 2. Влияние температуры на молярную теплоемкость $\text{Tm}_2\text{Ge}_2\text{O}_7(I)$, $\text{TmInGe}_2\text{O}_7(2)$. Точки — экспериментальные значения, линия — аппроксимирующая кривая.

Коэффициенты корреляции для уравнений (1) и (2) равны 0.9983 и 0.9990 соответственно. Максимальные отклонения экспериментальных точек от сглаживающих кривых составляют 0.53 и 0.43%.

Рассчитанные с помощью этих уравнений величины термодинамических функций $\text{Tm}_2\text{Ge}_2\text{O}_7$ и $\text{Tm}\ln\text{Ge}_2\text{O}_7$ приведены в табл. 2. Из нее следует, что значения C_p для этих германатов во всем исследованном интервале температур не превышают классический предел Дюлонга-Пти 3*Rs*, где R – универсальная газовая постоянная, s – число атомов в формульной единице оксидного соединения.

Сравнить полученные нами значения C_p для $Tm_2Ge_2O_7$ и $TmInGe_2O_7$ с результатами других авторов не представлялось возможным, так как ранее теплоемкость этих соединений не измеря-

Таблица 2. Сглаженные значения молярной теплоемкости и рассчитанные по ним изменения энтальпии $H^0(T) - H^0(350 \text{ K})$, энтропии $S^0(T) - S^0(350 \text{ K})$ и приведенной энергии Гиббса $\Phi^0(T) = -(\Delta G/T) \text{ Tm}_2\text{Ge}_2\text{O}_7$ и TmInGe₂O₇

<i>Т</i> , К	C_p , Дж моль ⁻¹ К ⁻¹	$H^0(T) - H^0(350 \text{ K}),$	$S^0(T) - S^0(350 \text{ K}),$	$\Phi^0(T) - \Phi^0(350 \text{ K}),$		
		кДж моль⁻¹	$Д$ ж моль $^{-1}$ K $^{-1}$	Дж моль ⁻¹ К ⁻¹		
Tm ₂ Ge ₂ O ₇						
350	240.9	_	—	-		
400	245.2	12.16	32.46	2.07		
450	248.6	24.50	61.54	7.09		
500	251.6	37.01	87.90	13.87		
550	254.3	49.66	112.0	21.71		
600	256.7	62.44	134.2	30.17		
650	259.0	75.33	154.9	38.98		
700	261.2	88.34	174.2	47.96		
750	263.3	101.5	192.3	56.98		
800	265.4	114.7	209.3	65.97		
850	267.4	128.0	225.5	74.89		
900	269.3	141.4	240.8	83.68		
950	271.3	154.9	255.4	92.34		
1000	273.2	168.5	269.4	100.8		
TmInGe ₂ O ₇						
350	234.5	_	_	-		
400	239.3	11.85	31.64	2.02		
450	243.2	23.92	60.06	6.91		
500	246.5	36.16	85.86	13.54		
550	249.4	48.56	109.5	21.21		
600	252.1	61.10	131.3	29.48		
650	254.5	73.77	151.6	38.10		
700	256.9	86.55	170.5	46.89		
750	259.1	99.45	188.3	55.73		
800	261.3	112.5	205.1	64.55		
850	263.3	125.6	221.0	73.29		
900	265.4	138.8	236.1	81.92		
950	267.4	152.1	250.5	90.42		
1000	269.4	165.5	264.3	98.77		

сидного соединения, $c_{p298}^0(i)$ — удельная теплоемкость *i*-го простого оксида, m_i — мольная доля соответствующего простого оксида. Расчет по уравнению (3) показал, что для $\text{Tm}_2\text{Ge}_2\text{O}_7$ и $\text{Tm}\text{In}\text{Ge}_2\text{O}_7 c_p^0$ равны 0.43 и 0.44 Дж K⁻¹ моль⁻¹ соответственно, что несколько выше полученных нами экспериментальных значений 0.40 и 0.42 Дж K⁻¹ моль⁻¹. По данным [12], как положительные, так и отрицательные отклонения от аддитивного правила Неймана—Коппа связаны с изменениями в частотах колебаний атомом в сложном оксидном соединении по сравнению с

лась. В то же время это можно сделать с помощью

 $c_{p298}^{0}(j) = \sum_{i} m_i c_{p298}^{0}(i),$

уравнения Неймана-Коппа [11]

простыми оксидами. Необходимые значения c_p^0 для расчета по уравнению (3) взяты из литературы: Tm₂O₃ и GeO₂ – [11], In₂O₃ – [13].

Таким образом, определены экспериментальные значения $C_p(T)$ Tm₂Ge₂O₇ и TmInGe₂O₇ в области 350–1000 К. Рассчитаны температурные зависимости $C_p(T)$, $H^0(T) - H^0(350 \text{ K})$, $S^0(T) - S^0(350 \text{ K})$ и $\Phi^0(T) - \Phi^0(350 \text{ K})$ в этом интервале температур.

Работа выполнена при финансовой поддержке работ, выполняемых в рамках Государственного задания Министерства образования и науки Российской Федерации Сибирскому федеральному университету на 2017–2019 годы (проект 4.8083.2017/8.9 "Формирование банка данных термодинамических характеристик сложнооксидных полифункциональных материалов, содержащих редкие и рассеянные элементы").

СПИСОК ЛИТЕРАТУРЫ

- 1. Демьянец Л.Н., Лобачев А.Н., Емельченко Г.А. Германаты редкоземельных элементов. М.: Наука, 1980. 152 с.
- Becker U.W., Felsche J. // J. Less-Common. Metals. 1987. V. 128. P. 269.
- Leskelä M., Ninistö L. // Handbook Phys. Chem. Rare Earth. 1986. V. 8. P. 203.
- Juárez-Arellano E.A., Bucio L., Ruvalcaba J.L. et al. // Z. Kristallogr. 2002. V. 217. P. 201.
- Juarez-Arellano E.A., Campa-Molina J., Ulloa-Godinez S. et al. // Mater. Res. Soc. Symp. Proc. 2005. V. 848. P. FF 6.15.1.
- 6. Денисова Л.Т., Иртюго Л.А., Белецкий В.В. и др. // Физика твердого тела. 2018. Т. 60. № 2. С. 618.
- Stadnicka K., Glazer A.M., Koralewski M. et al. // J. Phys.: Condes. Matter. 1990. V. 2. P. 4795.
- Денисов В.М., Денисова Л.Т., Иртюго Л.А., Биронт В.С. // Физика твердого тела. 2010. Т. 52. № 7. С. 1274.
- 9. Денисова Л.Т., Чумилина Л.Г., Каргин Ю.Ф. и др. // Журн. неорган. химии. 2016. Т. 61. № 11. С. 1515.
- Maier C.G., Kelly K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243.
- Leitner J., Chuchvalec P., Sedmidubský D. et al. // Thermochim. Acta. 2003. V. 395. P. 27.
- 12. *Резницкий Л.А.* Калориметрия твердого тела. М.: МГУ, 1981. 184 с.
- Cordfunke E.H.P., Westrum E.F.Jr. // J. Phys. Chem. Solids. 1992. V. 52. P. 361.

(3)