_____ ХИМИЧЕСКАЯ КИНЕТИКА ____ И КАТАЛИЗ

УДК 541.128 : 544.431

ХИМИЧЕСКИЕ И ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В W-Mn-СОДЕРЖАЩИХ КАТАЛИЗАТОРАХ ОКИСЛИТЕЛЬНОЙ КОНДЕНСАЦИИ МЕТАНА

© 2019 г. Ю. А. Гордиенко^{*a*,*}, В. И. Ломоносов^{*a*}, Е. А. Пономарева^{*a*}, М. Ю. Синев^{*a*}, А. В. Бухтияров^{*b*}, З. С. Винокуров^{*b*}

^aРоссийская академия наук, Институт химической физики им. Н.Н. Семенова, Москва, Россия ^bРоссийская академия наук, Сибирское отделение, Институт катализа им. Г.К. Борескова, Новосибирск, Россия *e-mail: yuagordienko@gmail.com

Поступила в редакцию 08.06.2018 г.

NaWMn-содержащие оксидные системы, нанесенные на SiO₂ и Al₂O₃, исследованы методами термодесорбции кислорода, рентгеновской фотоэлектронной спектроскопии, рентгенофазового анализа *in-situ*, а также сканирующей электронной микроскопии совместно с энергодисперсионной рентгеновской спектроскопией. Установлены корреляции между химическим и фазовым составом образцов и условиями их предварительной обработки (десорбция кислорода, реокисление). Проанализированы факторы, определяющие эффективность каталитического действия оксидных NaWMn систем в процессе окислительной конденсации метана.

Ключевые слова: NaWMn-содержащие оксидные системы, окислительная конденсация метана, десорбция кислорода, реокисление

DOI: 10.1134/S0044453719030087

Процесс окислительной конденсации метана (ОКМ) рассматривается в качестве альтернативного способа прямой переработки природного газа с получением этилена наиболее крупнотоннажного полупродукта органического и нефтехимического синтеза. Одним из ключевых этапов на пути создания промышленной технологии на его основе является разработка эффективного катализатора. Детальный обзор и анализ работ, посвященный подбору и исследованию катализаторов ОКМ, представлен в [1, 2]. Предметом исследования в настоящей работе является смешанный оксидный катализатор NaWMn/SiO₂, впервые описанный в работах сотрудников Института химической физики (г. Ланьчжоу, КНР) [3, 4]. Согласно имеющимся литературным данным (см., например, [5]), он является наиболее эффективным из известных катализаторов ОКМ с точки зрения максимально достигаемого выхода С₂-углевородов. Несмотря на многочисленные исследования. механизм его каталитического действия, а также роль его отдельных компонентов до сих пор являются предметом дискуссий. Так, S.-B. Li с соавт. [6, 7] предполагают, что активность системы NaWMn/SiO₂ обусловлена наличием в ее составе полиэдров WO₄ тетрагональной структуры, содержашей связи W=O и W-O-Si. Авторы работы [8] полагают, что помимо тетрагональной структуры WO₄, необходимой для активации метана,

важную роль играет октаэдрическая структура MnO₆, обеспечивающая быстрый перенос кислорода в решетке оксида, тогда как в работе [9] делается вывод, что активными в реакции OKM являются как центры типа Na–O–Mn, так и Na–O–W. Дж. Лансофрд с соавт. [10] полагает, что активация метана протекает на центрах Na–O–Mn, а присутствие в катализаторе вольфрама обеспечивает стабильность его работы.

Хотя мнения различных авторов относительно механизма каталитического действия различаются, на данный момент можно считать убедительно доказанным, что лишь при наличии в составе катализатора одновременно трех нанесенных компонентов (Mn, W, Na или иного щелочного металла) достигаются высокие активность и селективность в реакции ОКМ. Кроме того, оксид кремния, по-видимому, не может рассматриваться в качестве "инертной подложки", поскольку хорошо известно, что смешанный NaWMn-оксид – как сам по себе (без носителя), так и будучи нанесенным на другие материалы с развитой поверхностью, заметно уступает в каталитических свойствах системе на основе SiO₂ [11].

В работах [12–17] сообщается о том, что оксидная система NaWMn/SiO₂ содержит в своем составе кислород, который может быть обратимо удален из нее в потоке инертного газа или в вакууме при температурах выше 650° С. При этом, как

было показано в работе [17], присутствие именно этой формы кислорода определяет высокую активность рассматриваемой оксидной системы в реакции ОКМ. Данные, полученные методом дифференциальной сканирующей калориметрии (ДСК) in situ [18], показывают, что обратимое выделение/поглощение кислорода связано с окислительно-восстановительными переходами ионах марганиа. Однако только по данным ДСК не представляется возможным сделать вывод о том, каким именно переходам и изменениям структуры отвечает удаление и присоединение этой формы реакционноспособного кислорода и какова роль других элементов в ходе превращения. При этом вопрос о механизме "оборота" кислорода (его обратимого выделения – поглощения) для системы NaWMn/SiO₂ тесно связан с эффективностью ее каталитического действия и не может рассматриваться в отрыве от подробного анализа химического и фазового состава нанесенного компонента и их изменения в ходе цикла восстановления-окисления. По этой причине в данной работе поставлена задача проследить изменения химического состава и структуры (фазового состава и морфологии) компонентов нанесенных NaWMn-катализаторов в процессе обратимого выделения-поглощения кислорода, моделирующего оксилительно-восстановительные превращения в ходе катализа.

Для выявления роли носителя и щелочного компонента были исследованы образцы смешанного NaWMn-оксида, нанесенного на силикагель и α -Al₂O₃, а также не содержащий натрия образец WMn/ α -Al₂O₃. Для системы на основе SiO₂ подобное сравнение затруднительно, поскольку в отсутствие щелочного компонента носитель не образует фазу кристобалита, присутствие и морфология которой обеспечивают оптимальное каталитическое действие (см., например, [5, 17, 19]).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Приготовление образцов

В качестве носителей использовались силикагель марки Aldrich Davisil grade 646 и α -Al₂O₃, полученный прокаливанием γ -Al₂O₃ (Sorbis Group) при 1200°C в течение 12 ч.

Образцы, содержащие три нанесенных компонента (расчетная концентрация — 0.8% Na, 3.2% W и 2.0% Mn), готовили методом пропитки носителей по влагоемкости последовательно растворами вольфрамата натрия и нитрата марганца (вольфрамата аммония и нитрата марганца — для получения образца WMn/ α -Al₂O₃) с промежуточной сушкой при 120°C в течение 3 ч; образцы прокаливали при 600°C в течение 2 ч, и еще в течение 6 ч при 900°C.

Образцы на основе SiO₂ и α -Al₂O₃ имеют близкие величины удельной поверхности (4.3 и 3.5 м²/г соответственно), что позволяет сравнивать их каталитические свойства в аналогичных условиях.

Методика проведения экспериментов

Определение каталитических свойств в реакции ОКМ

Эксперименты по изучению каталитических свойств проводили в кварцевом реакторе проточного типа с внутренним диаметром 4 мм; в его центральной части имеется уширение (8 мм) с внутренним карманом для подвижной термопары. Образец катализатора (50 мг, фракция 0.25-0.5 мм) помещали в кольцевой зазор между стенкой реактора и карманом для термопары. Реакционная смесь на выходе из реактора продувалась через стеклянную ловушку, помещенную в охлаждающую смесь (лед с насыщенным раствором поваренной соли), в которой конденсировались жидкие продукты окисления метана, после чего газообразные продукты реакции анализировались хроматографически. Эксперименты вели при 860°С, варьируя скорость подачи исходной метан-кислородной смеси (соотношение $CH_4: O_2 =$ = 85 : 15) в диапазоне 25-100 мл/мин. Подробное описание экспериментальной установки и методики хроматографического анализа приведено в [20].

Помимо свежеприготовленных оксидных систем в работе также исследованы образцы после десорбции кислорода и после последующего реокисления.

Термопрограммированная десорбция кислорода (ТПД)

В кварцевый проточный реактор (внутренний диаметр 5 мм), соединенный с детектором по теплопроводности (ДТП) газового хроматографа "Хроматэк Кристалл 5000.2", загружали навеску образца (50 мг) и нагревали в потоке гелия (20 мл/мин) до 500°С. После производили программируемый нагрев со скоростью 10 К/мин до 900°С с последующей изотермической выдержкой до выхода сигнала ДТП на горизонтальную базовую линию.

Повторные эксперименты по ТПД кислорода проводили после реокисления образцов в потоке смеси 5% O_2 /Не при 600°С в течение 30 мин с последующим охлаждением до 500°С и дополнительной выдержкой при этой температуре в течение 30 мин в потоке гелия. Образцы проходили аналогичную окислительную обработку перед исследованиями другими методами (см. ниже).

Рентгеновская фотоэлектронная спектроскопия (РФЭС)

Образцы, прошедшие различную предварительную обработку, исследовали на фотоэлектронном спектрометре SPECS (Германия) с использованием излучения AlK_{α} (1486.6 эВ, 150 Вт). Шкала энергий связи спектрометра (Е_{св}) была предварительно откалибрована по положению пиков остовных уровней золота и меди: Au4f7/2 (84.0 эВ) и Cu2p3/2 (932.67 эВ). Давление остаточных газов в ходе записи спектров не превышало 8 × 10⁻⁹ мбар. Образцы закреплялись на стандартном держателе с помощью двухсторонней проводящей медной липкой ленты (Scotch 3M[©]). Обработка полученной спектральной информации проводилась с использованием программы XPSPeak 4.1. Для определения химического (зарядового) состояния и соотношения атомных концентраций элементов на поверхности образцов были использованы регионы W4f, Al2p, Si2p, C1s, Ols, Mn2p и Nals. Для калибровки спектров в качестве внутреннего стандарта использовались линии от кремния Si2p ($E_{cB} = 103.3$ эВ) и алюминия Al2p ($E_{cB} = 74.5$ эВ) в составе носителей SiO₂ или Al₂O₃, и соответственно [21]. Интегральные интенсивности линий определялись по площадям пиков в регионах, соответствующих (W4f, Si2p, Cls, Ols, Mn2p и Nals). Соотношение сигналов линий различных элементов в фотоэлектронном спектре определяли по их интегральным интенсивностям, откорректированным на соответствующие коэффициенты атомной чувствительности [21].

Рентгенофазовый анализ (РФА)

Исследования методом рентгенофазового анализа (P Φ A) *in situ* (в режиме нагрева в контролируемой атмосфере) проводили на дифрактометре Bruker D8 Advance (Германия) с использованием СиK_а излучения. Регистрация дифрактограмм производилась полупроводниковым однокоординатным детектором LynxEye в конфигурации θ/θ . Для фильтрации CuK β компоненты использовался никелевый фильтр. Нагрев образца проводился в высокотемпературной проточной камере-реакторе XRK-900 производства Anton Paar (Австрия). Образец (~0.22 см³) загружали в открытый держатель, позволяющий газовой смеси проходить через объем образца, и помещали в камеру-реактор. Рентгенограммы регистрировались при изотермической выдержке в ходе ступенчатого нагрева со скоростью 12К/мин до 850°С в диапазоне углов 15-50° с шагом 0.03° и временем накопления в точке 2 с. Расход газа (100 мл/мин воздуха или аргона) устанавливался с помощью регуляторов DFC-26 (Aalborg, USA). Рентгенограммы, полученные в аргоне, дополнительно нормированы для учета поглощения излучения газом при различных температурах.

Сканирующая электронная микроскопия совместно с энергодисперсионной рентгеновской спектроскопией (СЭМ/ЭДС)

Изучение образцов методом сканирующей электронной микроскопии выполняли на электронном микроскопе Tescan Mira 3 LMU, оснашенном энергодисперсионным детектором Х-Мах, что позволило проводить локальный рентгеноспектральный микроанализ. Микрофотографии были получены при ускоряющем напряжении 5 кВт, используя детектор отраженных электронов (BSE), который дает информацию как о топографии поверхности образца, так и первичные данные относительно локального состава компонентов за счет контраста (яркости) по среднему атомному номеру присутствующих в данной области образца элементов. Для снижения заряжения поверхности образцы помещали на проводящую подложку и на их поверхность напылением наносили пленку углерода.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Каталитические свойства в реакции ОКМ

В табл. 1 приведены результаты испытаний систем NaWMn/SiO₂ и (Na)WMn/ α -Al₂O₃ в реакции OKM, которые показывают существенные различия каталитических свойств образцов на двух носителях: суммарное содержание C₂-углеводоров, образующихся при окислении метана при одинаковом составе нанесенного компонента, различается более чем в полтора раза. При отсутствии натрия в составе образца снижается величина конверсии метана и в еще большей степени — селективность по целевым продуктам (этан и этилен).

Полученный результат еще раз подтверждает влияние типа носителя и наличия ионов щелочного металла в составе нанесенного компонента на эффективность протекания каталитического процесса.

Рентгеновская фотоэлектронная спектроскопия

В обзорных спектрах образцов NaWMn/SiO₂ присутствуют линии, характерные для вольфрама, кремния, углерода, кислорода, марганца и натрия. Независимо от условий предварительной обработки, положение и форма линий натрия остаются неизменными и соответствуют состоянию Na⁺. В спектрах свежеприготовленного образца NaWMn/SiO₂, а также после ТПД кислорода в потоке инертного газа энергия связи электрона для пика W4*f* составляет 35.5 эВ, что типично для вольфрама в степени окисления 6+ [22]. В

Таблица 1. Результаты испытания образцов катализаторов в реакции ОКМ (50 мг катализатора, 860° C, $CH_4/O_2 = 85/15$)

v, мл/мин	σ, %	<i>S</i> , %	τ, %	ΣC ₂ , об. %								
NaWMn/SiO ₂												
25	28.7	60.0	17.2	9.1								
35	28.6	61.4	17.5	9.2								
50	26.3	63.4	16.7	8.4								
75	20.0	67.5	13.5	6.2								
100	12.8	71.8	9.2	3.9								
NaWMn/Al ₂ O ₃												
25	21.4	49.0	10.5	5.4								
35	19.7	48.3	9.5	4.8								
50	19.1	49.7	9.5	4.6								
75	16.1	50.4	8.1	3.8								
100	13.7	51.1	7.0	3.2								
WMn/Al ₂ O ₃												
25	18.2	29.4	5.3	2.7								
35	16.5	25.1	4.1	2.0								
50	16.4	30.9	5.1	2.4								
75	13.7	33.3	4.6	2.1								
100	11.6	34.7	4.0	1.8								

Обозначения: v – скорость подачи смеси, σ – конверсия метана, S – селективность по C₂-углеводородам (этан + этилен), τ – выход C₂-углеводородов.

случае реокислинного образца линия W4f сдвинута в сторону меньших энергий связи (~35.1 эВ). Такой сдвиг описан ранее [23] для частично восстановленного вольфрама в составе нестехиометрического оксида WO_{3-x}. Однако его образование в условиях окислительной обработки выглядит крайне маловероятным. Более вероятно то, что смещение линии W4f обусловлено изменением стехиометрии присутствующих в системе соединений и, соответственно, катионного окружения ионов WO_4^{2-} . Так, например, в работе [24] отмечается, что после обработки образца NaWMn/SiO₂ в потоке кислорода при температуре 800°С, часть исходной фазы Na₂WO₄ переходит в Na₄WO₅. Таким образом, скорее всего, изменения степени окисления вольфрама при обработке в указанных режимах не происходит.

Анализ линии Mn2*p* показывает, что в исходном и реокисленном образцах марганец находится в состоянии Mn³⁺; в спектре образца после ТПД кислорода присутствует сателлитная компонента ($E_{\rm CB} = 647.5$ эВ, см. рис. 1а), которая указывает на то, что марганец преимущественно находится в состоянии Mn²⁺ [25]. О появлении сател-

лита, характерного для Mn^{2+} , после прогрева образца в потоке инертного газа при температуре 620°С сообщается в [8, 26]. По данным авторов [8], это состояние остается стабильным при охлаждении образца до комнатной температуры; обратный переход из Mn^{2+} в Mn^{3+} наблюдается лишь после того, как образец был выдержан на воздухе в течение 36 ч.

В обзорных спектрах образцов $NaWMn/\alpha$ - Al_2O_3 присутствуют линии, характерные для вольфрама, алюминия, углерода, кислорода, марганца и натрия. В этом случае состояние натрия также соответствует Na^+ .

Форма и положение спектральной линии W4f7/2 указывает на присутствие в образце двух различных состояний вольфрама — со значениями энергий связи электрона 34.9 и 36.1—36.3 эВ (рис. 16). Первое из них обычно относят к частично восстановленному вольфраму в составе нестехиометрического оксида WO_{3-x} [23]. Значение 35.9—36.3 эВ являются типичным для вольфрама в степени окисления 6+, предположительно находящемуся в составе Na₂WO₄ или WO₃. Важно отметить, что это значение несколько отличается от определенного для образцов NaWMn/SiO₂ (35.5 эВ), что может быть, например, связано с различным взаимодействием между нанесенным компонентом и носителем.

Анализ линии Mn2*p* показал, что для всех образцов, в том числе и прогретого в токе аргона, марганец преимущественно находится в состоянии Mn^{3+} , на что указывает отсутствие сателлитной компоненты в районе 647.5 эВ, характерной для Mn^{2+} .

Таким образом, по данным РФЭС главные качественные отличия для NaWMn-образцов на разных носителях заключаются в следующем:

1. состояние вольфрама указывает на различия во взаимодействии нанесенного компонента с носителем;

2. при прогреве образца NaWMn/ α -Al₂O₃ в токе аргона не происходит его восстановления (не появляется сателлитная линия, характерная для Mn²⁺), в отличие от образца NaWMn/SiO₂, в котором происходит обратимый переход Mn³⁺ \leftrightarrow Mn²⁺.

В табл. 2 приведены отношения интенсивности линий элементов в фотоэлектронных спектрах, которые дают представление о соотношении их атомных концентраций на поверхности исследуемых образцов.

Прогрев образца $NaWMn/SiO_2$ в токе аргона приводит к значительному росту относительной интенсивности сигналов нанесенных компонентов в спектре. В наибольшей степени возрастает отношение Mn : Si - в 4.3 раза (по сравнению с 4.0 и 3.2 для отношений W : Si и Na : Si, соответствен-

Рис. 1. Рентгеновские фотоэлектронные спектры в области Mn2p для образца NaWMn/SiO₂ (а) и в области W4f для образца NaWMn/ α -Al₂O₃ в зависимости от условий предобработки: 1 – свежеприготовленный, 2 – после прогрева в токе инертного газа, 3 – после реокисления.

но). Последующее реокисление образца в потоке кислорода приводит к некоторому снижению относительной интенсивности сигналов составляющих нанесенного компонента, однако оно попрежнему остается более высоким по сравнению со свежеприготовленным образом.

Об относительном увеличении сигналов нанесенных компонентов в спектрах после десорбции кислорода, а также после обработки в условиях реакции ОКМ сообщается в работах [26–28].

В случае системы NaWMn/α-Al₂O₃ предварительная обработка оказывает слабое влияние на интенсивности сигналов нанесенных элементов в фотоэлектронных спектрах. После прогрева в потоке аргона наблюдается увеличение относительной интенсивности сигнала W в 1.5 раза по сравнению со свежеприготовленным образцом. При этом последующее реокисление не приводит к какому-либо заметному изменению интенсивности сигнала. То есть окислительно-восстановительная обработка в гораздо меньшей степени влияет на состояние нанесенного компонента, чем в образце NaWMn/SiO₂.

Как видно из представленных данных, для обоих свежеприготовленных образцов атомное отношение Na : W > 2, т.е. выше стехиометрическо-

Таблица 2. Соотношения атомных концентраций элементов на поверхности исследуемых образцов, рассчитанные на основании интенсивности линий в фотоэлектронных спектрах, в зависимости от условий предварительной обработки

	Образец									
Условия обработки	NaWMn/SiO ₂				$NaWMn/\alpha$ - Al_2O_3					
	Mn/Si	W/Si	Na/Si	Mn/W	Na/W	Mn/Al	W/Al	Na/Al	Mn/W	Na/W
Свежеприготовленный	0.03	0.019	0.12	1.4	6.4	0.047	0.042	0.22	1.1	5.3
Прогрев в аргоне	0.13	0.077	0.39	1.7	5.1	0.051	0.060	0.25	0.9	4.1
Реокисление	0.06	0.027	0.16	2.2	5.9	0.055	0.062	0.25	0.9	4.1

Рис. 2. Дифрактограммы образца NaWMn/SiO₂, полученные при ступенчатом нагреве в потоке воздуха.

го для Na₂WO₄, что хорошо согласуется с литературой [8–10, 28–30]. Это может указывать на присутствие натрия на поверхности не только в форме данного вольфрамата. В образце NaWMn/SiO₂ после десорбции кислорода наблюдается некоторое снижение отношения интенсивности сигналов Na : W, но при последующем реокислении оно вновь возрастает.

Рентгенофазовый анализ

Образец NaWMn/SiO₂

По данным РФА, основной фазой в свежеприготовленном образце NaWMn/SiO₂ является оксид кремния со структурой α-кристобалита. Также на рентгенограмме присутствуют рефлексы, отвечающие фазам Na₂WO₄ и Mn₂O₃. Полученный результат хорошо согласуется как с имеющимися литературными данными [8–10, 26, 28–31], так и с результатами РФЭС исследования, описанными выше. Как показано ранее [26], нагрев образца в потоке инертного газа до 850°C и последующее охлаждение до комнатной температуры (скорость охлаждения 12 К/мин) приводит к образованию в нем фазы вольфрамата марганца и исчезновению рефлекса, относящегося к фазе Na₂WO₄; реокисление на воздухе приводит к восстановлению исходного фазового состава.

В данной работе изменения фазового состава, происходящие при прогреве образцов, более подробно прослежены с использованием методики РФА *in situ*. На рис. 2 приведена серия рентгенограмм, полученных при ступенчатом нагреве образца NaWMn/SiO₂ в потоке воздуха. При нагреве образца до температуры 550° С наблюдается незначительное смещение рефлексов, относящихся к фазе кристобалита, обусловленное его переходом из тетрагональной модификации в кубическую, что хорошо согласуется с литературными данными [24]. При дальнейшем нагреве в диапазоне $550-600^{\circ}$ С наблюдается заметное снижение интенсивности рефлексов, соответствующих фазе Na₂WO₄, и при температурах выше 650° С данную фазу зафиксировать не удается.

Следует отметить, что исчезновение рефлекса вольфрамата натрия наблюдается при температурах существенно ниже температуры его плавления (698°С [32]). Это, по-видимому, обусловлено его взаимодействием с другими компонентами системы, в первую очередь – адгезии к носителю. При плавлении Na_2WO_4 должна возрастать площадь контакта (что соответствует растеканию расплава по поверхности и согласуется с данными РФЭС) и, соответственно, снижаться величина теплоты плавления (на величину энергии взаимодействия носителя с расплавом соли); поскольку температура плавления определяется выражением

$$T_{\Pi\Pi} = |\Delta H_{\Pi\Pi} / \Delta S_{\Pi\Pi}|,$$

где $\Delta H_{n\pi}$ и $\Delta S_{n\pi}$ — изменения энтальпии и энтропии при плавлении, то при сильной адгезии расплава к подстилающей поверхности и постоянной величине $\Delta S_{n\pi}$, температура плавления закономерно снижается. Сильное взаимодействие с носителем должно также приводить к изменению локального окружения атомов и искажению структуры ионов, в частности, WO_4^{2-} , что зафиксировано в работе [7].

Отдельный интерес представляет поведение (возникновение и исчезновение) фазы вольфрамата марганца при обработке на воздухе. Следует отметить, что некоторые авторы наблюдали фазу Mn-WO₄ в свежеприготовленном образце NaWMn/SiO₂ [9, 27], которая, по-видимому, образуется в ходе пропитки носителя. В нашем случае при последовательной пропитке носителя с промежуточной сушкой эта фаза в ходе приготовления NaWMnобразцов не образуется. При прогреве на воздухе появление рефлексов, соответствующих фазе Mn-WO₄, наблюдается только при достижении 850°C и обусловлено, по-видимому, тем, что содержание кислорода в воздухе при этой температуре близко к равновесному его давлению в реакции:

$$Mn_2O_3 + 4Na^+ + 2WO_4^{2-} \Leftrightarrow$$

$$\Rightarrow 2MnWO_4 + \{2Na_2O\} + 0.5O_2.$$
(1)

Запись этого уравнения в ионной форме оправдана тем, что указанная температура заведомо выше температуры плавления вольфрамата натрия, следовательно взаимодействие происходит в присутствии ионного расплава. Важным также представляется то, в какой химической форме — условно представленной как $\{Na_2O\}$ в уравнении (1) — находится натрий после ухода из расплава иона вольфрамата: от того, насколько сильно он в этой форме связан, зависят параметры равновесия реакции (1) и, соответственно, условия ее возможного протекания.

При прогреве в инертном газе переход $Mn^{3+} \rightarrow Mn^{2+}$ происходит при более низких температурах. Уже в диапазоне 550–600°С наблюдается заметное снижение интенсивности рефлексов, соответствующих фазам Na_2WO_4 и Mn_2O_3 ; одновременно появляются рефлексы характерные для $MnWO_4$, и их интенсивность увеличивается с ростом температуры. То есть образование вольфрамата марганца и выделение кислорода в инертном газе начинается при взаимодействии твердых Na_2WO_4 и Mn_2O_3 . Последний вывод подробно обсуждается ниже в связи с данными ТПД кислорода.

Образец NaWMn/ α -Al₂O₃

На рентгенограмме образца NaWMn/ α -Al₂O₃ помимо основной фазы носителя (корунд) присутствуют рефлексы, соответствующие фазам Na₂WO₄ и Mn₂O₃. Как и в случае образца NaWMn/SiO₂, при нагреве в потоке воздуха и аргона (рис. 3) начиная с 650°С (и выше) отсутствуют рефлексы, соответствующие фазе вольфрамата натрия. Однако при прогреве образца на основе оксида алюминия как на воздухе, так и в аргоне не удалось зафиксировать образования фазы вольфрамата марганца. Интенсивность рефлекса Mn_2O_3 снижается при температуре 850°С, но появление иных Mn-содержащих фаз зафиксировать не удалось.

Как было показано выше, каталитические свойства смешанной NaWMn-оксидной системы в реакции OKM существенно различаются при нанесении на оксиды кремния и алюминия. Данные, полученные методом РФА *in situ*, показывают, что эти системы различаются интенсивностью химического взаимодействия Mn_2O_3 как с твердым Na_2WO_4 , так и с его расплавом с образованием $MnWO_4$.

В свете полученных данных очевидно, что образование фазы MnWO₄ в цикле оксиления-восстановления является необходимым условием для получения активной каталитической системы, поскольку протекание реакции (1) обеспечивает более быстрый переход $Mn^{3+} \leftrightarrow Mn^{2+}$. При этом вольфрамат марганца является одним из двух состояний – восстановленным – активного компонента. В [26, 33] сообщается о присутствии фазы вольфрамата натрия в образце NaWMn/SiO₂, отработанном в условиях реакции ОКМ. Авторы [31] исследовали ряд образцов NaWMn/SiO₂ методом РФА в режиме *in situ* и показали, что в условиях реакции ОКМ (поток метан-кислородной смеси при 750°С) единственной фазой помимо кристобалита является вольфрамат марганца; по мере протекания реакции ОКМ наблюдалось снижение ее скорости и интенсивности рефлексов MnWO₄.

Важно отметить при этом, что в системе WMn/α - Al_2O_3 по данным РФА исходно присутствует фаза $MnWO_4$. Однако по активности и особенно селективности эта система заметно уступает даже образцу NaWMn/ α - Al_2O_3 , т.е. сам по себе вольфрамат марганца не обладает каталитической активностью в реакции ОКМ. Это может указывать на важную роль щелочного компонента в реокислении марганца, т.е. в протекании реакции (1) справа налево.

Интересно отметить, что, если образец WMn/ α -Al₂O₃ дополнительно пропитать карбонатом натрия (в атомном отношении Na : W = 2), то прогрев до 850°C приводит к исчезновению рефлексов MnWO₄, и появлению фаз Mn₂O₃ и Na₂WO₄. Как показано выше, прогрев образца NaWMn/SiO₂ в инертном газе, наоборот, приводит к образованию вольфрамата марганца из Mn₂O₃ и Na₂WO₄. Это указывает на неустойчивость фазы MnWO₄ на поверхности оксида алюминия (в отличие от SiO₂) в присутствии ионов Na⁺.

Рис. 3. Дифрактограммы образца NaWMn//α-Al₂O₃, полученные при ступенчатом нагреве в потоке аргона.

Таким образом, наличие щелочного компонента обеспечивает "замыкание" окислительновосстановительного цикла катализа, а характер взаимодействия нанесенных компонентов с носителем влияет на параметры равновесия реакции (1) и кинетику процессов окисления-восстановления.

Сканирующая электронная микроскопия

Микрофотографии участков образцов катализатора NaWMn/SiO₂ приведены на рис. 4. Морфологически носитель представляет собой сросшиеся или контактирующие частицы округлой формы размером 0.5-2 мкм, которые образуют систему сообщающихся макропор. На поверхности носителя свежеприготовленного (рис. 4а) и реокисленного образцов (рис. 4б) наблюдаются две кристаллические структуры (фазы), различающиеся морфологией и составом. По данным ЭДС, фаза, которая выглядит более яркой, содержит натрий, вольфрам и кислород; вторая (менее "яркая") фаза, представленная частицами размером от 100 нм до 1 мкм с более выраженными гранями, содержит марганец и кислород. Сопоставляя результаты с данными РФЭС и РФА, можно утверждать, что первая фаза представляет собой вольфрамат натрия, а вторая — Mn₂O₃.

После обработки в токе инертного газа, состав различимых структур меняется: яркие кристаллические области содержат марганец, вольфрам и кислород, а менее яркая аморфная фаза, располагающаяся тонким слоем между глобулами кри-

стобалита, содержит преимущественно натрий, марганец и кислород. Полученные результаты аналогичны описанным ранее [26].

Следует обратить внимание на различия, наблюдаемые в окисленном состоянии до и после десорбции кислорода и реокисления (рис. 4а и в). Хотя по типу и составу наблюдаемых структур они практически идентичны, морфология частиц, присутствующих в образце фаз, различается. Частицы Na₂WO₄ и Mn₂O₃ после окислительно-восстановительной обработки становятся более мелкими и располагаются более равномерно на поверхности глобул носителя. С одной стороны, это может указывать на то, что такие частицы образуются из аморфной фазы (расплава), покрывающего частицы носителя при высокой температуре, и на высокую адгезию как аморфной. так и вновь образующихся кристаллических фаз к поверхности кристобалита. С другой стороны, эти наблюдения хорошо согласуются с данными РФЭС, указывающими на редиспергирование нанесенного компонента в ходе такой обработки.

Частицы носителя катализатора NaWMn/Al₂O₃ состоят из крупных хаотично расположенных агломератов, преимущественно сформированных из сросшихся параллельно упакованных округлых пластинчатых кристаллов размером до 3 мкм. В свежеприготовленном образце (рис. 4г) ярко выражено наличие нанесенных частиц округлой формы размером от 50 до 300 нм (более светлая фаза по сравнению с фазой носителя), тогда как в образце после десорбции кислорода оформленных кристаллических частиц этого типа не на-

Рис. 4. Микрофотографии, полученные методом электронной сканирующей микроскопии: свежеприготовленный образец NaWMn/SiO₂ (a), образец NaWMn/SiO₂ после термодесорбции кислорода (б), образец NaWMn/SiO₂ после реокисленния (в), свежеприготовленный образец NaWMn/ α -Al₂O₃ (г), образец NaWMn/ α -Al₂O₃ после термодесорбции кислорода (д).

блюдается (рис. 4д). В образцах также хорошо различима фаза, содержащая W (яркие белые участки). В то же время, судя по контрасту поверхности, в образце, обработанном в токе инертного газа частицы нанесенных фаз менее однородны по составу.

В отличие от образца NaWMn/SiO₂, спектральный анализ участков поверхности свежеприготовленного NaWMn/ α -Al₂O₃ (рис. 4г) не позволяет делать однозначный вывод об элементном составе нанесенных фаз. Учитывая данные РФА и РФЭС, определенно можно произвести лишь отнесение округлых частиц к фазе Mn₂O₃. В ярких белых областях преимущественно сконцентрированы Na и W, при этом соотношение этих элементов варьируется; в спектрах некоторых участков отмечается присутствие Mn, возможно — за счет фона, обусловленного присутствием марганца на носителе или ввиду близкого расположения содержащих марганец частиц к спектрально оцениваемой области.

В спектрах большинства исследованных участков образца NaWMn/α-Al₂O₃, прогретого в токе инертного газа, присутствуют линии Mn, Na и W. При этом области, содержащие главным об-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 3 2019

разом марганец, представлены не сформированными частицами, а скорее аморфной фазой, покрывающей кристаллические пластинки носителя (см. рис. 4д). Возможно, именно с аморфизацией фазы, содержащей марганец, связано исчезновение рефлекса Mn₂O₃ на дифрактограмме, полученной при 850°C в атмосфере аргона.

После прогрева образца NaWMn/α-Al₂O₃ в токе инертного газа (рис. 4д), замечено, что в спектрах большинства областей, которые отличаются по контрасту от поверхности носителя, присутствуют Mn, Na и W. При этом участки, содержащие преимущественно марганец, в спектрах представлены не сформированными частицами, а скорее аморфной фазой, покрывающей кристаллические пластинки носителя.

Таким образом, в обоих состояниях (свежеприготовленном и после прогрева в инертном газе) в образце NaWMn/SiO₂ марганец присутствует в виде хорошо окристаллизованных частиц — оксида (Mn₂O₃) и вольфрамата, соответственно. В случае же исходного образца NaWMn/ α -Al₂O₃, фаза Mn₂O₃ хуже окристаллизована. После прогрева при 850°C в инертном газе (по данным

Рис. 5. Кривые термодесорбции кислорода с образца NaWMn/SiO₂: свежеприготовленный образец (а), после термодесорбции кислорода и реокисления (б).

РФА) содержащие марганец кристаллические фазы вообще отсутствуют в образце. Это может указывать на более сильное взаимодействие Мпсодержащих соединений (в первую очередь – оксида) с корундом по сравнению с кристобалитом.

Данные СЭМ наглядно показывают, что зафиксированное методами РФЭС и РФА разница в поведении образцов NaWMn-оксида на SiO₂ и α -Al₂O₃ в ходе окислительно-восстановительной обработки обусловлена различиями во взаимодействии между нанесенными компонентами и носителями. По-видимому, оксидные соединения марганца имеют более высокое сродство к α -Al₂O₃, а ионы натрия — к SiO₂, чем обусловлен сильный сдвиг равновесия реакции (1) на поверхности корунда влево по сравнению с кристобалитом, на котором оно близко к оптимальному для протекания процессов восстановления и окисления активного компонента.

Термопрограммированная десорбция кислорода

На рис. 5 представлены данные по ТПД кислорода с образца NaWMn/SiO₂. В случае свежеприготовленного образца (кривая А) заметная десорбция кислорода начинается при ~640°С, и на кривой его выделения удается выделить лишь один выраженный пик.

При повторном прогреве после реокисления наблюдается более сложная картина. Заметное выделение кислорода начинается уже при ~500°С; его скорость достигает максимума при ~590°С, после чего идет на спад, что характерно для процессов взаимодействия твердых реагентов. Такое увеличение скорости процесса при повторной десорбции объясняется изменением дисперсности и взаимного расположения частиц фаз Mn₂O₃ и Na₂WO₄, что зафиксировано методами РФЭС и СЭМ. Важно отметить, что в последующих циклах реокисления—десорбции характер кривых ТПД более не изменяется, что указывает на стабилизацию морфологии системы уже в ходе первого цикла восстановления-реокисления.

В районе 620–630°С на кривой Б наблюдается хорошо воспроизводимое ускорение десорбции, после которого (выше 700°С) происходит непрерывный рост скорости выделения кислорода, который заканчивается выше 850°С. Интересно, что при первой десорбции образец выделяет 54 мкмоль O_2/r , то во втором цикле – 83.5 мкмоль O_2/r . Исходя из количества марганца в образце и стехиометрии выделения кислорода при переходе $Mn^{2+} \rightarrow Mn^{3+}$, максимально возможно выделение 87.5 мкмоль O_2/r . То есть во втором (и последующих) циклах восстановления—реокисления в процесс оказывается вовлечен практически весь содержащийся в образце марганец.

Важно также отметить, что всплеск на кривой ТПД наблюдается при той же температуре (между 600 и 650°С), при которой при прогреве на воздухе, когда еще не происходит восстановление и нет химических превращений в системе, исчезают рефлексы фазы вольфрамата натрия, что свидетельствует о его плавлении. А появление в системе расплава обеспечивает гораздо лучший контакт между Mn_2O_3 и Na_2WO_4 . Возможен и частичный переход в расплав ионов марганца, что должно также увеличить скорость его окислительно-восстановительных превращений.

В случае образца NaWMn/ α -Al₂O₃ выделения кислорода в режиме TПД не наблюдалось. В сочетании с данными, полученными другими методами, это подтверждает прямую связь между выделением кислорода и возможностью образования MnWO₄ на разных носителях.

Таким образом, данные, полученные физикохимическими методами (РФЭС, РФА *in situ*, СЭМ/ЭДС, ТПД кислорода), показывают, что на окислительно-восстановительные свойства смешанного NaWMn-оксида, нанесенного на SiO₂ и α -Al₂O₃, существенное влияние оказывает характер и сила взаимодействия нанесенных компонентов с носителем. Это, в свою очередь, в значительной мере определяет различия в каталитических свойствах систем NaWMn/SiO₂ и NaWMn/ α -Al₂O₃ в реакции окислительной конденсации метана.

Работа выполнена в рамках государственного задания ИХФ РАН 0082-2014-0007, номер государственной регистрации АААА-А18-118020890105-3 и гранта Российского фонда фундаментальных исследований (код проекта 17-33-50066).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Крылов О.В., Арутюнов В.С.* Окислительные превращения метана // М.: Наука, 1998. 350 с.
- 2. Zavyalova U., Holena M., Schlögl R., Baerns M. // CHEMCATCHEM. 2011. V. 3. № 12. P. 1935.
- Fang X.P., Li S.B., Lin J.Z., Chu Y.L. // J. Molec. Catal. (China). 1992. V. 6. P. 255.
- Fang X.P., Li S.B., Lin J.Z., Chu Y.L. // Ibid. 1992. V. 6. P. 427.
- Arndt S., Otremba T., Simon U. et al. // Appl. Catal. A: General. 2012. V. 425–426. P. 53.
- Jiang Z., Yu C., Fang X., Li S., Wang H. et al. // J. Phys. Chem. 1993. V. 97. P. @
- 7. Wu J., Li S. // J. Phys. Chem. 1995. V. 99. P. 4566.
- Kou, Y. Zhang, B. Niu, J. et al. // J. Catal. 1998. V. 173. P. 339.
- Ji S., Xiao T., Li S. et al. // Appl. Catal. A. 2002. V. 225. P. 271.
- Wang D., Rosynek M.P., Lunsford J.H. // J. Catal. 1995. V. 155. P. 390.
- 11. Serres T., Aquino C., Mirodatos C., Schuurman Y. // Appl. Catal. A. 2015. V. 504. P. 509.
- 12. *Wu J., Li S., Niu J., Fang X.* // Appl. Catal. A General. 1995. V. 124. № 1. P. 9.
- Liu Y., Hou R., Liu X. et al. // Stud. Surf. Sci. Catal. 1998. V. 119. P. 307.
- 14. *Li S.-B.* // Chinese J. Chem. 2001. V. 19. № 1. P. 16.
- Beck B., Fleischer V., Arndt S. et al. // Catal. Tod. 2014. V. 228. P. 212.
- Fleischer V., Steuer R., Parishan S., Schomäcker R. // J. Catal. 2016. V. 341. P. 91.
- 17. Gordienko Y., Usmanov T. Bychkov V. et al. // Catal. Tod. 2016. V. 278. № 1. P. 127.

- Ломоносов В.И., Гордиенко Ю.А., Синев М.Ю. и др. // Журн. физ. химии. 2018. № 3. С. 386.
- Palermo A., Vazquez J.P.H., Lee A.F. et al. // J. Catal. 1998. V. 177. P. 259.
- 20. Ломоносов В.И., Гордиенко Ю.А., Синев М.Ю. // Кинетика и катализ. 2013. Т. 54. № 4. С. 474.
- 21. *Scofield J.H.* // Electron Spectrosc. Relat. Phenom. 1976. V. 8. P. 129.
- 22. Bhosale N.Y., Mali S.S., Hong Ch.K., Kadam A.V. // Electrochimica Acta. 2017. V. 246. P. 1112.
- 23. Bussolotti F, Lozzi L., Passacantando M. et al. // Surface Science. 2003. V. 538. P. 113.
- Hou S., Cao Y., Xiong W., Liu H., Kou Yu. // Ind. Eng. Chem. Res. 2006. V. 45. P. 7077.
- Biesinger M.C., Payne B.P., Grosvenor A.P. et al. // Applied Surface Science. 2011. V. 257. P. 2717.
- 26. *Sinev M., Ponomareva E., Sinev I. et al.* // Catal. Today (in press).
- 27. Pak S., Lunsford J.H. // Appl. Catal. A. 1998. V. 168. P. 131.
- Trenton W., Elkins Helena E. Hagelin-Weaver // Appl. Catal. A. 2011. V. 497. P. 96.
- Wang J., Chou L., Zhang B. et al. // J. Mol. Catal. A. 2006. V. 245. P. 272–277.
- Dedov A.G., Nipan G.D., Loktev A.S. et al. // Appl. Catal. A. 2011. V. 406. P. 1.
- Yildiz M., Aksu Y., Simon U., Otremba T. et al. // Appl. Catal. A. 2016. V. 525. P. 168.
- 32. CRC Handbook Chemistry and Physics, in: *David R. Lide* (Ed.), 85th edition, CRC Press, 2004.
- Simon U., Görke O., Berthold A., Arndt S. et al. // Chem. Eng. J. 2011. V. 168. P. 1352.