_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 541.13 : 669.73

ВЛИЯНИЕ рН НА ЭЛЕКТРОВОССТАНОВЛЕНИЕ ИОНОВ КАДМИЯ(II) И СВИНЦА(II) НА ЭЛЕКТРОДАХ В ПРИСУТСТВИИ ПАВ

© 2019 г. Айгуль Мамырбекова^{*a*,*}, М. К. Касымова^{*b*}, Айжан Мамырбекова^{*a*,**}

^аУниверситет Ахмеда Ясави, Туркестан, Казахстан ^bЮжно-Казахстанский государственный университет им. М. Ауэзова, Шымкент, Казахстан *e-mail: aigul.mamyrbekova@ayu.edu.kz **e-mail: aizhan.mamyrbekova@ayu.edu.kz Поступила в редакцию 21.05.2018 г.

Исследовано влияние кислотности раствора на электровосстановление ионов кадмия (II) и свинца (II) на электродах в присутствии высокомолекулярных, растворимых в воде ПАВ с различными функциональными группами: сополимер метакрилоиламинофенола с акриловой кислотой, гидролизат отходов кожевенной промышленности и сополимер ацетата винилового эфира моноэтаноламина. Определены кинетические и термодинамические параметры для разряда ионов кадмия (II) и свинца(II) в растворах, не содержащих ПАВ и в их присутствии, значения которых дают возможность оценить стадию торможения электрохимической реакции. Показано, что полимерные ПАВ способны ингибировать электровосстановление ионов кадмия(II) и свинца(II) на одноименных электродах в интервале температур 298–333 К. Установленные значения электрохимических параметров свидетельствуют о квазиобратимом восстановлении ионов кадмия(II) и свинца(II), при повышении содержания ПАВ в растворе и увеличения значений рН процесс переходит в необратимый.

Ключевые слова: ионы кадмия, ионы свинца, электровосстановление, поверхностно-активные вещества, кислотность, кадмиевый электрод, свинцовый электрод **DOI:** 10.1134/S0044453719030129

В последнее время сложились вполне определенные взгляды на механизм ингибирования электродных процессов органическими поверхностно-активными веществами (ПАВ). Установленные особенности влияния адсорбшии органических соединений на электродные процессы, в частности при электроосаждении цветных металлов показывают, что поверхность электрода покрыта адсорбированными частицами, размеры которых значительно превышают размеры разряжающихся ионов [1, 2]. Плотность адсорбционных слоев, характеризующихся степенью заполнения поверхности электрода молекулами (ионами) ПАВ, в общем случае зависит от строения двойного электрического слоя (ДЭС), объемной концентрации, а также от природы электролита и температурных условий. Часто для усиления адсорбции, включающей синергетические эффекты, более глубокого воздействия на электродные процессы используют смеси ПАВ с различными функциональными группами [3, 4].

ПАВ нашли широкое применение для улучшения катодных осадков металлов и сплавов, получения покрытий с заданными физико-химическими свойствами, в качестве добавок в электролиты рафинирования металлов и ингибиторов коррозии. Значительный вклад в создание общей теории действия ПАВ на электродные процессы внесли отдельные ученые и школы электрохимиков [5–7]. Сформулированные положения недостаточны для создания полной теории адсорбции ПАВ и их влияния на электродные процессы. Кроме того, все сложившиеся взгляды посвящены механизму ингибирования электродных процессов органическими низкомолекулярными ПАВ и только незначительное количество работ – действию на электродные процессы высокомолекулярных соединений [8–11].

В последние годы все большее внимание ученых привлекают исследования по добавкам водорастворимых полимеров с несколькими различающимися по свойствам функциональными группами, которые обеспечивают высокую адсорбционную способность на электродах и оказывают заметное влияние на электродные реакции [12, 13]. В связи с этим изучение электровосстановления ионов металлов на электродах в присутствии полимерных добавок с несколькими функциональными группами, которое обеспечивает необходимые физико-химические свойства электролита (рассеивающая способность, вязкость, электропро-

МАМЫРБЕКОВА и др.

			-/-					
ПАВ	$C_{\Pi AB} \times 10^2$	C	d	Pb				
	мас. %	pH 0	pH 4	pH 0	pH 1	pH 2	pH 3	
Без ПАВ	0.00	-0.55	-0.59	-0.43	-0.49	-0.51	-0.54	
CMAAΦ-AK	0.08	-0.50	-0.46	-0.49	-0.42	-0.49	-0.51	
	4.00	-0.71	-0.68	-0.48	-0.52	-0.62	-0.59	
ГОКП	0.08	-0.53	-0.54	-0.42	-0.52	-0.49	-0.51	
	4.00	-0.62	-0.63	-0.41	-0.52	-0.54	-0.57	
ВЭМЭА	0.08	-0.51	-0.56	-0.42	-0.54	-0.53	-0.56	
	4.00	-0.51	-0.66	-0.42	-0.52	-0.54	-0.57	

Таблица 1. Значения потенциала полуволны (*E*_{1/2}) разряда ионов металлов

водность и др.) очень актуально и имеет как теоретическое, так и практическое значение.

Целью данной работы являлось исследование влияния кислотности электролита на электровосстановление ионов кадмия(II) и свинца(II) на одноименных электродах в присутствии водорастворимых высокомолекулярных ПАВ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Изучение высокомолекулярных поверхностно-активных веществ (ВПАВ) в последнее время открывает перспективное направление в электрохимии ПАВ в связи с возможностью варьирования свойств этих соединений в зависимости от наличия функциональных групп. Органические добавки, не изменяющие своего ингибирующего действия с изменением кислотности, представляют большой интерес в практическом плане, так как позволяют использовать их в качестве ингибиторов в электродных процессах в широком интервале pH.

Выбор ионов металлов объясняется тем, что их разряд характеризуется достаточно высокой скоростью электровосстановления на твердых электродах, а также тем, что эти металлы различаются гидрофильностью.

Полярографические исследования проведены на полярографе ПУ-1 на одноименных поликристаллических электродах в инертной среде. Поляризационные кривые снимали на потенциостате П-5827М. Рабочими электродами служили Сd и Pb-электроды (марки "ос.ч."), запрессованные в тефлон, с площадью 0.46 см². Все исследования проводили в термостатированной трехэлектродной ячейке при температурах 298–333 К. В качестве электрода сравнения использовали хлорсеребряный электрод, вспомогательным электродом служила Pt-проволока, контактирующая с донной ртутью. Концентрации Cd²⁺ и Pb²⁺ в полярографируемых растворах были 10⁻³ М.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В работе исследовано влияние следующих ПАВ: сополимер метакрилоиламинофенола с акриловой кислотой (СМААФ-АК) (Mr = 15-20 тыс.), гидролизат отходов кожевенной промышленности (ГОКП) и сополимер ацетата винилового эфира моноэтаноламина (ВЭМЭА) (Mr = 50-100 тыс.).

Исследовано влияние кислотности раствора на электровосстановление ионов металлов для кадмия в сернокислых, а для свинца в хлорнокислых растворах.

Полученные данные показывают, что во всем интервале pH раствора добавки ПАВ приводят к смещению потенциала полуволны $E_{1/2}$ разряда ионов кадмия(II) и свинца(II) (табл. 1).

С увеличением значения pH раствора без добавок ПАВ на Pb-электроде происходит замедление процесса, что выражается в смещении $E_{1/2}$ в область более отрицательных значений, что по-видимому, связано с усилением адсорбции анионов OH⁻ с ростом их концентрации и образованием пассивирующей пленки. На Cd-электроде смещения $E_{1/2}$ не наблюдается, что связано со значительно меньшей адсорбцией OH⁻ на Cd, чем на Pb.

В присутствии 0.08×10^{-2} мас. % СМААФ-АК в растворе, увеличение значений рН приводит к некоторому ускорению процесса; смещение $E_{1/2}$ в анодную область, вероятно, происходит из-за ориентации $-C^+-O^-$ в адсорбированных частицах СМААФ-АК: ПАВ своим положительным углеродным концом адсорбируется на Сd-электроде, а отрицательным кислородным обращено к раствору, что способствует ускорению разряда подходящих ионов Cd²⁺. При больших концентрациях СМААФ-АК (4.00 × 10⁻² мас. %) независимо от рН раствора ускоряющее действие СМА-АФ-АК нивелируется и происходит торможение процесса в сравнении с раствором без ПАВ.

В присутствии ВЭМЭА на кадмиевом электроде в растворе увеличение значений рН приводит к усилению ингибирования процесса при ее больших концентрациях, но при малых (0.08×10^{-2} мас. %)

	<i>Т</i> , К		Cd Pb								
ПАВ			pH								
		0	2	4	0	1	2	3	4	5	
Без ПАВ	298	0.29	0.29	0.29	0.24	0.24	0.24	0.24	0.24	0.27	
	333	0.42	0.42	0.41	0.26	0.26	0.26	0.26	0.26	0.26	
CMAAΦ-AK	298	0.29	0.29	0.29	0.24	0.24	0.21	0.21	0.28	0.30	
	333	0.31	0.45	0.46	0.26	0.24	0.24	0.23	0.23	0.23	
ГОКП	298	0.31	0.29	0.29	0.23	0.24	0.25	0.23	0.27	0.30	
	333	0.46	0.44	0.29	0.26	0.24	0.28	0.22	0.26	0.26	
ВЭМЭА	298	0.46	0.42	0.37	0.24	0.24	0.22	0.24	0.30	0.28	
	333	0.36	0.35	0.24	0.26	0.24	0.21	0.21	0.24	0.24	

Таблица 2. Значения коэффициентов переноса (α) ионов металлов в присутствии ПАВ ($C = 4.00 \times 10^{-2}$ мас. %)

наблюдается деполяризация, по-видимому связанная с анионоактивностью добавки.

В присутствии малых количеств (0.08 × $\times 10^{-2}$ мас. %) СМААФ-АК в электролите vвеличение значений рН раствора (до 4) приводит к некоторому повышению скорости разряда ионов Pb^{2+} , $E_{1/2}$ смещается в анодную область на 100-150 мВ, но при одной и той же кислотности раствора (рН 0) малые концентрации СМААФ-АК способствуют сильному ингибированию процесса. При увеличении значений рН раствора присутствие СМААФ-АК в растворе (4.00 \times 10⁻² мас. %) происходит ингибирование электродного процесса, проходящее через максимум при рН 2. Такое действие СМААФ-АК можно объяснить сдвигом потенциала нулевого заряда (п. н. з.) электрода в анодную область положительно заряженными частицами углерода.

В случае ВЭМЭА для разряда ионов свинца увеличение значений рН приводит к усилению эффекта ингибирования, так как с увеличением щелочности раствора за счет усиления адсорбции ионов ОН⁻ происходит смещение значения п. н. з. в катодную область.

В общем случае изменение гидрофильности электрода, а также изменение эффектов адсорбции тех или иных частиц на поверхности твердого электрода изменяют структуру ДЭС. Последнее приводит к торможению или ускорению электродного процесса. Повышенная гидрофильность Cd-электрода по сравнению со Pb-электродом уменьшает адсорбцию ПАВ на Cd-электроде, поэтому наблюдается более сильное торможение на Pb-электроде.

Как в присутствии ПАВ, так и в их отсутствие в растворе в пределах изученных pH от 0 до 7 постоянство эффективного коэффициента переноса α свидетельствует о неизменности природы лимитирующей стадии процесса. Значение α для ВЭМЭА выше и составляет 0.37–0.46 (при *T* = 298 K), а для раствора без ПАВ и в присутствии СМААФ-АК и ГОКП $\alpha = 0.29$ (табл. 2).

Более высокие значения α для ВЭМЭА объясняются активационной природой поляризации и более облегченным протеканием процесса на стадии проникновения частицы деполяризатора в ДЭС.

Понижение значений α для ВЭМЭА от 0.46 до 0.37 связано с природой самой добавки, так как влияние отрицательного некомпенсированного заряда в составе ВЭМЭА усиливается с увеличением значений pH.

Вычисленные константы скорости электровосстановления Cd²⁺ на кадмиевом электроде по методу Салихджановой—Жданова [14] из переменнотоковых полярограмм представлены в табл. 3.

Значения k_s для Сd-электрода в растворе без ПАВ находятся в пределах (0.78–2.43 ×)10⁻³ см/с. Эти величины характерны для квазиобратимого восстановления Cd²⁺ на Cd-электроде. В общем случае увеличение значений pH раствора приводит к уменьшению значений k_s . В присутствии ВЭМЭА и ГОКП в растворе повышение величины pH также приводит к уменьшению k_s до (2–5) × × 10⁻⁵ см/с при pH 7. Процесс практически становится необратимым. Повышение температуры

Таблица 3. Эффективные константы скорости ($k_s \times 10^3$, см/с) разряда ионов кадмия(II) на кадмиевом электроде в присутствии ПАВ ($C = 4.00 \times 10^{-2}$ мас. %), T = 298 K

pН	Без ПАВ	СМААФ-АК	ГОКП	ВЭМЭА
0	2.43	0.72	0.79	0.48
1	1.81	0.64	0.60	0.21
2	1.16	0.12	0.54	0.04
4	1.01	0.09	0.09	0.05
7	0.78	0.17	0.02	0.12

Таблица 4. Эффективные константы скорости ($k_s \times 103$, см/с) разряда ионов кадмия(II) на кадмиевом электроде в присутствии ПАВ ($C = 4.00 \times 10^{-2}$ мас. %), T = 333 K

pН	Без ПАВ	СМААФ-АК	ГОКП	ВЭМЭА
0	3.08	1.09	0.70	0.44
2	2.58	0.76	0.50	0.26
4	1.94	0.64	0.34	0.08

раствора приводит к повышению значений α и k_s практически во всем интервале изменения pH.

Полученные значения k_s ($10^{-2}-10^{-5}$ см/с) (табл. 3) соответствуют квазиобратимому процессу разряда ионов Cd²⁺ и лишь при высоких концентрациях исследованных ПАВ, а также повышенных значениях pH процесс приближается к необратимому (4 × 10^{-5} см/с).

Температура и рН электролита оказывают существенное влияние на кинетику и механизм электровосстановления металлов на одноименном электроде, так как изменяют формы существования поверхностно-активных веществ в растворах, влияют на свойства поверхностного слоя и условия протекания электрохимических реакций. Температурные исследования показывают, что в отсутствие ПАВ в растворе увеличение температуры приводит к ускорению разряда Cd²⁺, а повышение pH к замедлению скорости, что как говорилось выше, связано с адсорбцией ОН- на поверхности кадмиевого электрода и ингибированием электровосстановления Cd²⁺ адсорбированными гидролизованными коллоидными частицами.

В присутствии ПАВ увеличение значений рН приводит к ингибированию электровосстановления Cd²⁺ независимо от температуры, степень торможения растет с увеличением концентрации ПАВ. Только в присутствии СМААФ-АК при малых концентрациях наблюдается некоторое ускорение реакции. Дальнейшее увеличение содержания адсорбата в растворе до насыщения (0.04 мас. %) приводит к снижению скорости процесса на порядок; при изменении заряда поверхности электрода относительно раствора на отрицательный, молекулы СМААФ-АК могут ориентироваться положительно заряженной азотной группой в сторону электрода (табл. 4).

Величины ΔG^{\neq} , ΔS^{\neq} и ΔH^{\neq} для процесса восстановления Cd²⁺ на кадмиевом электроде в растворе 0.5 M Na₂SO₄ + *x* M H₂SO₄ с добавками полимеров CMAAФ-AK, ГОКП И ВЭМЭА при различных температурах и pH среды представлены в табл. 5.

Энтропия активации ΔS^{\neq} рассчитывается по уравнению:

$$r_1 \ln(1 - \theta) = \Delta(\Delta S^{\neq})/R, \qquad (1)$$

$$\ln k_{\theta}/k_o = r_1 \ln(1-\theta) - \Delta(\Delta G^{\neq})/RT, \qquad (2)$$

где $\Delta(\Delta G^{\neq})$ — изменение свободной энергии Гиббса для стадии проникновения частицы деполяризатора в поверхностный слой вследствие замены молекул воды в поверхностном слое на молекулы адсорбата; в стерическом факторе $r_1 \ln(1 - \theta)$ значение r_1 для Cd²⁺ рассчитали по формуле:

$$r_1 = A_{\text{den}} / A_{(\text{H}_2\text{O})_n}, \qquad (3)$$

где r_1 — число адсорбционных мест на поверхности электрода (геометрический параметр); $A_{\text{деп}}$ площадь, которую занимает на поверхности электрода частица деполяризатора; $A_{(\text{H}_2\text{O})_n}$ — площадь, которую занимает на поверхности электрода один ассоциат воды.

$$A_{\rm den} = \pi (R_{Z^+} + 2R_{\rm H_2O})^2, \qquad (4)$$

где R_{Z^+} — радиус иона; $R_{\rm H_{2O}} = 0.138$ нм — кристаллографический радиус молекул воды.

На основании расчетов эффективных энергий активаций и табл. 5, используя уравнения (1) и (2) теоретически найдены значения адсорбционных параметров для разряда Cd^{2+} на кадмиевом электроде в присутствии ПАВ, которые представлены в табл. 6. Параметр ингибирования S_1 определяли по формуле:

$$S_1 = k'(\alpha n - z_0)F/RT - r_1A.$$
 (5)

Оцененное значение r_1 для ионов кадмия(II) составило 1.8–2.1. Как видно из табл. 5 значения величин ΔG^{\neq} , ΔS^{\neq} и ΔH^{\neq} растут с увеличением концентрации ПАВ (СМААФ-АК) и температуры, что свидетельствует об активационной природе ингибирования процесса электровосстановления ионов Cd²⁺ на одноименном электроде. Величина ΔG^{\neq} с увеличением рН раствора как без ПАВ, так и с ПАВ понижается, наблюдается ускорение процесса при T = 298 K, но при T = 333 K величина ΔG^{\neq} остается практически неизменной.

В присутствии анионоактивной ВЭМЭА с ростом концентрации адсорбата при постоянных значениях pH величина ΔG^{\neq} растет, происходит торможение электровосстановления ионов Cd²⁺ на Cd-электроде, но с увеличением pH значение ΔG^{\neq} понижается и тем значительнее, чем выше температура во всем диапазоне концентраций ПАВ. Последнее свидетельствует об усиливающемся влиянии анионной функциональной группы добавки с уменьшением кислотности раствора ВЭМЭА при низких значениях pH ведет себя как неионогенное органическое вещество.

Изменение энтропии происходит наиболее резко в присутствии СМААФ-АК. Адсорбция по-

ВЛИЯНИЕ РН НА ЭЛЕКТРОВОССТАНОВЛЕНИЕ

pН	Т, К	$C_{\Pi AB} = 0.00$			$C_{\Pi AB} =$	$C_{\Pi AB} = 0.08 \times 10^{-2} \text{ mac. }\%$			$C_{\Pi AB} = 4.00 \times 10^{-2} \text{ mac. }\%$		
		СМААФ-АК									
		ΔH^{\neq}	$-\Delta S^{\neq}$	ΔG^{\neq}	ΔH^{\neq}	$-\Delta S^{\neq}$	ΔG^{\neq}	ΔH^{\neq}	$-\Delta S^{\neq}$	ΔG^{\neq}	
0	298	13.0	196.0	71.4	17.4	279.0	101.0	21.8	359.0	129.0	
	333	14.0	266.0	103.0	13.2	275.0	105.0	16.7	291.0	110.0	
2	298	12.0	175.0	64.1	14.8	228.0	82.5	17.1	288.0	103.0	
	333	11.0	268.0	100.0	11.3	276.0	103.0	15.7	292.0	113.0	
4	298	7.9	168.0	58.0	10.3	215.0	74.4	14.3	218.0	79.3	
	333	5.1	268.0	94.3	8.5	277.0	101.0	9.7	292.0	107.0	
		1	1	1	ГОКП	1	1		1	1	
0	298	13.0	196.0	71.4	2.9	214.0	66.7	5.6	234.0	75.4	
	333	14.0	266.0	103.0	10.4	275.0	102.0	10.0	290.0	107.0	
2	298	12.0	175.0	64.1	14.5	199.0	73.8	16.6	228.0	84.5	
	333	11.0	268.0	100.0	15.0	207.0	84.0	21.0	289.0	117.0	
4	298	7.9	168.0	58.0	14.9	219.0	80.2	22.2	222.0	88.4	
	333	5.1	268.0	94.3	15.0	230.0	91.5	17.4	289.0	114.0	
		1	1	I	ВЭМЭА	I	I		1	I	
0	298	13.0	196.0	71.4	15.9	203.0	76.4	21.4	229.0	89.6	
	333	14.0	266.0	103.0	18.7	219.0	91.6	16.7	214.0	88.0	
2	298	12.0	175.0	64.1	12.6	189.0	68.9	14.3	204.0	75.1	
	333	11.0	268.0	100.0	15.4	179.0	75.0	17.5	215.0	89.1	
4	298	7.9	168.0	58.0	8.5	179.0	61.8	12.1	200.0	71.7	
	333	5.1	268.0	94.3	8.5	188.0	71.1	10.0	226.0	85.2	

Таблица 5. Значение ΔG^{\neq} (кДж/моль), ΔS^{\neq} (Дж/моль) и ΔH^{\neq} (кДж/моль) для Cd-электрода при $\eta = 0.03$ B в присутствии ПАВ при различных значениях pH

Таблица 6. Значения адсорбционных параметров для разряда ионов Cd^{2+} на кадмиевом электроде ($C_{\Pi AB} = 4.00 \times 10^{-2}$ мас. %), pH 0

ПАВ	<i>Т</i> , К	<i>r</i> ₁	S_1	θ	$-\Delta(\Delta G^{\neq})/RT$	$\Delta(\Delta S^{\neq})/R$
ВЭМЭА	298	2.0	0	0.85	5.5	-3.9
СМААФ-АК	333	1.8	0	0.32	3.2	-3.0

ложительно заряженных частиц углерода в группе $-C^+-O^- - CMAA\Phi$ -AK увеличивает положительный заряд электрода, что сказывается на смещении ψ_1 -потенциала, а следовательно на изменении как поверхностной концентрации реагирующих частиц, так и энергии активации.

Таким образом, определены кинетические (коэффициент переноса (α), потенциал полуволны ($E_{1/2}$), константа скорости (k_s)) и термодинамические (энергия активации Гиббса (ΔG^{\neq}), энтропия активации (ΔS^{\neq}), энтальпия активации (ΔH^{\neq})) параметры для разряда ионов кадмия(II) и свинца(II) в растворах, не содержащих ПАВ и в их присутствии, значения которых дают возможность оценить стадию торможения электрохимической реакции. Вычисленные параметры показывают, что процессы электровосстановления ионов Cd^{2+} и Pb^{2+} на одноименных электродах протекают квазиобратимо и при больших концентрациях адсорбата и pH, близких нейтральному, приближается к необратимому. Рассчитана энергия Гиббса ΔG^{\neq} , повышение значений которой соответствует росту потенциального барьера разряда ионов Cd^{2+} и Pb²⁺.

Показано, что ингибирующее действие добавок зависит как от природы электролита, так и природы ПАВ, содержащих различные функциональные группы. Установлено, что малые концентрации СМААФ-АК в растворе с увеличением значений рН приводят к некоторому ускорению процесса. При больших концентрациях СМААФ- АК независимо от pH раствора ускоряющее действие СМААФ-АК нивелируется и происходит торможение электродного процесса. В присутствии ВЭМЭА в растворе увеличение значений pH приводит к усилению ингибирования процесса. Увеличение значений pH раствора в присутствии СМААФ-АК в электролите приводит к резкому ускорению процесса разряда ионов Pb²⁺. Большая гидрофильность Cd-электрода по сравнению со Pb-электродом приводит к уменьшению адсорбционной активности, вследствие чего на Pb-электроде торможение разряда ионов Pb²⁺ заметнее.

СПИСОК ЛИТЕРАТУРЫ

- 1. Лошкарев М.А., Данилов Ф.И., Волошин В.Ф. // Электрохимия. 1971. Т. 7. № 6. С. 868.
- 2. *Наурызбаев М.К., Шалгымбаев С.Т.* Гетерогенные химические реакции. Алма-Ата: Наука, 1983. 180 с.
- Muller E., Emous H., Porfler H.-D., Lipkowsky J.J. // J. Electroanalyt. Chem. 1982. № 142. P. 39.

- 4. Афанасьев Б.Н., Дамаскин Б.Б. // Электрохимия. 1980. Т. 16. № 3. С. 280.
- 5. *Фрумкин А.Н., Дамаскин Б.Б.* Адсорбция и двойной электрический слой в электрохимии. М.: Наука, 1972. 280 с.
- Aramata A., Delahay P. // J. Phys. Chem. 1964. V. 68. P. 880.
- 7. Лошкарев Ю.М., Варгалюк В.Ф. // Электрохимия. 1977. Т. 13. № 9. С. 1321–1326.
- Grishina E.P., Ramenskaya L.M., Vladimirova T.V., Pimenova A.M. // Russ. J. Appl. Chem. 2007. V. 80. № 2. P. 249.
- 9. *Kolosnitsin V.S., Yapryntseva O.A.* // Russ. J. Appl. Chem. 2004. V. 77. № 1. P. 60–64.
- Dalbanbay A., Nefedov A.N., Nurmanova R.A., Nauryzbayev M.K. // Chem. Bull. Kazakh. Nat. Univ. 2017. № 87(4). P. 12.
- 11. Soliman H.M. // App. Surf. Sci. 2002. V. 195. P. 155.
- 12. *Колесников А.В.* // Конденсированные среды и межфазовые границы. 2016. Т. 18. № 1. С. 46.
- 13. Зиятдинова Г.К., Зиганшина Э.Р., Будников Г.К. // Журн. аналит. химии. 2012. Т. 67. № 11. С. 968.
- 14. *Жданов С.И., Заринский В.А., Салихджанова Р.М.-Ф. //* Там же. 1982. Т. 37. № 9. С. 1682.