_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 544.35

МОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ L-ФЕНИЛАЛАНИНА С УРАЦИЛОМ В ВОДНОМ БУФЕРНОМ РАСТВОРЕ ПРИ 293—323 К

© 2019 г. Е. Ю. Тюнина

Российская академия наук, Институт химии растворов им. Г.А. Крестова, Иваново, 153045 Россия e-mail: tey@isc-ras.ru

Поступила в редакцию 25.05.2018 г.

Исследованы взаимодействия L-фенилаланина (Phe) с урацилом (Ura) в водном буферном растворе (pH 7.35) методами денсиметрии и дифференциальной сканирующей калориметрии. Получены экспериментальные значения плотности и удельной теплоемкости систем Ura–буфер, Phe–буфер и Phe–Ura–буфер при T = (293.15, 303.15, 313.15 и 323.15) К при концентрациях Ura от 0.0040 до 0.0365 моль кг⁻¹ и при постоянной концентрации Phe, равной 0.0120 моль кг⁻¹. Показано, что взаимодействие Phe с Ura сопровождается образованием комплекса состава 1:2. Выявлено, что парциальные молярные свойства переноса Ura из буфера в буферный раствор Phe имеют положительные значения для объема и отрицательные – для теплоемкости в изученном интервале температур. Полученные результаты обсуждаются на основе использования модели Гэрни.

Ключевые слова: плотность, теплоемкость, кажущийся молярный объем, кажущаяся молярная теплоемкость, L-фенилаланин, урацил, комплексообразование

DOI: 10.1134/S004445371903021X

Возрастающий интерес к исследованию физико-химических свойств N-гетероциклических молекул объясняется, прежде всего, их биологическим и фармацевтическим значением. Основания нуклеиновых кислот и их производные могут использоваться в качестве противоопухолевых, антибактериальных и противовирусных препаратов [1, 2]. Особое значение имеет выявление характера взаимодействия между компонентами нуклеиновых кислот и молекул белков, поскольку эти взаимодействия обеспечивают выполнение ключевых биологических функций в организме, начиная от синтеза белка и восстанавливая ДНК [3-5]. Урацил (Ura) является структурным элементом широкого круга биологически значимых молекул (РНК, пиримидин, птеридин, фолиевая кислота, флавин и др.). Молекулы Ura содержат донорные и акцепторные группы, способные к образованию водородной связи [5, 6]. Молекулы ароматической аминокислоты – фенилаланина (Phe) обладают гидрофобным бензольным кольцом и гидрофильными группами (-NH₂, –СООН). Специфическое взаимодействие между функциональными группами аминокислот и основаниями нуклеиновых кислот может быть использовано для селективного "узнавания" нуклеиновых кислот с помощью белков [7]. Исследования водных растворов белков, нуклеиновых кислот и их производных в присутствии различных добавок (электролитов, органических растворителей, ПАВ, др.) проводятся различными методами [4–11].

До сих пор недостаточно изучены взаимодействия модельных соединений белков и нуклеиновых оснований в условиях физиологических значений рН среды и при различных температурах. Аминокислотные остатки, входящие в состав белков плазмы крови, могут служить носителями лекарственных средств, образуя с ними комплексы и конъюгаты [2, 12]. Ранее [13] методами калориметрии растворения и УФ-спектроскопии было изучено образование молекулярных комплексов между ароматической аминокислотой Phe и Ura в водном растворе (pH 7.35). Как известно, такие термодинамические свойства, как объем и теплоемкость, чувствительны к структурным изменениям в растворах, происходящих на молекулярном уровне [10, 14]. Задачей настоящего исследования является использование методов денсиметрии и дифференциальной сканирующей калориметрии для идентификации образования и стехиометрии комплекса между Ura и Phe в водном буферном растворе (рН 7.35). Цель работы – обнаружение некоторых особенностей на изотермах и изоконцентратах объемных и теплоемкостных свойств растворов Ura и Phe при изменении концентрации Ura в температурном интервале (293.15–323.15) К, что может свидетельствовать о возможных структурных изменениях, соответ-

$m_{ m Ura},$ моль кг $^{-1}$	293.15 K	303.15 K	313.15 K	323.15 K	$m_{ m Ura},$ моль кг $^{-1}$	293.15 K	303.15 K	313.15 K	323.15 K
р ^а , кг м ⁻³				C_p^{6} , Дж К ⁻¹ г ⁻¹					
0	1027.920	1024.870	1021.020	1017.170	0	4.0189	4.0261	4.0349	4.0443
0.0041	1028.126	1025.066	1021.207	1017.350	0.00405	4.0150	4.0228	4.0318	4.0408
0.0071	1028.269	1025.205	1021.339	1017.479	0.00711	4.0135	4.0205	4.0281	4.0390
0.0099	1028.389	1025.314	1021.450	1017.590	0.00985	4.0119	4.0178	4.0249	4.0363
0.0160	1028.629	1025.550	1021.687	1017.820	0.01631	4.0095	4.0146	4.0214	4.0299
0.0206	1028.801	1025.721	1021.860	1017.989	0.02068	4.0083	4.0119	4.0182	4.0281
0.0247	1028.959	1025.874	1022.017	1018.141	0.03123	4.0059	4.0087	4.0114	4.0199
0.0317	1029.239	1026.128	1022.266	1018.383					

Таблица 1. Плотность (ρ) и удельная теплоемкость (C_p) водных буферных растворов урацила при разных концентрациях и температурах

^а Погрешность экспериментальных значений $\rho \pm 6 \times 10^{-3}$ кг м⁻³ ⁶ Погрешность экспериментальных значений $C_p \pm (0.002 \times C_p)$ Дж К⁻¹ г⁻¹

ствующих процессу комплексообразования в исслелуемых системах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали L-фенилаланин (Sigma, CAS 63-91-2) и урацил (Sigma, CAS 66-22-8). Содержание основного вещества составляло 98-99%. Аминокислоту сушили в вакуумном шкафу при 343 K, а Ura – при 410.15 К в течение 48 ч непосредственно перед использованием. Исследования проводили в водных буферных растворах (рН 7.35), содержащих фосфат натрия одноосновный и фосфат натрия двухосновный, что приближает среду к условиям реальных биологических систем. Значения рН растворов фиксировали цифровым pH-метром Mettler Toledo, модель Five-Easy. Все растворы приготовлены весовым методом, используя весы Sartorius-ME215S (с точностью взвешивания 1×10^{-5} г). Концентрацию урацила варьировали в пределах (0.0041-0.0655) моль кг⁻¹ при фиксированной концентрации аминокислоты $(0.0120 \pm 0.0002$ моль кг⁻¹).

Измерения плотности исследуемых растворов выполнены на высокоточном цифровом вибрационном денсиметре (model DMA-5000M, Anton Рааг, Австрия) при температурах (293.15, 303.15, 313.15 и 323.15) К. Два встроенных платиновых термометра Pt100 в сочетании с элементами Пельтье обеспечивали термостатирование образца внутри ячейки с погрешностью 5×10^{-3} К. Перед каждым измерением проводили калибровку по воздуху и бидистиллированной воде при атмосферном давлении. Стандартная погрешность измерения плотности растворов не превышала $\pm 6 \times$ $\times 10^{-3}$ Kg m⁻³.

Для измерения удельной теплоемкости (C_p) растворов использовали дифференциальный сканирующий микрокалориметр SCAL-1 ("Биоприбор", Пущино, Россия). Интегральная чувствительность детектора калориметра составляет 33.218 нВт/мВ, калибровочная мощность – 25 мкВт, скорость сканирования – 1 К/мин, постоянная времени – 20 с. Прибор, детальное описание которого приведено в [15], был протестирован по теплоемкости водных растворов хлорида натрия, рекомендованного в качестве стандарта для сканирующей калориметрии растворов [16]. Стандартная погрешность измерения удельной теплоемкости растворов находилась в пределах $\pm 7 \times 10^{-3}$ Дж К⁻¹ г⁻¹.

Полученные экспериментальные данные по плотности (ρ) и удельной теплоемкости (C_p) исследуемых растворов приведены в табл. 1 и 2. Как видно из таблиц, значения ρ уменьшаются с температурой и возрастают с концентрацией Ura, в то время как температурные и концентрационные изменения значений C_p носят противоположный характер.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Как известно, в зависимости от рН среды аминокислота и урацил могут находиться в различных ионных состояниях. Ранее показано, что в водных растворах с pH 7.35 Phe существует, прежде всего, как цвиттерион [13]. Урацил представляет собой пиримидиновое основание, способное к таутомерии в виде лактамной или лактимной форм [17]. Установлено, что в нейтральной среде преобладает лактамная форма, которая переходит в моноанион при повышении pH (pH ≥ 9.52) [18, 19]. Для определения долевого распределения разных форм Ura в зависимости от pH среды была использована компьютерная программа RRSU

<i>m</i> _{Ura} , моль кг ⁻¹	293.15 K	303.15 K	313.15 K	323.15 K	<i>m</i> _{Ura} , моль кг ⁻¹	293.15 K	303.15 K	313.15 K	323.15 K
р ^а , кг м ⁻³				$C_{ ho}^{6}$, Дж К $^{-1}$ г $^{-1}$					
0	1029.816	1026.716	1022.855	1018.308	0	4.0132	4.0207	4.0302	4.0404
0.0041	1030.025	1026.910	1023.033	1018.474	0.0037	4.0015	4.0098	4.0207	4.0328
0.0070	1030.181	1027.051	1023.161	1018.593	0.0068	4.0004	4.00858	4.0199	4.0320
0.0099	1030.304	1027.162	1023.264	1018.680	0.0100	3.9997	4.0078	4.0197	4.0319
0.0160	1030.536	1027.374	1023.466	1018.874	0.0158	3.9989	4.0072	4.0198	4.0321
0.0206	1030.669	1027.505	1023.600	1018.9582	0.0179	3.9987	4.0071	4.0198	4.0320
0.0247	1030.781	1027.618	1023.714	1019.088	0.0201	3.9987	4.0070	4.0199	4.0319
0.0317	1031.059	1027.891	1023.974	1019.318	0.0247	3.9982	4.0063	4.0194	4.0312
0.0365	1031.278	1028.098	1024.168	1019.516	0.0317	3.9970	4.0054	4.0178	4.0293
					0.0361	3.9951	4.0047	4.0162	4.0268

Таблица 2. Плотность (ρ) и удельная теплоемкость (C_p) водных буферных растворов урацила, содержащих L-фенилаланин ($m_{\text{Phe}} = 0.0120 \pm 0.0002$ моль кг⁻¹), при разных температурах

^а Погрешность экспериментальных значений $\rho \pm 6 \times 10^{-3}$ кг м⁻³ ⁶ Погрешность экспериментальных значений $C_p \pm (0.002 \times C_p)$ Дж К⁻¹ г⁻¹

[20], в основу которой заложен модифицированный метод Бринкли. Как видно из полученной нами диаграммы (рис. 1), в условиях выбранной буферной среды (pH 7.35) Ura находится в нейтральной молекулярной форме [21].

Объемные свойства растворов

Кажущийся мольный объем Ura ($V_{o, Ura}$) был вычислен с использованием экспериментальных ланных по плотности и уравнения

$$V_{\phi,\text{Ura}} = 1000(\rho_0 - \rho)/(\rho\rho_0 m) + M/\rho, \quad (1)$$

где ρ_0 и ρ — плотности растворителя и раствора (г см⁻³), *m* — моляльная концентрация Ura (моль $\kappa \Gamma^{-1}$), M — молекулярная масса Ura. Растворителем в бинарных водных растворах (Ura-буфер) является буферный раствор, а в тройных системах (Ura-аминокислота-буфер) - буферный раствор аминокислоты (Phe) (с фиксированной концентрацией 0.0120 моль κr^{-1}). На рис. 2 представлены концентрационные зависимости кажущихся мольных объемов Ura в тройной системе при разных температурах. Форма полученных изотерм может свидетельствовать о связывании растворенных веществ в комплекс [14, 22, 23]. Определена стехиометрия образуемого молекулярного комплекса, фиксируемая по максимуму на концентрационной зависимости $V_{\varphi, \text{Ura}} = f(m)$ (рис. 2). Максимальные значения ${}^{\varphi}V_{\text{Ura}}$ при указанных температурах приходятся на концентрацию $m_{\text{Ura}} =$ = 0.0247 моль кг⁻¹, которая соответствует молярному соотношению Phe к Ura как ~1:2. Влияния температуры на стехиометрию образуемого комплекса не обнаружено.

Парциальные мольные объемы при бесконечном разбавлении ($V_{\phi, \text{Ura}}^0$) получены путем описания концентрационных зависимостей кажущихся мольных объемов (V_{φ, Ura}) полиномами второй и третьей степени, соответственно, для бинарной (Ura-буфер) и тройной (Ura-Phe-буфер) систем:

$${}^{\varphi}V_{\text{Ura}} = {}^{\varphi}V_{\text{Ura}}^{0} + B_{\text{I}}m_{\text{Ura}} + B_{2}m_{\text{Ura}}^{2}, \qquad (2)$$

$${}^{\varphi}V_{\text{Ura}} = {}^{\varphi}V_{\text{Ura}}^{0} + B_{1}'m_{\text{Ura}} + B_{2}'m_{\text{Ura}}^{2} + B_{3}'m_{\text{Ura}}^{3}, \qquad (3)$$

где B_1, B_2 и B_1', B_2', B_3' – постоянные коэффициенты. Значения ${}^{\varphi}V_{\text{Ura}}^{0}$, представленные в табл. 3, по-

Рис. 1. Диаграмма долевого распределения ионных форм урацила в зависимости от рН среды.

Рис. 2. Концентрационные зависимости кажущихся мольных объемов урацила (${}^{0}V_{\text{Ura}}$) в водном буферном растворе L-фенилаланина при температурах: 1 – 293.15 K, 2–303.15 K, 3–313.15 K, 4–323.15 K ($m_{\text{Phe}} = 0.0120 \pm 0.002$ моль кг⁻¹).

ложительны и увеличиваются с ростом температуры.

Величина парциального мольного объема Ura в водном буферном растворе, содержащем 0.0120 моль кг⁻¹ Phe, больше, чем соответствующие значения ${}^{\varphi}V_{Ura}^{0}$ в буфере при каждой температуре. Изменения парциального мольного объема ($\Delta_{tr}V_{\varphi}^{0}$) при переносе Ura из буфера в буферный раствор Phe вычислены по соотношению:

$$\Delta_{\rm tr} V_{\varphi}^{0} = V_{\varphi,\rm Ura}^{0} (\rm{Ura}-\rm{Phe}-\rm{6y} \phi ep) - - V_{\varphi,\rm Ura}^{0} (\rm{Ura}-\rm{6y} \phi ep).$$
(4)

Величины $\Delta_{tr} V_{\phi}^0$ чувствительны к сольватационным эффектам и могут быть интерпретированы на основе модели перекрывания гидратных сфер Гэрни [24]. Согласно этой модели, увеличение объема ($\Delta_{\rm tr} V_{\varphi}^0 > 0$) происходит, если взаимодействия обусловлены электростатическими силами, водородными связями и др. Понижение объема

 $(\Delta_{\rm tr} V_{\rm o}^0 < 0)$ имеет место в случае участия во взаимодействии неполярных групп (гидрофобные силы) [22-26]. Между компонентами (Ura и Phe) исследуемой тройной системы возможны следующие взаимодействия: (1) цвиттерион-гидрофильные взаимодействия между зарядными группами NH₃⁺/СОО⁻ аминокислоты (АК) и гидрофильными группами (>C=O, >NH) нуклеиновых оснований (НО); (2) гидрофильно-гидрофильные взаимодействия между гидрофильными центрами АК и гидрофильными группами НО; (3) гидрофильно-гидрофобные взаимодействия между цвиттерионами АК и гидрофобными группами НО или между гидрофильными группами НО и неполярными фрагментами АК; (4) гидрофобно-гидрофобные взаимодействия между гидрофобными фрагментами АК и гидрофобными группами НО. Два первых типа взаимодействия дают положительные вклады в $\Delta_{tr} V_{\phi}^0$, а третий и четвертый типы приводят к отрицательным значениям $\Delta_{\rm tr} V_{\phi}^0$ [14, 27, 28]. Полученные относи-тельно небольшие положительные изменения объема ΔV_{tr}^0 (от (0.87 до 2.49) см³ моль⁻¹ при 293.15 и 323.15 К) свидетельствуют о том, что в буферных растворах Ura в присутствии Phe взаимодействия первых двух типов несколько доминируют в условиях существующей конкуренции между различными их типами. Таким образом, можно предположить, что комплексы Phe с молекулами Ura образованы за счет цвиттерион-гидрофильных взаимодействий, гидрофобных сил и образования водородной связи, что согласуется с литературными данными [13, 21, 29].

Таблица 3. Предельные кажущиеся мольные объемы (${}^{\varphi}V_{\text{Ura}}^{0}$) урацила и значения его производной по температуре ($\partial^{\varphi}V^{0}/\partial T$)_{*p*} в водном буферном растворе и водном буферном растворе с аминокислотой (Phe) при разных температурах

<i>Т</i> , К	Ura–6	буфер	Ura–Phe ^a –буфер		
	${}^{\phi}\!V_{\mathrm{Ura}}^0 imes 10^6, \mathrm{m}^3 \mathrm{monb}^{-1}$	$(\partial^{\phi} V^{0} / \partial T)_{p} imes 10^{6b},$ м ³ моль ⁻¹ K ⁻¹	${}^{\varphi}\!V_{\mathrm{Ura}}^{0} imes 10^{6}, \mathrm{m}^{3} \mathrm{ моль}^{-1}$	$(\partial^{\phi} V^{0} / \partial T)_{p} \times 10^{6} \text{ b},$ м ³ моль ⁻¹ K ⁻¹	
293.15	57.21 ± 0.19	0.340 ± 0.090	58.08 ± 0.10	0.320 ± 0.051	
303.15	59.92 ± 0.20	0.295 ± 0.121	60.87 ± 0.12	0.325 ± 0.062	
313.15	63.20 ± 0.14	0.250 ± 0.136	64.77 ± 0.14	0.328 ± 0.122	
323.15	65.13 ± 0.13	0.205 ± 0.160	67.62 ± 0.14	0.331 ± 0.150	

 $^{a}m_{\rm Phe} = 0.0120 \pm 0.0002$ моль кг $^{-1}$

^b $(\partial^{\phi} V^{\theta} / \partial T)_{p}$ вычислено по уравнению: $(\partial^{\phi} V^{\theta} / \partial T)_{p} = \beta + 2T\gamma$, где β , γ – константы из (5).

Рис. 3. Температурные зависимости кажущихся мольных параметров урацила в водном буферном растворе Phe ($m_{\text{Phe}} = 0.0120 \pm 0.002 \text{ моль}\cdot \text{кr}^{-1}$) при разных концентрациях Ura: а – объемов ${}^{\phi}V_{\text{Ura}}$: 1 - 0.0071 m, 2 - 0.0099 m, 3 - 0.0160 m, 4 - 0.0247 m, 5 - 0.0316 m, 6 - 0.0365 m; $6 - \text{теплоемкостей} {}^{\phi}C_p$: 1 - 0.0037 m, 2 - 0.0068 m, 3 - 0.0179 m, 4 - 0.0247 m, 5 - 0.0317 m, 6 - 0.0361 m.

Температурная зависимость парциальных мольных объемов ${}^{\varphi}V_{\text{Ura}}^{0}$ в буфере и буферном растворе Phe описывается уравнением:

$${}^{\varphi}V^{0} = \alpha + \beta T + \gamma T^{2}, \qquad (5)$$

где α , β и γ – константы, T – температура. Значения ($\partial^{\varphi} V^0 / \partial T$)_p и ($\partial^{2\varphi} V^0 / \partial T^2$)_p были получены путем дифференцирования уравнения (5). В табл. 3 приведены рассчитанные первые производные ($\partial^{\varphi} V^0 / \partial T$)_p, положительные значения которых указывают на высвобождение электрострикционно сжатой воды из гидратных сфер Ura и Phe в раствор в процессе их связывания в комплекс, что сопровождается увеличением объема системы. В случае бинарной системы Ura–буфер наблюдается тенденция к понижению ($\partial^{\varphi} V^0 / \partial T$)_p с температурой, тогда как для тройной системы Ura–Phe–буфер их значения слабо увеличиваются в изученном интервале температур.

Согласно уравнению Хеплера [30]:

$$(\partial C_p^0 / \partial P)_T = -T (\partial^{2\varphi} V^0 / \partial T^2)_p, \tag{6}$$

положительный знак второй производной $(\partial^{2\varphi}V^0/\partial T^2)_p$ свидетельствует о структурно-образующей способности растворенного вещества, а его отрицательная величина указывает на структурно-разрушающие свойства в водном растворе. В нашем случае значения $(\partial^{2\varphi}V^0/\partial T^2)_p$ составляют $-0.0045 \text{ см}^6 \text{ моль}^{-2} \text{ K}^{-2}$ для Ura в водном буферном растворе и 0.00031 см⁶ моль⁻² K⁻² для Ura в водном буферном растворе аминокислоты. Полученные результаты показывают, что растворение Ura в буферном растворе аминокислоты приводит к стабилизации структуры растворителя.

Изоконцентрационные зависимости кажущихся мольных объемов ${}^{\varphi}V_{\text{Ura}}(T)$ урацила в буферном растворе аминокислоты от температуры приведены на рис. За. Выявлена инверсия последовательности кривых ${}^{\varphi}V_{\rm Ura}(T)$: изоконцентрата при 0.0247*m* расположена выше других, соответствующих более низким и более высоким концентрациям урацила. Это связано, по-видимому, с усилением взаимодействия Ura с Phe и образованием молекулярного комплекса в этой области концентраций, что сопровождается явлениями дегидратации молекул растворенных веществ, понижением электрострикции молекул воды при вытеснении из гидратных сфер и увеличением объема системы.

Теплоемкостные свойства растворов

Кажущаяся молярная теплоемкость растворенного вещества (${}^{\phi}C_{p}$) была определена из экспериментальных значений удельной теплоемкости по уравнению:

$${}^{\phi}C_{p} = M_{\text{Ura}}C_{p} + 1000(C_{p} - C_{p}^{0})/m_{\text{Ura}}, \qquad (7)$$

где C_p и C_p^0 – удельные теплоемкости, соответственно, раствора и растворителя (Дж K⁻¹ г⁻¹), m_{Ura} – моляльная концентрация растворенного вещества (моль кг⁻¹), M_{Ura} – молярная масса растворенного вещества Ura (г моль⁻¹). Погрешность определения ${}^{\phi}C_p$ не превышает 2%. Как известно [31], если в растворах отсутствуют изменения во взаимодействиях растворенное вещество–растворитель и растворенное вещество–расрастворенное вещество–расрастворени вещество–расрастворени вещество–расрастворени вещест

Рис. 4. Концентрационные зависимости кажущихся мольных теплоемкостей урацила (${}^{\phi}C_{p}$) в водном буферном растворе L-фенилаланина при температурах (K): *1* – 293.15, *2* – 303.15, *3* – 313.15, *4* – 323.15 ($m_{\text{Phe}} = 0.0120 \pm 0.002$ моль кг⁻¹).

теплоемкостей носят экстремальный характер (рис. 4) в изученной области температур и аппроксимируются полиномом второй степени:

$${}^{\phi}C_{p}(m) = {}^{\phi}C_{p}^{0} + A_{1}'m_{\text{Ura}} + A_{2}'m_{\text{Ura}}^{2}$$
(8)

во всем изученном диапазоне параметров (*m*, *T*). Здесь ${}^{\phi}C_{p}^{0}$ – предельное значение кажущейся мольной теплоемкости, равное парциальной мольной теплоемкости при бесконечном разбавлении, *A*₁, *A*₁' и *A*₂' – постоянные коэффициенты. Максимальные значения ${}^{\phi}C_{p}(m)$ наблюдаются вблизи *m*_{Ura} = 0.0201 моль кг⁻¹, что соответствует молярному отношению ~1:1.7 Phe/Ura. Полученные значения ${}^{\phi}C_{p}^{0}$ положительны и увеличиваются с ростом температуры от 293.15 до 323.15 К (табл. 4). Обычно возрастание значений кажущейся молярной теплоемкости растворенного вещества отражает увеличение степеней свободы и интенсивности молекулярных движений, что ведет к разрушению структуры раствора, а их уменьшение свидетельствует об образовании более упорядоченных структур, если отсутствует воздействие других факторов, и прежде всего дегидратации молекул растворенных веществ [32]. По-видимому, в случае растворения Uга в водном буферном растворе, содержащем аминокислоту, можно говорить о преобладающем вкладе эффекта дегидратации молекул Ura и Phe при образовании молекулярного комплекса в общую теплоемкость раствора.

При изучении межмолекулярных взаимодействий в буферных растворах, содержащих два растворенных вещества (Ura и Phe), полезно рассмотреть изменение парциальной мольной теплоемкости (Λ , C^0) при переносе Ura из буфера в

лоемкости ($\Delta_{tr}C_p^0$) при переносе Ura из буфера в буферные растворы с аминокислотой:

$$\Delta_{\rm tr} C_p^0 = {}^{\varphi} C_p^0 ({\rm Ura-Phe-6y \varphi ep}) - - {}^{\varphi} C_p^0 ({\rm Ura-6y \varphi ep}).$$
(9)

Полученные отрицательные значения $\Delta_{tr}C_p^0$ (от –2.55 до –2.30 Дж К⁻¹ г⁻¹ в интервале от 293.15 до 323.15 К) обычно указывают на то, что в присутствии Ura водные буферные системы Phe более структурированы, чем буферный растворитель [14, 23, 28, 32, 33]. Структурные изменения, происходящие в растворе в процессе связывания Ura с Phe, можно объяснить на основе использования модели Гэрни о перекрывании ко-сфер молекул растворенных веществ, как это было показано выше при интерпретации объемных свойств [24, 34, 35]. Образование молекулярного комплекса между Ura и Phe приводит к потере некоторых степеней свободы, что дает отрицательный вклад

в $\Delta_{\rm tr} C_p^0$, при этом имеет место дегидратация моле-

Таблица 4. Предельные кажущиеся мольные теплоемкости (${}^{\phi}C_{p}^{0}$) урацила и значения его производной по температуре ($\partial^{\phi}C_{p}^{0}/\partial T$)_{*p*} в водном буферном растворе и водном буферном растворе с аминокислотой (Phe) при разных температурах

<i>Т</i> , К	Ura–6	буфер	Ura–Phe ^a –буфер		
	${}^{\phi}\!C^0_p,$ Дж К $^{-1}$ моль $^{-1}$	$(\partial^{\phi} C^0_p / \partial T)_p,$ Дж К $^{-2}$ моль $^{-1}$	${}^{\phi}\!C^0_p,$ Дж К $^{-1}$ моль $^{-1}$	$(\partial^{\phi} C^0_p / \partial T)_p,$ Дж К ⁻² моль ⁻¹	
293.15	449.17 ± 0.03	0.0731 ± 0.006	446.62 ± 0.09	0.0813 ± 0.005	
303.15	450.12 ± 0.11	0.0973 ± 0.005	447.64 ± 0.08	0.1055 ± 0.008	
313.15	450.96 ± 0.13	0.1215 ± 0.016	448.65 ± 0.09	0.1297 ± 0.010	
323.15	452.46 ± 0.10	0.1457 ± 0.016	450.16 ± 0.07	0.1539 ± 0.015	

 $^{a}m_{\text{Phe}} = 0.0120 \pm 0.0002$ моль кг⁻¹.

кул растворенных веществ, что вносит положи-

тельный вклад в $\Delta_{tr}C_p^0$ [34, 35]. В величине $\Delta_{tr}C_p^0$ также находит отражение положительный вклад, обусловленный гидрофильно-гидрофильными взаимодействиями цвиттерионных центров (COO^{-}/NH_{3}^{+}) Phe с полярными группами Ura (>C=O, >NH) через перекрывание их гидратных сфер, а также отрицательный вклад, связанный с гидрофобно-гидрофильными и гидрофобно-гидрофобными силами, действующими между аполярными фрагментами молекул растворенных веществ [31, 36]. Гидратация Ura и Phe, а также их комплекса обеспечивает дополнительный источник отрицательного изменения теплоемкости [37]. Таким образом, относительно небольшие отрицательные значения $\Delta_{\rm tr} C_p^0$ могут быть объяснены конкуренцией гидрофобно/гидрофильноцвиттерионных взаимодействий при более низкой концентрации Ura и доминированием гидрофильно-цвиттерионных взаимодействий и образования водородных связей при более высокой его концентрации. Как и в случае $\Delta V_{\rm tr}^0$, значения

 $\Delta_{\rm tr} C_p^0$ проявляют тенденцию к возрастанию с повышением температуры.

Установлено, что температурные зависимости предельной кажущейся мольной теплоемкости (${}^{\phi}C_{p}^{0}$) описываются полиномом второй степени как для бинарной (Ura–буфер), так и тройной (Ura–Phe–буфер) систем (коэффициент корреляции R = 0.997):

$${}^{\phi}C_{n}^{0}(T) = a + b_{1}(T - 273.15) + b_{2}(T - 273.15)^{2}, (10)$$

где *T* – температура (К), *T* = 273.15 К – температура сравнения, *a*, *b*₁ и *b*₂ – константы. Значения полученных первых производных $(\partial^{\phi} C_{p}^{0} / \partial T)_{p}$ приведены в табл. 4.

На рис. Зб представлены изоконцентраты, т.е. температурные зависимости кажущихся мольных теплоемкостей ${}^{\phi}C_{p}(T)$ урацила в буферном растворе аминокислоты при разных концентрациях урацила. Порядок расположения изоконцентрат ${}^{\phi}C_{n}(T)$ по мере увеличения *m* нарушается: изоконцентраты для 0.0317 m и 0.0361 m лежат ниже, чем таковая для 0.0247 т. По-видимому, это объясняется образованием комплекса Ura с Phe в области 0.0247 т и, соответственно, потерей степеней свободы. Однако при этом эффекты от разрушающего действия молекул растворенных веществ на растворитель и от их дегидратации в процессе связывания столь велики, что появление новых степеней свободы превалирует над их потерей при указанном выше процессе как результат конкуренции взаимодействий растворенное вещество-растворенное вещество, растворенное вещество-растворитель и растворитель-растворитель.

Таким образом методами денсиметрии и ДСК определены плотности и удельные теплоемкости буферных растворов, содержаших Ura и Phe в интервале концентраций 0.0040-0.0365 m Ura при температурах от 293 до 323 К. Вычислены кажущиеся и парциальные молярные свойства (${}^{\varphi}V_{\text{Ura}}$, ${}^{\phi}C_{n}$) урацила, а также предельные кажущиеся молярные свойства его переноса из буфера в буферный раствор с Phe. Полученные данные позволили обнаружить структурные изменения в водных буферных растворах Ura с Phe, соответствующие образованию между ними молекулярного комплекса. Показано, что функции ${}^{\varphi}V_{\text{Ura}} = f(m_{\text{Ura}})$ и ${}^{\phi}C_{p} = f(m_{\text{Ura}})$ имеют максимумы в той области концентраций урацила, которая соответствует молярному соотношению Phe к Ura как ~1:2. При этом не обнаружено явно выраженной зависимости стехиометрии комплекса от температуры.

Определены параметры $(\partial^{\phi}C_{p}^{0}/\partial T)_{p}, (\partial^{\phi}V^{0}/\partial T)_{p}$ и $(\partial^{2\phi}V^{0}/\partial T^{2})_{p}$ для Ura в буфере и водном буферном растворе аминокислоты. Полученные результаты показывают, что Ura способствует укреплению структуры водного буферного раствора, содержащего аминокислоту, вследствие образования комплекса.

Наблюдаемые небольшие положительные (ΔV_{tr}^0) и отрицательные ($\Delta_{tr}C_p^0$) значения свойств переноса Ura из буфера в буферный раствор с Phe при всех изученных температурах являются результатом компенсации отрицательных и положительных вкладов в их величину, соответственно, от гидрофобных взаимодействий аполярных фрагментов молекул Ura с Phe и от цвиттерионных взаимодействий Phe с полярными Группами Ura и образования водородных связей.

Измерения плотности и удельной теплоемкости выполнены на оборудовании центра коллективного пользования "Верхневолжский региональный центр физико-химических исследований" ИХР РАН (http://www.isc-ras.ru/ru/struktura/ckp).

Работа посвящена памяти старшего научного сотрудника ИХР РАН, кандидата химических наук Манина Николая Геннадьевича, чьи научные интересы находились в области термодинамики растворов, за его вклад в получение и обсуждение данных по теплоемкости исследуемых систем.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wettergren Y., Carlsson G., Odin E., Gustavsson B. // Cancer. 2012. V. 6. P. 2935.
- Bakkialakshmi S., Chandrakala D. // Spectrochim. Acta. Part A. 2012. V. 88. P. 2.

ТЮНИНА

- Nain A.K., Pal R., Neetu. // J. Chem. Thermodynamics. 2014. V. 68. P. 169.
- Hunter K.C., Millen A.L., Wetmore S.D. // J. Phys. Chem. B. 2007. V. 111. P. 1858.
- Cheng A.C., Frankel A.D. // J. Am. Chem. Soc. 2004. V. 126. P. 434.
- Ribeiro R.F., Marenich A.V., Cramer Ch.J., Truhlar D.G. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 10908.
- Jones S., Daley D.T.A., Luscombe N.M., Berman H.M., Thornton J.M. // Nucleic Acids Rec. 2001. V. 29. P. 943.
- Boeckx B., Maes G. // J. Phys. Chem. B. 2012. V. 116. P. 11890.
- Banipal T.S., Kaur N., Banipal P.K. // J. Chem. Thermodynamics. 2016. V. 95. P. 149.
- Bhat R., Ahluwalia J.C. // J. Phys. Chem. 1985. V. 89. P. 1099.
- Smirnov V.I., Badelin V.G. // J. Mol. Liq. 2017. V. 229. P. 198.
- Khalil M.M., Fazary A.E. // Monatshefte f
 ür Chemie. 2004. V. 135. P. 1455.
- Tyunina E.Yu., Badelin V.G., Mezhevoi I.N., Tarasova G.N. // J. Mol. Liq. 2015. V. 211. P. 494.
- 14. Terekhova I.V., De Lisi R., Lazzara G., Milioto S., Muratore N. // J. Therm. Anal. Cal. 2008. V. 92. P. 285.
- 15. *Tyunina E.Yu., Badelin V.G., Mezhevoi I.N. //* J. Solution Chem. 2017. V. 46. P. 249
- Clarke E.C.W., Glew D.N. // J. Phys. Chem. Ref. Data. 1985. V. 14. P. 490.
- 17. Тюкавкина Н.А., Бауков Ю.И., Зурабян С.Э. Биоорганическая химия. М.: Просвещение, 2010. 416 с.
- Balodis E., Madekufamba M., Trevani L.N., Tremaine P.R. // Geochim. Cosmochim. Acta. 2012. V. 93. P. 182.
- DeMember J.R., Wallace F.A. // J. Am. Chem. Soc. 1975. V. 97. P. 6240.

- Васильев В.П., Бородин В.А., Козловский Е.В. Применение ЭВМ в химико-аналитических расчетах. М.: Высшая школа, 1993. 112 с.
- 21. Badeline V.G., Tyunina E.Yu., Mezhevoi I.N., Tarasova G.N. // Russ. J. Phys. Chem. A. 2015. V. 89. P. 2229.
- Zielenkiewicz W., Pietraszkiewicz O., Wszelaka-Rylic M. et al. // J. Solution Chem. 1998. V. 27. P. 121.
- 23. *Terekhova I.V., Kulikov O.V.* // Mendeleev Comm. 2002. V. 3. P. 1.
- 24. *Gurney R.W.* Ionic processes in solution. New York: McGraw Hill, 1953.
- 25. *Franks F.* Water: A comprehensive treatise, vol. 3. New York: Plenum Press, 1973.
- Lepori L., Gianni P. // J. Solution Chem. 2000. V. 29. P. 405.
- 27. *Tyunina E.Yu., Badelin V.G.* // J. Solution Chem. 2016. V. 45. P. 475.
- 28. *Bhuiyan M.M.H., Hakin A.W., Liu J.L.* // J. Solution Chem. 2010. V. 39. P. 877.
- Tyunina E.Yu., Badelin V.G., Tarasova G.N. // Russ. J. Phys. Chem. A. 2015. V. 89. P. 1595.
- 30. Hepler L.G. // Can. J. Chem. 1969. V. 47. P. 4613.
- 31. Васильев В.П. Термодинамические свойства растворов электролитов. М.: Высш. школа, 1982.
- 32. Латышева В.А. // Успехи химии. 1973. Т. 42. С. 1757.
- Madan B., Sharp K.A. // J. Phys. Chem. B. 2001. V. 105. P. 2256.
- Banipal P.K., Banipal T.S., Ahluwalia J.C., Lark B.S. // J. Chem. Thermodynamics. 2002. V. 34. P. 1825.
- Jasra R.V., Ahluwalia J.C. // J. Solution Chem. 1982.
 V. 11. P. 325.
- Lark B.S., Patyar P., Banipal T.S., Kishore N. // J. Chem. Eng. Data. 2004. V. 49. P. 553.
- 37. *Madan B., Sharp K.A.* // Biophys. J. 2001. V. 81. P. 1881.