## \_\_\_\_\_ ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ

УЛК 541.64:539.199

# КИНЕТИЧЕСКИЕ ЗАКОНОМЕРНОСТИ ПРИВИВКИ ФУНКЦИОНАЛЬНО АКТИВНЫХ МОНОМЕРОВ НА ХИТОЗАНЕ

© 2019 г. М. Л. Ерицян<sup>a,\*</sup>, Г. С. Петросян<sup>b</sup>, Р. А. Карамян<sup>a</sup>, Л. Н. Ерицян<sup>b</sup>, А. М. Арустамян<sup>a</sup>

<sup>a</sup>Армянский государственный педагогический университет им. Х. Абовяна, 0010 Ереван, Армения <sup>b</sup>Ереванский государственный медицинский университет им. М. Гераци, 0025 Ереван, Армения \*e-mail: mejlum.yeritsyan@mail.ru
Поступила в редакцию 04.07.2018 г.

Изучена кинетика прививки функционально-активных мономеров: N-метилолморфолина, N-метилолакриламида и N-метилолметакриламида к молекуле хитозана. Определены значения констант скорости и энергии активации процессов прививки указанных мономеров к гликозоаминному полимеру. На основании полученных данных сделано заключение относительно активности прививки изученных N-метилольных производных мономеров к хитозану.

*Ключевые слова:* хитозан, прививка, мономеры: N-метилолморфолин, N-метилолакриламид и N-метилолметакриламид, константа скорости, энергия активации, сорбент, активность мономера

**DOI:** 10.1134/S0044453719040125

По функционально-активным производным хитозана ( $X_{T3}$ ) достаточно много работ, из которых особого внимания заслуживают работы авторов [1—4]. Хитозан и его гомологи, являясь экологически чистыми продуктами, нашли широкое применение в медицине в качестве лекарственных препаратов нового поколения, а также при разработке адресных систем для доставки необходимых лекарств в больной участок живого организма [4—6]. Хитозан по сравнению с другими полисахаридами обладает значительным преимуществом, а именно наличием в его составе активной аминной функциональной группы, способствующей синтезу его новых производных с заданными свойствами.

Цель настоящей работы — исследование целенаправленной модификации хитозана для получения новых функционально-активных производных и дальнейшего их использования в качестве сорбентов для очистки сточных вод как от ионов тяжелых металлов ( $Hg^{2+}$ ,  $Cd^{2+}$ ,  $Cu^{2+}$ ,  $As^{5+}$ ,  $Pb^{2+}$ ,  $Pb^{4+}$  и др.), так и от токсичных неорганических и органических соединений.

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

### Использованы:

— хитозан ( $X_{T3}$ ) марки "пищевой" с молекулярной массой 180 кДа (произведен по ТУ 9289-067-004-78124-03 ЗАО "Биопрогресс" ВНИТИ-БП п. Биокомбината г. Щелково Московской области);

- акриламид марки "х. ч.", метилакриламид марки "ч. д. а.", морфолин марки "ч. д. а.",
  - 38%-ный водный раствор формальдегида;
- N-метилолморфолин (MM), N-метилолакриламид (MAA) и N-метилолметакриламид (MMAA) получены согласно [7].

Глубина прививки МАА, ММАА и ММ к молекуле  $X_{T3}$  определена элементным анализом на азот.

Методика эксперимента – процесса прививки MAA, MMAA и MM на  $X_{T3}$ . 2 г  $X_{T3}$  растворяют в 90 г 2%-ного водного раствора уксусной кислоты, далее при постепенном перемешивании нагревают до 85°C и после достижения полной гомогенизации приготовленной смеси по каплям вводят 0.5 молярный водный раствор NaOH до достижения значения рН раствора, равного 5.6. Затем в реакционную массу вводят 2 г МАА (или ММАА), растворенного в 10 мл воды. В случае модификации  $X_{T3}$  соединением (ММ) в реакционную смесь, содержащую 2.7 г  $X_{T3}$ , вводят 1.05 г MM, растворенного в 10 мл воды. При значениях времен проведения реакции, указанных в таблицах, отбирают пробу объемом 3 мл, и полимер высаживают в водно-спиртовом растворе (вода: спирт = = 1:1 по объему). Осадок неоднократно промывают этиловым спиртом и сушат под вакуумом (1.5-2 мм рт. ст.) при  $60-65^{\circ}$ С до достижения постоянной массы.

## ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Модификация хитозана путем прививки на нем функционально-активных соединений с целью их дальнейшего использования в качестве сорбентов для очистки сточных вод от ионов тяжелых металлов представляет определенный научный и практический интерес. Активность и эффективность полимерного сорбента зависят не только от природы и концентрации функциональных групп в модифицированном полимере, но и от их распределения в макромолекулярной

цепи. Для придания макромолекуле хитозана сорбционных свойств проведена его модификация указанными функционально-активными соединениями. Для регулирования функционального состава модифицированного хитозана, для придания ему заданного свойства, необходимо оценить значения констант элементарных актов прививки приведенных выше мономеров к молекуле хитозана.

Звеньевой состав хитозана в 2%-ном водном растворе уксусной кислоты представляется в виде:

где индексы n, m и g представляют собой мольные доли звеньев: n = 0.47, m = 0.08 и g = 0.45. После модификации макромолекула хитозана имеет следующий звеньевой состав:

где x — доля аминогликозидных звеньев в хитозане, вступивших в реакции прививки с ММ, МАА и ММАА, соответственно; R — природа заместителя, представляющая собой — N — O, или — NH — C(O) — CH =  $CH_2$ , или — NH — C(O) —  $C(CH_3)$  =  $CH_2$ .

В табл. 1 представлены текущие значения концентрации МАА и гликозидных звеньев с  $NH_2$ -группами  $[(X_{T3}-NH_2)]$  в макромолекуле хитозана в зависимости от времени ведения реакции при различных температурах. Из данных табл. 1 следует, что реакция между  $(X_{T3}-NH_2)$  и МАА является реакцией второго порядка, константа скорости которой, согласно [6], представляется уравнением

$$k = \frac{1}{t} \frac{1}{A_0 - B_0} \ln \frac{B_0(A_0 - x)}{A_0(B_0 - x)}.$$
 (1)

На рис. 1 графически представлены зависимости  $\ln \frac{B_0(A_0-x)}{A_0(B_0-x)}$  от времени ведения реакции (t) при различных температурах, которые позволили оце-

нить значения констант скорости (k, л моль $^{-1}$  мин $^{-1}$ ) взаимодействия  $X_{13}$  с MAA при этих температурах:

*T*, °C 65 70 75 80 
$$k \times 10^3$$
 4.74 6.54 8.84 9.8

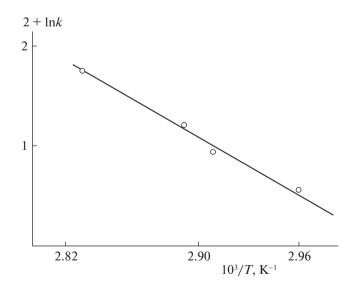
Исходя из уравнения Арениуса  $k = Ae^{-A_a/RT}$  [6], приведенных констант скорости и приведенной на рис. 2 экспериментально установленной зависимости  $\ln k$  от  $\frac{1}{T}$  оценено значение энергии активации ( $E_a$ ) реакции между МАА и  $X_{T3}$ – $NH_2$ , которая оказалась равной  $35 \pm 0.1$  ккал/моль.

Значения констант скорости (k, л моль $^{-1}$  мин $^{-1}$ ) реакции между ММАА и  $X_{r3}$ – $NH_2$  при изученных температурах приведены ниже:

$$T$$
, °C
 65
 70
 75
 80

  $k \times 10^2$ 
 2.9
 3.81
 4.28
 5.14

**Таблица 1.** Текущие значения концентрации (моль/л) звеньев MAA и ( $X_{r_3}$ –NH $_2$ ) в макромолекуле хитозана в зависимости от времени ведения реакции при различных температурах; [MAA] $_0=A_0=1.98\times 10^{-1}$  моль/л; [ $X_{r_3}$ – NH $_2$ ] $_0=B_0=6.8\times 10^{-2}$  моль/л, X– концентрации гликозидных звеньев с N-замещенными группами в модифицированной макромолекуле хитозана, моль/л


| -                 | 65°C            |                 |                 |                                                     | 70°C            |                   |                 |                                                     | 75°C            |                 |                 |                                                     | 80°C            |                   |                 |                                                     |
|-------------------|-----------------|-----------------|-----------------|-----------------------------------------------------|-----------------|-------------------|-----------------|-----------------------------------------------------|-----------------|-----------------|-----------------|-----------------------------------------------------|-----------------|-------------------|-----------------|-----------------------------------------------------|
| <i>t</i> ,<br>мин | $X \times 10^3$ | $A \times 10^1$ | $B \times 10^2$ | $\lg \frac{B_0(A_0 - X)}{A_0(B_0 - X)} \times 10^2$ | $X \times 10^3$ | $A \times 10^{1}$ | $B \times 10^2$ | $\lg \frac{B_0(A_0 - X)}{A_0(B_0 - X)} \times 10^2$ | $X \times 10^3$ | $A \times 10^1$ | $B \times 10^2$ | $\lg \frac{B_0(A_0 - X)}{A_0(B_0 - X)} \times 10^2$ | $X \times 10^3$ | $A \times 10^{1}$ | $B \times 10^2$ | $\lg \frac{B_0(A_0 - X)}{A_0(B_0 - X)} \times 10^2$ |
| 10                | 1.48            | 1.96            | 6.65            | 0.6                                                 | 2.2             | 1.95              | 6.58            | 0.86                                                | 3.2             | 1.94            | 6.48            | 1.3                                                 | 3.4             | 1.94              | 6.45            | 1.4                                                 |
| 20                | 3.0             | 1.95            | 6.5             | 1.3                                                 | 4.3             | 1.93              | 6.37            | 1.7                                                 | 6.5             | 1.91            | 6.15            | 2.2                                                 | 6.5             | 1.91              | 6.15            | 2.7                                                 |
| 30                | _               | _               | _               | _                                                   | 6.0             | 1.92              | 6.2             | 2.4                                                 | 7.0             | 1.89            | 6.1             | 3.0                                                 | 8.6             | 1.89              | 5.94            | 4.0                                                 |
| 40                | 4.8             | 1.93            | 6.3             | 2.0                                                 | 7.0             | 1.91              | 6.1             | 3.0                                                 | 11.0            | 1.87            | 5.7             | 4.4                                                 | 14.0            | 1.82              | 5.2             | 5.2                                                 |
| 50                | 5.6             | 1.92            | 6.24            | 2.5                                                 | 8.4             | 1.89              | 5.96            | 3.86                                                | 13.0            | _               | _               | _                                                   | 18.0            | 1.82              | 5.0             | 6.4                                                 |
| 60                | 8.8             | 1.89            | 5.92            | 3.9                                                 | 13.0            | 1.85              | 5.5             | 5.1                                                 | 16.0            | 1.79            | 6.5             | 6.5                                                 | 29.0            | _                 | _               | _                                                   |

Экспериментальные результаты аналогичных исследований реакции между ММАА и  $X_{\rm rs}$ -NH $_2$  при различных температурах представлены в табл. 2 и на рис. 3, 4 соответственно. Установленное по данным рис. 4 значение энергии активации реакции

**Рис. 1.** Зависимости  $\lg \frac{B_0(A_0-X)}{A_0(B_0-X)}$  от t при различных температурах:  $1-65,\,2-70,\,3-75,\,4-80^\circ\mathrm{C}.$ 

между  $X_{T3}$ — $NH_2$  и MMAA оказалось равным 19  $\pm$   $\pm$  0.8 ккал/моль, что значительно ниже значения  $E_a$  для реакции  $X_{T3}$ — $NH_2$  с MAA (35  $\pm$  0.1 ккал/моль). Столь резкое отличие указывает на большую активность молекулы MMAA по сравнению с MAA, которая, вероятнее всего, обусловлена индуктивным эффектом метильного радикала в MMAA.

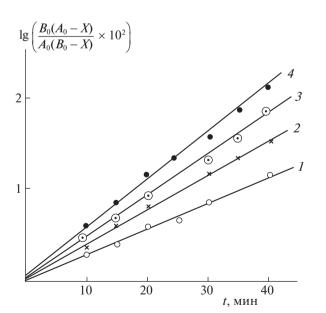
При различных температурах была изучена прививка мономера ММ к макроцепи хитозана



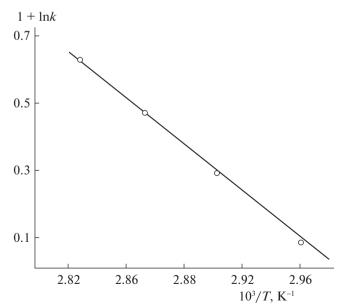
**Puc. 2.** Зависимость  $\ln k$  от  $\frac{1}{T}$  для системы MAA и  $(X_{T3}-NH_2)$ .

**Таблица 2.** Текущие значения концентраций (моль/л) звеньев ММАА и  $(X_{13}-NH_2)$  в макромолекуле хитозана в зависимости от времени ведения реакции при различных температурах;  $A_0 = [MMAA]_0 = 1.74 \times 10^{-1}$  моль/л;  $B_0 = [X_{13}-NH_2] = 6.8 \times 10^{-2}$  моль/л; X — концентрации гликозидных звеньев с N-замещенными группами в модифицированной макромолекуле хитозана, моль/л

|                   | 65°C            |        |        |                                                     | 70°C            |        |        |                                                     | 75°C            |        |        |                                                     | 80°C            |        |        |                                                     |
|-------------------|-----------------|--------|--------|-----------------------------------------------------|-----------------|--------|--------|-----------------------------------------------------|-----------------|--------|--------|-----------------------------------------------------|-----------------|--------|--------|-----------------------------------------------------|
| <i>t</i> ,<br>мин | $X \times 10^3$ | А      | В      | $\ln \frac{B_0(A_0 - X)}{A_0(B_0 - X)} \times 10^1$ | $X \times 10^3$ | A      | В      | $\ln \frac{B_0(A_0 - X)}{A_0(B_0 - X)} \times 10^1$ | $X \times 10^3$ | A      | В      | $\ln \frac{B_0(A_0 - X)}{A_0(B_0 - X)} \times 10^1$ | $X \times 10^3$ | A      | В      | $\ln \frac{B_0(A_0 - X)}{A_0(B_0 - X)} \times 10^1$ |
| 10                | 3.2             | 0.1706 | 0.0658 | 0.3                                                 | 4.0             | 0.17   | 0.065  | 0.36                                                | 5.1             | 0.1689 | 0.0639 | 0.46                                                | 6.0             | 0.168  | 0.063  | 0.54                                                |
| 15                | 4.2             | 0.17   | 0.0648 | 0.4                                                 | 6.0             | 0.168  | 0.063  | 0.57                                                | 7.1             | 0.1669 | 0.0619 | 0.64                                                | 8.6             | 0.1654 | 0.0604 | 0.8                                                 |
| 20                | 6.3             | 0.168  | 0.0627 | 0.6                                                 | 8.2             | 0.1658 | 0.0608 | 0.8                                                 | 10.0            | 0.1642 | 0.0592 | 0.92                                                | 11.3            | 0.1627 | 0.0577 | 1.1                                                 |
| 25                | 7.3             | 0.1667 | 0.0617 | 0.7                                                 | 9.8             | 0.1642 | 0.0592 | 0.95                                                | 11.8            | 0.1622 | 0.0572 | 1.14                                                | 13.8            | 0.1602 | 0.0552 | 1.39                                                |
| 30                | 9.4             | 0.1646 | 0.0596 | 0.9                                                 | 12.1            | 0.1619 | 0.0569 | 1.17                                                | 14.1            | 0.1599 | 0.0549 | 1.38                                                | 16.8            | 0.1572 | 0.0522 | 1.62                                                |
| 35                | 11.0            | 0.163  | 0.058  | 1.04                                                | 14.0            | 0.16   | 0.055  | 1.35                                                | 16.9            | 0.1571 | 0.0521 | 1.6                                                 | 19.0            | 0.155  | 0.05   | 1.9                                                 |
| 40                | 12.0            | 0.162  | 0.057  | 1.22                                                | 15.8            | 0.1582 | 0.0532 | 1.6                                                 | 18.2            | 0.1556 | 0.0508 | 1.8                                                 | 20.3            | 0.1537 | 0.0487 | 2.17                                                |


 $(X_{T3}-NH_2)$ . Динамика взаимодействия между указанными соединениями представлена в табл. 3.

С использованием данных табл. 3, уравнения  $\frac{1}{C} = \frac{1}{C_0} + kt$  для реакции второго порядка [6] и установленные зависимости  $\frac{1}{C}$  от t при различных

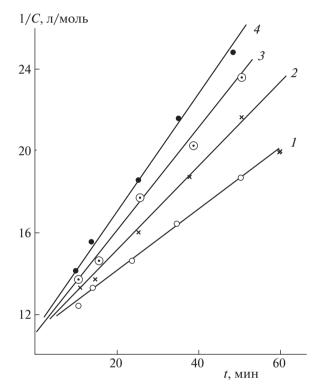

температурах (рис. 5) были определены значения констант скорости взаимодействия MM с ( $X_{T3}$ –  $NH_2$ ) при разных температурах (k, л моль $^{-1}$  мин $^{-1}$ ):

$$T$$
, °C
 65
 70
 75
 80

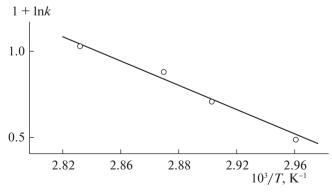
  $k \times 10^1$ 
 1.37
 2.1
 2.5
 2.8



**Рис. 3.** Зависимости  $\ln \frac{B_0(A_0-X)}{A_0(B_0-X)}$  от t при различных температурах;  $1\!-\!4\!-\!$  см. рис. 1.




**Рис. 4.** Зависимость  $\ln k$  от  $\frac{1}{T}$  системы МААА и  $(X_{T3}-NH_2)$ .


ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 4 2019

**Таблица 3.** Текущие значения концентраций (1/C, л/моль) звеньев MM и ( $X_{T3}$ –NH<sub>2</sub>) в макромолекуле хитозана в зависимости от времени ведения реакции при различных температурах;  $[MM]_0 = [X_{T3}$ –NH<sub>2</sub>] $_0 = 8.96 \times 10^{-2}$  моль/л, X – концентрации гликозидных звеньев с N-замещенными группами в модифицированной макромолекуле хитозана, моль/л

|                | 65              | °C            | 70              | °C            | 75              | °C            | 80°C            |               |  |
|----------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|--|
| <i>t</i> , мин | $X \times 10^2$ | $\frac{1}{C}$ |  |
| 10             | 0.97            | 12.51         | 1.16            | 12.82         | 1.39            | 13.2          | 1.69            | 13.75         |  |
| 14             | 1.4             | 13.23         | 1.68            | 13.73         | 2.01            | 14.39         | 2.4             | 15.24         |  |
| 25             | 2.2             | 14.79         | 2.7             | 15.24         | 3.17            | 17.24         | 3.8             | 19.38         |  |
| 37             | 3.0             | 16.78         | 3.7             | 17.36         | 4.0             | 20.16         | 4.4             | 21.2          |  |
| 50             | 4.0             | 19.0          | 4.32            | 21.55         | 4.75            | 23.75         | 5.03            | 25.44         |  |



**Рис. 5.** Зависимости  $\frac{1}{c}$  от *t* при различных температурах; I-4- см. рис. 1.



**Рис. 6.** Зависимость  $\ln k$  от  $\frac{1}{T}$  системы ММ и  $(X_{T3}-NH_2)$ .

а из зависимости  $\ln k$  от  $\frac{1}{T}$  (рис. 6) оценена энергия активации реакции между MM и  $X_{T3}$ – $NH_2$ , которая оказалась равной  $18 \pm 0.5$  ккал/моль.

Таким образом, из сравнения значений для энергии активации, можно заключить, что по убыванию активности метилольных производных МАА, ММАА и ММ к прививке на  $(X_{T3}-NH_2)$  исследованные мономеры можно расположить в следующий ряд: ММ, ММАА, МАА.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Перминов П.А. Закономерности взаимодействия хитозана с глутаровым ангидридом и их использование при получении ферментсодержащих полимерных материалов: Автореф. дис. ... канд. хим. наук. М.: Московский государственный текстильный университет им. А.Н. Косыгина, 2007. 16 с.
- Пономарев В.С., Кожакова К.В., Шуленов И.Д. и др. // Изв. АН. Сер. хим. 2014. № 7. С. 1619.
- 3. Зубарева А.А., Овчинникова Е.В., Ильина А.В. и др. // Материалы 2-й международной школы "Наноматериалы и нанотехнологии в живых системах. Безопасность и наномедицина". Пансионат "Заря". Московская область. 19—24 сентября 2011 г. Тез. докладов. С. 76.
- 4. Болгов А.А. Получение гомологов хитозана и его полимераналогичные превращения: Автореф. дис. ... канд. хим. наук. М.: Московская академия тонкой химической технологии им. М.В. Ломоносова, 2009. 23 с.
- Акопян Э.А., Маркарян А.А., Атарян О.С. и др. // Биол. журн. Армении. 2015. № 1. С. 45.
- Эмануэль Н.М., Кнорре Д.Г. Курс химической кинетики. М.: Высшая школа, 1962. С. 168–170.
- 7. *Барсегян Ж.Б.* Синтез и изучение свойств новых сополимеров акриловой кислоты и акриламида: Автореф. дис. ... канд. хим. наук. Ереван: НТЦ ОФХ НАН РА, 2013. 20 с.