_____ ФИЗИЧЕСКАЯ ХИМИЯ _____ РАСТВОРОВ

УДК 541.18:661.158.2

СВОЙСТВА МИЦЕЛЛЯРНЫХ РАСТВОРОВ ДЕЦИЛСУЛЬФАТА НАТРИЯ В ОБЛАСТИ ОТНОСИТЕЛЬНО ВЫСОКИХ КОНЦЕНТРАЦИЙ

© 2019 г. В. С. Кузнецов^{*a*}, В. Г. Баделин^{*b*,*}, Е. Ю. Тюнина^{*b*}, В. П. Жердев^{*c*}

^а Ивановский государственный университет, Иваново, 153025 Россия ^b Российская академия наук, Институт химии растворов им. Г.А. Крестова, Иваново, 153045 Россия ^c Ивановский государственный политехнический университет, Иваново, 153037 Россия *e-mail: vgb@isc-ras.ru

Поступила в редакцию 12.02.2018 г.

Методом прецизионной адиабатной дифференциальной сканирующей микрокалориметрии исследованы теплоемкостные свойства водных растворов анионного ПАВ – децилсульфата натрия в области моляльных концентраций 0.28-0.42 моль кг⁻¹ и температур 278–363 К. Получены концентрационные и температурные зависимости удельных и кажущихся теплоемкостей растворов с интервалом в 0.01 моль кг⁻¹, парциальных мольных теплоемкостей растворенного вещества и растворителя, а также избыточных парциальных мольных теплоемкостей. Определена граница Крафта. Анализ характерных изменений указанных свойств позволил выявить наличие структурных изменений в мицеллах децилсульфата натрия, которые соответствуют трансформации формы мицелл из цилиндрической в пластинчатую в области третьей критической мицеллярной концентрации.

Ключевые слова: децилсульфат натрия, водные растворы, удельная теплоемкость, кажущиеся и парциальные молярные теплоемкости, граница Крафта, критическая мицеллярная концентрация **DOI:** 10.1134/S0044453719040174

Возрастающий интерес к исследованию надмолекулярных структур, которые являются основой молекулярной организации биологических систем, обусловлен возможностью моделирования различных биохимических процессов, протекающих в организме человека, на основе использования мицеллярных растворов поверхностноактивных веществ (ПАВ) [1-3]. До сих пор остаются неясными вопросы о механизме стабилизации мицелл разного размера и формы, влияния их структуры на избирательность взаимодействия и т.д. [4–7]. В связи с этим, актуальными являются структурно-термодинамические исследования растворов ионогенных ПАВ в области относительно высоких концентраций, а также их растворов, модифицированных аминокислотами. Мицеллоподобные образования, ядром которых являются ферромагнитные частицы, окруженные сложно структурированным слоем наполнителя и пластификатора, оказываются существенным элементом, определяющим взаимодействие соответствующих коллоидных растворов с активированной волокнистой основой, выполняющей роль как поверхности адгезии, так и армирующего фактора. Показано [8], что такие материалы, как элементы одежды, способны оказывать влияние на нервную и сердечно-сосудистую системы и способность адаптации человека

к стрессовым состояниям. Благодаря термодинамическим расчетам, подобным излагаемым в статье, появляется возможность оценивать предполагаемую эффективность этих материалов уже на этапе подбора компонентов коллоидных смесей и типа армирующих волокон и, следовательно, уменьшить значимость эмпирических поисков.

Ранее [9] нами были определены объемные и термические свойства водных растворов децилсульфата натрия в области моляльных концентраций 0.28-0.42 *m* и температур 283-318 К. В результате выявлено наличие структурных изменений в мицеллах, обусловленные, по всей видимости, их трансформацией из цилиндрической в пластинчатую форму, что может соответствовать третьей критической мицеллярной концентрации (КМК₃). Однако не удалось точно определить концентрационный и температурный диапазоны существования этого межмицеллярного структурного перехода. Для уверенной интерпретации структурных преврашений в исследуемых растворах необходимы прецизионные измерения их теплоемкостных свойств. В центре данной работы – исследование теплоемкости водных растворов децилсульфата натрия (ДСН) в указанных выше интервалах концентраций и температур с целью определения границы Крафта, концентрационно-температурных пределов и

•		•								
<i>Т</i> , К	0.28 m	0.30 m	0.32 m	0.33 m	0.34 <i>m</i>	0.35 m	0.37 <i>m</i>	0.38 m	0.40 m	0.42 <i>m</i>
278	4.024	4.014	4.007	4.002	3.994	3.988	3.984	3.987	3.983	3.968
280	4.021	4.011	4.004	3.998	3.991	3.984	3.980	3.984	3.978	3.960
283	4.016	4.007	3.999	3.994	3.987	3.980	3.976	3.979	3.976	3.954
293	4.008	3.998	3.991	3.986	3.979	3.972	3.968	3.971	3.967	3.946
298	4.006	3.996	3.989	3.984	3.977	3.970	3.966	3.969	3.966	3.944
303	4.006	3.996	3.989	3.984	3.977	3.969	3.966	3.969	3.966	3.944
308	4.007	3.996	3.989	3.985	3.978	3.970	3.968	3.970	3.966	3.945
323	4.014	4.003	3.995	3.991	3.986	3.977	3.976	3.977	3.973	3.953
333	4.021	4.011	4.003	3.998	3.994	3.984	3.984	3.985	3.982	3.960
343	4.031	4.020	4.012	4.007	4.003	3.994	3.993	3.994	3.991	3.970
353	4.043	4.032	4.023	4.019	4.015	4.005	4.005	4.006	4.002	3.982
363	4.056	4.046	4.038	4.033	4.029	4.020	4.020	4.020	4.016	3.997

Таблица 1. Удельные теплоемкости C_p (Дж г⁻¹ K⁻¹) водных растворов децилсульфата натрия при разных концентрациях и температурах

равновесных параметров структурного перехода, идентифицируемого как перестройка цилиндрических мицелл в пластинчатые бислойные мицеллы, и соответствующего КМК₃. Кроме того, вычислены температурные зависимости концентрационных констант равновесия между мицеллярными формами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Децилсульфат натрия (фирмы "Lancaster") и хлорид натрия NaCl (необходимый для тестирования калориметра) очишали и хранили так же. как описано в [10]. Вода, используемая для приготовления растворов, подвергалась деионизации и двойной дистилляции. Все растворы приготовлены весовым методом, используя весы Sartorius-ME215S (с точностью 1×10^{-5} г). Измерения теплоемкости водных растворов выполнены на адиабатическом дифференциальном сканирующем ("Биоприбор", микрокалориметре SCAL-1 г. Пущино). Микро-калориметр оснащен термоэлементами Пельтье, устройством для создания постоянного давления в рабочей и следящей ячейках детектора калориметра, а также компьютерным терминалом и программным обеспечением для вычисления удельной теплоемкости. Объем каждого из двух контейнеров равен 0.337 см³. Интегральная чувствительность детектора калориметра составляет 33.218 нВт/мВ, калибровочная мощность – 25 мкВт, скорость сканирования -0.5 К/мин, постоянная времени -20 с. Прибор, детальное описание которого приведено в [11, 12], был протестирован по теплоемкости водных растворов хлорида натрия, рекомендованного в качестве стандарта для сканирующей калориметрии растворов [13]. Так, величина теплоемкости водного раствора NaCl ($m = 0.2000 \pm 0.0002$ моль · кг⁻¹)

при 298.15 К составила 4.13278 ± 0.00012 Дж К⁻¹ г⁻¹ (с учетом среднеквадратической погрешности в серии 10 параллельных сканирований без перезарядки калориметра [12]), что согласуется с литературными данными $C_{p, lit} = 4.13266 \pm 0.075$ Дж К⁻¹ г⁻¹ [13, 14]. Принимая во внимание влияние всех возможных факторов (колебания температуры, концентрации, скорости нагрева, калибровки прибора, др.) на процесс измерения удельной теплоемкости, совокупная стандартная погрешность полученной величины C_p не превышала $\pm 8.08 \times 10^{-3}$ Дж К⁻¹ г⁻¹. Полученные экспериментальные значения удельной теплоемкости водных растворов ДСН приведены в табл. 1.

РАСЧЕТНАЯ ЧАСТЬ

Кажущаяся мольная теплоемкость (КМТ) (Φ_{Cp}) определяется из экспериментальных значений удельной теплоемкости по уравнению [15, 16]:

$$\Phi_{Cp} \equiv (C_{p,\text{obut}} - n_1 C_{p1}^\circ)/n_2 =$$

= $M_2 C_p + 1000 (C_p - C_p^\circ)/m,$ (1)

где C_{p1}° — мольная теплоемкость растворителя, Дж К⁻¹ моль⁻¹; C_p и C_p° — удельные теплоемкости (УТ), соответственно, раствора и растворителя, Дж К⁻¹ г⁻¹; n_1 и n_2 — числа моль растворителя и растворенного вещества; m — моляльная концентрация растворенного вещества, моль кг⁻¹ растворителя; M_2 — молярная масса растворенного вещества (ДСН), $C_{p, \, общ}$ — общая теплоемкость раствора, Дж К⁻¹, которую можно выразить как

$$C_{p,\text{общ}} = C_p (1000 + mM_2).$$
(2)

Парциальная мольная теплоемкость (ПМТ) растворенного вещества (\overline{C}_{p2}) и растворителя (\overline{C}_{p1}) в растворе вычисляются по следующим соотношениям [15–18]:

$$\overline{C}_{p2} \equiv (\partial C_{p,\text{ofm}}/\partial m)_{P,T} = \Phi_{Cp} + m(\partial \Phi_{Cp}/\partial m)_{P,T} =$$

= (1000 + mM₂)($\partial C_p/\partial m$)_{P,T} + M₂C_p, (3)

$$C_{pl} \equiv (\partial C_{p,\text{ofm}}/\partial n_l)_{P,T} = C_{pl}^{\circ} -$$

- $(m^2 M_1/1000) (\partial \Phi_{Cp}/\partial m)_{P,T},$ (4)

где M_1 — молярная масса растворителя. Точность расчета \overline{C}_{p2} по первой или второй части равенства (3) зависит от точности аппроксимации соответствующих функций $\Phi_{Cp}(m)$ или $C_p(m)$. Величину \overline{C}_{p1} можно также найти из уравнения Гиббса—Дюгема для бинарного раствора. В моляльной шкале концентраций

$$C_{\text{pofull}} = 55.508 \ \overline{C}_{p1} + m\overline{C}_{p2},$$
 (5)

что в сочетании с уравнением (2) дает

$$\overline{C}_{p1} = (C_p(1000 + mM_2) - m\overline{C}_{p2})/55.508.$$
 (6)

Избыточная парциальная мольная теплоемкость (ИПМТ) раствора \bar{C}_{p}^{E} равна

$$\overline{C}_{p}^{E} \equiv C_{p,m} - C_{p,m}^{\text{MR}} = C_{p,m} - (1 - x_2)C_{p1}^{\circ} - x_2C_{p2}^{*}, \quad (7)$$

где $C_{p,m}$ — мольная теплоемкость раствора, $C_{p,m}^{un}$ мольная теплоемкость идеального раствора того же состава при тех же температуре и давлении, x_2 — мольная доля растворенного вещества, C_{p2}^* мольная теплоемкость вещества в кристаллическом состоянии ($T_{пп}(\text{ДCH}) = 467$ K); при этом $C_{p1}^{\circ} = C_p^{\circ} M_1$; $C_{p,m} = C_p M_s$ и молярная масса раствора: $M_s = (1 - x_2)M_1 + x_2M_2$, где $x_2 = m/(m + 55.508)$. Отсутствие данных о температурной зависимости атомных теплоемкостей кристаллического ДСН затрудняет оценку величины C_{p2}^* по правилу аддитивности Неймана–Коппа [19]. Поэтому для ДСН использован метод вычисления теплоемкости твердых кристаллических тел по общей длине связей в молекуле [17], который детально описан в работе [12].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Как известно [12, 20–23], в водных растворах гомологов алкилсульфатов натрия (децил-(ДСН), додецил-(ДДСН), тетрадецил-(ТДСН) и гексадецил-(ГДСН)) существуют полиморфные межмицеллярные превращения, соответствующие различным КМК. Так, для водных растворов децилсульфата натрия КМК₁ = 0.029 *m*, КМК₁₋₂ = $0.12 \ m$ и КМК₂ = $0.22 \ m$. Эти равновесные концентрации соответствуют мицеллообразованию сферических мицелл (КМК₁), промежуточному преобразованию формы мицелл "сфера—эллипсоид" (КМК₁₋₂) и трансформации "эллипсоид цилиндр" (КМК₂), которые были изучены ранее [12, 24—26] методами ДСК и денсиметрии. Вместе с тем, остается открытым вопрос о существовании КМК₃ для исследуемой системы ДСН—вода, хотя для водных растворов других алкилгомологов уже установлены ее значения: 0.15, 0.038 и 0.0095 моль дм⁻³, соответственно, для ДДСН, ТД-СН и ГДСН [23].

В работе [9] были обнаружены некоторые особенности на изотермах и изоконцентратах объемных свойств растворов ДСН при концентрациях 0.33 - 0.35 m, что может свидетельствовать о возможных структурных изменениях, соответствующих трансформации мицелл из цилиндрической в пластинчатую форму в области KMK₃, расположенной за вторым межмицеллярным переходом с КМК₂, согласно принятым моделям мицеллярного полиморфизма [21, 22, 27-30]. Задачей настоящего исследования является идентификация структурных превращений в водных растворах децилсульфата натрия в указанном концентрационном и температурном интервалах и определение границ и равновесных параметров межмицеллярного перехода в области КМК₃ с использованием метода ДСК.

Как известно [16, 19], если в растворах отсутствуют изменения во взаимодействиях растворенное вещество – растворитель и растворенное вещество – растворенное вещество, то теплоемкостные свойства раствора будут находиться в линейной зависимости от концентрации. Однако в реальных ионных мицеллярных растворах при изменении концентрации происходят структурные превращения, обусловленные изменениями гидрофобных и электростатических взаимодействий, такие как изменение чисел агрегации мицелл, степени связывания противоинов, лиофобизации и др., приводящие к изменению способа упаковки дифильных молекул ПАВ в мицелле и трансформации их геометрической формы в области КМК [21-23, 30]. Возрастание величин КМТ и ПМТ растворенного вещества связывают с увеличением степеней свободы и (или) интенсивности молекулярных движений, что ведет к деструктивным процессам в мицеллах, а уменьшение этих величин свидетельствует об образовании более упорядоченных структур. Минимумы на изотермах КМТ $\Phi_{C_p}(m)$ и ПМТ $\overline{C}_{p2}(m)$ соответствуют равновесным концентрациям ионов ПАВ, в равных долях агрегированных в более "рыхлую" и более "плотную" формы мицелл. Так, в случае достижения КМК₃ при относительно высокой температуре мицеллы с преимущественно "рыхлой" упаковкой периферической части представляют собой мицеллы цилиндрической формы (мицеллы Дебая), а при более низкой температу-

Рис. 1. Изотермические зависимости кажущихся мольных теплоемкостей децилсульфата натрия в водных растворах от концентрации при температурах: 1 - 278, 2 - 279, 3 - 280, 4 - 283, 5 - 288, 6 - 293, 7 - 303, 8 - 313, 9 - 323, 10 - 333, 11 - 343, 12 - 363 K.

ре возникают пластинчатые бислойные мицеллы с большей плотностью упаковки (мицеллы Мак-Бена) [21, 22].

Анализ и обработка экспериментальных данных УТ, представленных в таблице 1 для водных растворов ДСН, показали, что во всем изученном диапазоне параметров (m, T) изотермы $C_n(m)$ и изоконцентраты $C_p(T)$ хорошо аппроксимируются полиномами четвертой и второй степени, соответственно. При $m \approx 0.34$ моль кг⁻¹ наклон изотерм заметно уменьшается, а при $m \approx 0.4$ моль кг⁻¹, наоборот, сильно увеличивается. Это связано, по-видимому, с усилением межмицеллярного взаимодействия и, возможно, с образованием мицеллярных агрегатов, которые и являются зародышами лиомезофазы [21, 22, 29]. Такой мицеллярный раствор может быть не изотропен вследствие агрегативной хиральности амфифила и, например, может вращать плоскость поляризации света, как было выявлено для растворов додецилсульфата натрия [27].

Для водных растворов ДСН выявлена инверсия последовательности изотерм УТ $C_p(m)$: изотерма при 303 К расположена ниже других, соответствующих более низким и более высоким температурам. Такая же особенность обнаружена и на изоконцентрационных зависимостях $C_p(T)$, имеющих глубокий минимум в области 303–305 К. Подобный факт говорит о преобладающем вкладе теплоемкости растворителя в общую удельную теплоемкость раствора (теплоемкость воды минимальна при 306 К [14]). Графики зависимостей $C_p(m)$ и $C_p(T)$ не приводятся из-за ограниченного объема статьи. На рис. 1 представлены изотермы КМТ ДСН, имеющие два максимума и локальный минимум, положение которого, по-видимому, соответствует равновесной концентрации KMK₃ (~0.35 *m*). Если на первом участке – от первого максимума (~0.32 *m*) до минимума – преобладает доля молекул в растворе, агрегированных в менее плотноупакованные (цилиндрические) мицеллы, а на втором – от минимума до второго максимума (~0.40 *m*) – в более плотноупакованные (пластинчатые) мицеллы, то в области минимума эти доли равны.

Изоконцентраты КМТ ДСН в водном растворе обнаруживают минимум при низких температурах. При этом изоконцентрата для 0.35 *m* водного раствора ДСН находится на графике ниже, чем изоконцентраты при 0.32 m и 0.40 m. Используя данные о КМТ для раствора ДСН при низких температурах, определена граница Крафта ($T_{\rm K}$), характеризующая предел молекулярной растворимости коллоидного ПАВ (мицеллярные растворы существуют при температуре выше границы Крафта). В качестве примера на рис. 2 приведена изоконцентрата Φ_{Cp} (278 $\leq T \leq$ 288 K) при 0.35 *m*, минимум которой соответствует *T*_к. Данные по $\Phi_{C_p}(T)$ для других концентраций от 0.3 до 0.4 m дают значения T_к от 279 до 280 K, что согласуется с литературными данными [30, 31].

Как известно, КМТ переходит в ПМТ ($\Phi_{Cp} = C_{p2}$) в бесконечно разбавленном растворе ($m \rightarrow 0$), а также в экстремальных точках, в которых на изотермах КМТ ($\partial \Phi_{Cp}/\partial m$)_{*P*, *T*} = 0. Для таких же относительно высоких концентраций ПАВ, какие исследуются в настоящей работе, решающую роль для интерпретации структурных превращений играют все-таки ПМТ [16, 17].

Рис. 2. Изоконцентрационная зависимость кажущейся мольной теплоемкости водного раствора децилсульфата натрия (m = 0.35 моль кг⁻¹) в области низких температур.

Для вычисления ПМТ по результатам эксперимента изоконцентраты функции Φ_{Cp} аппроксимированы полиномом второй, а изотермы — шестой степени, обеспечивая приемлемую точность. Повышение степени полинома может привести к осцилляции расчетных зависимостей, появлению необоснованных экстремумов, т.е. получению физически противоречивого результата. Критерием выбора адекватной модели можно считать описание экспериментальных данных в пределах погрешностей их измерения со статистически значимыми параметрами полиномиального уравнения.

На рис. 3 представлены изотермы ПМТ $\bar{C}_{p2}(m)$ растворенного вешества в мицеллярных растворах ДСН. Они отличаются от изотерм КМТ (рис. 1), прежде всего, сдвигом экстремумов в сторону меньших концентраций (на $\approx 0.02 \, m$). Величина этого сдвига зависит от точности аппроксимации функции $\Phi_{C_p}(m)$ и вычисления производных $(\partial \Phi_{Cp} / \partial m)_{P, T}$. Вторым важным отличием изотерм $\overline{C}_{p2}(m)$ от $\Phi_{Cp}(m)$ является температурная инверсия, которая находит отражение в расположении изотерм на графике. Полученные результаты свидетельствуют, что концентрационный интервал рассматриваемого процесса трансформации мицеллярной формы составляет 0.30-0.38 *m* с равновесной концентрацией 0.33 m, соответствующей значению КМК₃.

Для определения температурных параметров перехода использованы изоконцентраты $\overline{C}_{p2}(T)$ для моляльностей, соответствующих экстремумам изотерм $\overline{C}_{p2}(m)$. Начальный участок (278–280 K) зависимости $\overline{C}_{p2}(T)$, представленной на рис. 4, соответствует, по-видимому, образованию предмицеллярных агрегатов молекул ПАВ (например, димеров) с минимумом в точке Крафта. Расположение экстремумов и характер зависимостей $\overline{C}_{p2}(T)$ показывает, что межмицеллярный переход происходит в интервале температур 293–343 K с равновесным значением $T_{\text{равн}} = 323$ K.

ПМТ растворителя и ПМТ растворенного вещества связаны с помощью второго уравнения Гиббса–Дюгема, которое для бинарного водного раствора имеет вид

$$55.508d\bar{C}_{p1} + md\bar{C}_{p2} = 0, (8)$$

Рис. 3. Изотермические зависимости парциальных мольных теплоемкостей децилсульфата натрия в водных растворах от концентрации при температурах: *1* – 278, *2* – 280, *3* – 283, *4* – 293, *5* – 303, *6* – 313, 7 – 323, *8* – 333, *9* – 343, *10* – 363 К.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 4 2019

Рис. 4. Изоконцентрационные зависимости парциальных мольных теплоемкостей децилсульфата натрия в водных растворах от температуры при моляльности: 1 - 0.28, 2 - 0.30, 3 - 0.33, 4 - 0.38 моль кг⁻¹.

В бесконечно разбавленном растворе $(m \rightarrow 0)$ $\overline{C}_{p1} = \text{const} = \overline{C}_{p1}^{\circ}$. Если известна зависимость $\overline{C}_{p2}(m)$, то можно вычислить ПМТ растворителя $\overline{C}_{p1}(m)$:

$$\overline{C}_{p1}(m) = -(1/55.508) \int_{m_0}^m m d\overline{C}_{p2}(m), \qquad (9)$$

где m_0 — моляльность, соответствующая первому максимуму на рис. 3. Дифференцируя уравнение (8), получим

$$(\partial \overline{C}_{p1}/\partial m)_{P,T} = -(m/55.508)(\partial \overline{C}_{p2}/\partial m)_{P,T}.$$
 (10)

Отсюда следует, что производные $(\partial \overline{C}_{pl}/\partial m)_{P,T}$ и $(\partial \overline{C}_{p2}/\partial m)_{P,T}$ имеют разные знаки, а, следовательно, и поведение функции $\overline{C}_{p2}(m)$ противоположно поведению функции $\overline{C}_{pl}(m)$. Аналогичный "зеркальный" эффект наблюдается и для изоконцентрат ПМТ растворителя $\overline{C}_{pl}(T)$ и растворенного вещества $\overline{C}_{p2}(T)$.

Для определения избыточной парциальной мольной теплоемкости (ИПМТ) были вычислены температурные зависимости мольной теплоемкости кристаллического ДСН (C_{p2}^*) с использованием результатов работ [12, 20]. Полученные значения C_{p2}^* приведены в табл. 2. ИПМТ раствора \bar{C}_p^E характеризует, как известно, изменение его теплоемкости при изотермоизобарном и изомоляльном переносе растворенного вещества из идеального раствора в реальный (ур-ние 7). На рис. 5 приведены зависимости ИПМТ от температуры \bar{C}_p^E (*T*). При низких температурах функция

 \bar{C}_{p}^{E} "реагирует" на мицеллообразование: при 280 К наблюдаются небольшие минимумы, соответствующие границе Крафта. Казалось бы, что значения \bar{C}_{p}^{E} должны лежать в поле отрицательных величин, что, например, имеет место для ИПМТ растворов ДСН в окрестности КМК₂ = 0.22 *m* [12]. Однако в рассматриваемом здесь случае все изоконцентраты $\bar{C}_{p}^{E}(T)$ лежат в положительной области. По-видимому, при относительно высоких концентрациях раствора разрушающее действие довольно крупных и к тому же несферических мицелл на растворитель столь велико, что появление новых степеней свободы превалирует над их потерей при указанном выше переносе вещества как результат конкуренции взаимодействий растворенное вещество — растворенное вещество, растворенное вещество — растворитель и

Порядок расположения изоконцентрат $\overline{C}_{\rho}^{E}(T)$ по мере увеличения *m* нарушается лишь на верхнем пределе интервала концентраций: изоконцентрата для 0.42 *m* лежит ниже, чем таковая для 0.40 *m*. По-видимому, это объясняется агрегацией пластинчатых мицелл и, соответственно, потерей степеней свободы растворенного вещества. Температура минимумов всех изоконцентрат составляет ~ 308 K, что близко к температуре минимума теплоемкости воды. Все это свидетельствует о решающей роли растворителя в структурировании раствора, в том числе в гидрофобных взаимодействиях.

растворитель – растворитель.

При условии монодисперсности мицелл и отсутствии молекулярных форм ионных ПАВ эффект температуры на структурный переход ("пластина \rightarrow цилиндр") в области КМК₃ проявляется, прежде всего, в уменьшении степени связывания (В) противоионов, увеличении площади поверхности (а) мицеллы в расчете на один поверхностно-активный ион, уменьшении фактора упаковки ($q = V_c/al_c$, где V_c – объем, l_c – длина углеводорадикала), уменьшении родного роли гидрофобных взаимодействий с одновременным увеличением электростатической составляющей энергии Гиббса перехода и статической диэлектрической проницаемости вследствие возрастания проникновения молекул воды в периферической части мицелл [21-23, 26]. Следствием этих процессов и является дезинтеграция при увеличении температуры пластинчатых мицелл с образованием цилиндрических с меньшим числом агрегании.

Ранее было показано, что в рамках квазихимического подхода процесс перестройки структуры и форм мицелл может моделироваться мономолекулярной обратимой реакцией [23, 26], при этом с увеличением температуры из "плотных" мицелл образуются "рыхлые": в данном случае из пластинчатых мицелл — цилиндрические. Если в качестве стандартного состояния выбрать одномолярный раствор [16], то константа равновесия не будет зависеть от общей концентрации, а энергия Гиббса процесса будет определяться ее стандартным значением в расчете на одну пластинчатую мицеллу [23]:

$$\Delta G(T) = \Delta G^{\circ}(T) = -(1/n)RT \ln K_c(T), \qquad (11)$$

где $K_{c}(T)$ — концентрационная константа равновесия, n — число агрегации в пластинчатой мицелле. В этом случае справедливы следующие соотношения [22, 25]:

Таблица 2. Мольные теплоемкости кристаллического децилсульфата натрия при разных температурах

<i>Т</i> , К	$C_{p2}^{*},$ Дж моль $^{-1}$ К $^{-1}$
278.15	370.66
280.15	372.41
281.15	373.28
283.15	375.46
288.15	379.82
293.15	384.62
298.15	389.42
303.15	393.78
313.15	403.81
323.15	412.11
333.15	421.64
348.15	435.60

$$K_{c} = C_{u}/C_{nn}; \quad C_{nn} + C_{u} = KMK_{3}; \alpha_{nn} = C_{nn}/KMK_{3} = 1/(K_{c} + 1);$$
(12)
$$C_{u} = K_{c}KMK_{3}/(1 + K_{c}),$$

где C_{μ} и C_{μ} – молярные концентрации ионов ДСН, агрегированных в цилиндрические и пластинчатые мицеллы, соответственно; α_{μ} – доля ионов ПАВ, агрегированных в пластинчатые мицеллы.

Используя соотношения (12), рассчитаны величины $\alpha_{n,n}$, $\alpha_{u} = 1 - \alpha_{n,n}$, K_c , $C_u \alpha C_{n,n} = KMK_3 - C_u$ для "равновесной" (при KMK₃ = 0.33 *m*) изоконцентраты ПМТ растворенного вещества $\overline{C}_{p2}(T)$ в области перехода (293 $\leq T \leq$ 343 K) (рис. 4). Полученные параметры приведены в табл. 3. Отметим,

Рис. 5. Изоконцентрационные зависимости избыточных мольных теплоемкостей водных растворов децилсульфата натрия от температуры при моляльности: 1 - 0.28, 2 - 0.30, 3 - 0.33, 4 - 0.37, 5 - 0.40, 6 - 0.42 моль кг⁻¹.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 4 2019

Таблица 3. Доли ионов, агрегированных в пластинчатые мицеллы ($\alpha_{пл}$), концентрационные константы равновесия (K_c) и молярные концентрации ($C_{ц.}$) ионов, агрегированных в цилиндрические мицеллы, в водном растворе ДСН при KMK₃ = 0.33 *m*

<i>Т</i> , К	α_{nn}	K _c	$C_{\rm II}$, моль дм ⁻³
293	1.00	0	0
298	0.92	0.09	0.03
303	0.83	0.20	0.05
313	0.66	0.49	0.11
323	0.50	1.00	0.16
333	0.25	3.00	0.24
338	0.12	7.00	0.28
342	0.02	39.0	0.32
343	0.00	$\rightarrow \infty$	0.33

что значения K_c не являются термодинамическими константами равновесия. Это условные константы, поскольку в рамках используемого подхода принимается, что при 293 К все молекулы ПАВ агрегированы в более плотноупакованные пластинчатые мицеллы ($\alpha_{nn} = 1$), а при 343 К – в цилиндрические ($\alpha_{nn} = 0$). Эти константы следует отнести к равновесной концентрации 0.33 m. Как видно из рис. 4, в интервалах температур 293-323 К и 323–343 К значения \overline{C}_{n2} (*T*) изменяются в первом приближении линейно. Следовательно, можно считать, что и доли ионов ПАВ изменяются линейно, пропорционально значениям \bar{C}_{n^2} . Полученные результаты дают правильное представление о распределении ионов в мицеллах одной и другой геометрической формы, соответствующее распределению ПМТ.

Из табл. 2 следует, что $T_{\text{равн}} = 323$ К является равновесной температурой трансформации формы мицелл: $K_c = 1$, значение $\alpha_{\text{пл}}$ составляет 50%. При повышении температуры процесс структурной перестройки мицелл происходит неравномерно до и после точки равновесия. Температурные производные ($\Delta \alpha_{\text{пл}}/\Delta T$) = 0.0167 K⁻¹ и ($\Delta C_{\text{ц}}/\Delta T$) = 0.0055 моль дм⁻³ K⁻¹ до равновесия, указывающие на дезинтеграцию пластинчатых мицелл, в 1.5 раза меньше, чем после равновесия, а образование "цилиндрических" мицелл происходит во столько же раз "быстрее" по температуре после $T_{\text{равн}} = 323$ К.

Таким образом, методом ДСК определены удельные теплоемкости децилсульфата натрия в водном растворе в интервале концентраций 0.28–0.42 *m* и температур 278–363 К. Вычислены кажущиеся и парциальные мольные теплоемкости растворителя и растворенного вещества, а также избыточные парциальные мольные теплоемко-

сти. Полученные данные позволили обнаружить третий межмицеллярный структурный переход в водных растворах ДСН, соответствующий изменению типа структуры мицелл от цилиндрической в пластинчатую форму. Определены важнейшие характеристики этого процесса: концентрационный интервал от 0.30 *m* до 0.38 *m* с KMK₃ = 0.33 m, температурный интервал от 293 до 343 K с $T_{\text{равн}} = 323$ К. При KMK₃ = 0.33 m проведена оценка концентрационных констант равновесия (K_c) в водном растворе ДСН и параметров, характеризующих долевое распределение ионов ДСН, агрегированных в цилиндрические и пластинчатые мицеллы, в процессе их структурной трансформации в растворе в зависимости от температуры.

В дальнейшем предполагается использовать полученные результаты для вычисления термодинамических функций полиморфного мицеллярного перехода с целью разработки полноценной структурно-термодинамической модели этого процесса.

Работа выполнена при финансовой поддержке частично Гранта РФФИ № 15-43-03003_рцентр_а и частично Гранта РФФИ № 15-29-01068_офи_м.

СПИСОК ЛИТЕРАТУРЫ

- 1. Cartton R.J., Hunter J.T., Muller D.S. et al. // Liq. Cryst. Rev. 2013. V. 1. № 1. P. 29.
- 2. Ali A., Bhushan V., Malik N.A., Behera K. // Colloid J. 2013. V. 75. № 4. P. 357.
- 3. *Бродская Е.Н.* // Коллоидн. журн. 2012. Т. 74. № 2 С. 167.
- Ali A., Malik N.A., Uzair S., Ali M. // Mol. Phys. 2014. V. 112. P. 2681.
- 5. Hossain M.S., Biswas T.K., Kabiraz D.C. et al. // J. Chem. Thermodynamics. 2014. V. 71. P. 6.
- Идиятуллин Б.З., Потарикина К.С., Зуев Ю.Ф. и др. // Коллоид. журн. 2013. Т. 75. № 5. С. 585–590.
- Zhu L., Han Y., Tian M., Wang Y. // Langmuir. 2013. V. 29. P. 12084.
- Королева С.В., Жердев В.П., Петров Д.Л. // Нанотехнологии: разработка, применение. 2016. Т. 8. № 3. С. 18.
- Кузнецов В.С., Блинов В.Г., Баделин В.Г. и др.// Жидк. крист. и их практич. использ. 2017. Т. 17 (1). С. 20–33.
- 10. *Кузнецов В.С., Усольцева Н.В., Быкова В.В. //* Журн. физ. химии. 2002. Т. 76. С. 1077–1081.
- Senin A.A., Potekhin S.A., Tiktopulo E.I., Filimonov V.V. // J. Therm. Anal. Calorim. 2000. V. 62. P. 153–160.
- Кузнецов В.С., Усольцева Н.В., Жердев В.П., Быков В.В. // Коллоидн. журн. 2009. Т. 71. № 6. С. 766.
- Desnoyers J.E., Visser C., Perron G., Picker P. // J. Solution Chem. 1976. V. 5. P. 605.
- Clarke E.C.W., Glew D.N. // J. Phys. Chem. Ref. Data. 1985. V. 14. P. 490.

- 15. Харнед Г., Оуэн Б. Физическая химия растворов электролитов. М.: Изд-во Иностр. лит., 1952. 599 с.
- 16. Васильев В.П. Термодинамические свойства растворов электролитов. М.: Высш. школа, 1982.
- Биологически активные вещества в растворах: структура, термодинамика, реакционная способность / Абросимов В.К., Чумакова Р.В., Агафонов А.В. и др. М.: Наука. 2001.
- Современные проблемы химии растворов / Крестов Г.А., Кесслер Ю.М., Виноградов В.И. и др./ М.: Наука, 1986.
- 19. Рид Р., Праусниц Д., Шервуд Т. Свойства газов и жидкостей. Л.: Химия, 1982.
- Kusnetsov V.S., Usol'tseva N.V., Bykova V.V. et al. // Russ. J. Phys. Chem. 2002. V. 76. N. 12. P. 2080.
- Холмберг К. Поверхносто-активные вещества и полимеры в растворах. М.: Бином, 2007.
- 22. Русанов А.И. Мицллообразование в растворах поверхностно-активных веществ. СПб.: Химия, 1992.
- Сердюк А.И., Кучер Р.В. Мицеллярные переходы в растворах поверхностно-активных веществ. Киев: Наукова думка, 1987.

- 24. *Кузнецов В.С., Усольцева Н.В., Быкова В.В., Жердев* В.П. // Коллоидн. журн. 2005. Т. 67. № 5. С. 641.
- 25. *Кузнецов В.С., Усольцева Н.В., Жердев В.П.* // Там же. 1999. Т. 61. № 5. С. 684.
- 26. Кузнецов В.С., Усольцева Н.В., Жердев В.П., Быкова В.В. // Там же. 2010. Т. 72. № 2. С. 211.
- 27. *Rusanov A.I., Nekrasov A.G.* // Langmuir. 2010. V. 26 (17). P. 13767.
- Saito M., Moroi J., Matuura R. // Colloid Interface Sci. 1982. V. 88. № 2. P. 578.
- 29. *Усольцева Н.В.* Лиотропные жидкие кристаллы: химическая и надмолекулярная структура. Иваново: Иван. гос. ун-т. 1994. 219 с.
- Dörfler Y.-D. Grenzflächen und Kolloichemie. Weinheim; New York; Basel; Cambridge; Tokyo: VCH. 1994. 598 s.
- 31. Van Os N.M., Haak J.R., Reyrert L.A.M. Physicochemical Properties of Selected Anionic, Cationic and Nonionic Surfactants. Elsevier: Amsterdam. 1993.