ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2019, том 93, № 4, с. 521–528

_____ ХИМИЧЕСКАЯ КИНЕТИКА ____ И КАТАЛИЗ

УДК 541.124.7;544.431.2;547.788;547.567.5

ВЛИЯНИЕ ПРОПАНОЛА-1 НА РЕАКЦИЮ ТИОФЕНОЛА С N,N'-ДИФЕНИЛ-1,4-БЕНЗОХИНОНДИИМИНОМ В ХЛОРБЕНЗОЛЕ

© 2019 г. В. Т. Варламов^{*a*,*}

^а Российская академия наук, Институт проблем химической физики, 142432, Черноголовка Московской области, Россия *e-mail: varlamov@icp.ac.ru Поступила в редакцию 11.07.2018 г.

Установлено, что взаимодействие тиофенола с N,N'-дифенил-1,4-бензохинондиимином протекает по двум направлениям, одно из которых представляет собой радикально-цепную реакцию, а второе является нецепной реакцией между реагентами. Кинетические закономерности реакции существенно зависят от содержания пропанола-1 в его смеси с хлорбензолом. Показано, что при 343 К замена хлорбензола на пропанол-1 приводит к увеличению суммарной скорости реакции почти в 20 раз. Увеличение содержания пропанола-1 вызывает увеличение скорости обоих направлений реакции, но скорость нецепного направления увеличивается при этом в большей степени, чем скорость цепного направления. Вместе с этим наблюдается рост в 20–30 раз констант скорости нецепной бимолекулярной реакции, хотя длина цепи цепной реакции при этом уменьшается. При замене хлорбензола на пропанол-1наблюдается уменьшение в 2 раза константы скорости и нецепной бимолекулярной реакции, хотя длина цепи цепной реакции при этом уменьшается. При замене хлорбензола на пропанол-1наблюдается уменьшение в 2 раза константы скорости лимитирующей стадии продолжения цепи (реакции хинондиимина с фенилтиильным радикалом), что связано с образованием H-комплексов между π -системой хинондиимина и протоном пропанола-1.

Ключевые слова: N,N'-дифенил-1,4-бензохинондиимин, тиофенол, двунаправленная реакция, кинетика, механизм, константы скорости, бинарные растворители хлорбензол + пропанол-1 **DOI:** 10.1134/S0044453719040289

Реакции тиолов с хиноидными соединениями (хинонами и хинониминами) имеют важное значение в химии и биохимии. Протекание таких реакций приводит к превращению биологически важных тиолов (глутатиона, цистеиновых остатков белков и др.) в вещества с ковалентной С—S-связью, из которых исходные тиолы регенерироваться не могут. Это является одной из основных причин высокой токсичности хиноидных соединений [1–7].

Впервые подробное изучение реакций тиолов с хинонными соединениями в спирте и водно-спиртовых растворах было проведено в [8] на примере реакций с участием 1,4-бензохинона и его производных. На основании данных о составе и выходе продуктов было сделано заключение о том, что указанные реакции протекают по двум направлениям, а именно: а) окислительно-восстановительное превращение хинона в гидрохинон, а тиола – в дисульфид и b) путем присоединения тиола к кольцу хинона, при этом направление b) является преимущественным. Впоследствии для направления b) был принят механизм нуклеофильного 1,4присоединения тиола к циклогексадиеновому кольцу хинона или хинонимина [9–12].

Кинетика реакций хиноидных соединений с тиолами изучена слабо, до последнего времени имелись только отдельные работы [13, 14]. Подробные исследования в этой области начались лишь недавно на примере реакций с участием хинониминов [15-19]. Были подтверждены литературные данные о том, что указанные реакции с самого начала протекают по двум направлениям. Большой неожиданностью явилось доказательство радикально-цепного механизма одного из направлений реакции, что ранее было неизвестно. Надо заметить, что образование радикалов по ходу реакций хиноидных соединений с тиолами отмечались и ранее (см., например, [20, 21]), однако эти наблюдения не привлекали внимания, и цепной механизм реакции не рассматривался.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Изучение показало, что скорость и состав продуктов реакции зависят от природы растворителя. Так, скорость реакции тиофенола с N,N'-дифенил-1,4-бензохинондиимином увеличивается почти на порядок при замене хлорбензола на пропанол-1 [19]. Из этих данных следовало, что кинетические закономерности реакции в бинарных

ВАРЛАМОВ

Таблица 1. Константы скорости стадий (I), (I_{нц}), (II), параметр $k_2/(2k_4)^{1/2}$ [19] и рассчитанные по формулам (1) и (2) диэлектрические постоянные бинарных растворителей PhCl + PrOH в зависимости от мольной доли PrOH в смеси N_{PrOH} . T = 343 K, барботаж аргона

N _{PrOH}	k ₁ k _{1нц}		$\frac{k_2}{\left(2k_4\right)^{1/2}}$	$k_2 \times 10^{-6}, *$	ε(298 K)	ε(343 K)
	л моль $^{-1}$ с $^{-1}$		(л моль ⁻¹ с ⁻¹) ^{1/2}	л моль $^{-1}$ с $^{-1}$		
0	0.0084 ± 0.0015	0.25 ± 0.04	10.8 ± 0.3	1.2	5.62	4.89
0.106	0.021 ± 0.0063	0.50 ± 0.06	9.54	1.05	6.78	5.82
0.194	0.0414 ± 0.019	0.96 ± 0.42	8.0 ± 0.13	0.88	7.79	6.60
0.803	0.196 ± 0.081	3.2 ± 1.5	6.87 ± 0.13	0.75	16.5	12.0
1	0.196 ± 0.072	4.8 ± 1.0	5.6 ± 0.65	0.61	20.1	13.7

* Расчет при $k_4 = 6 \times 10^9$ л моль⁻¹ с⁻¹, см. текст.

растворителях хлорбензол + пропанол-1 можно использовать для получения дополнительной информации о механизмах обоих направлений реакции. Учитывая большое практическое значение реакций, в настоящей работе мы решили более подробно рассмотреть этот вопрос.

С этой целью мы проанализировали результаты изучения реакции тиофенола C_6H_5 -SH PhSH с N,N'-дифенил-1,4-бензохинондиимином (C_6H_5 -N= C_6H_4 =N- C_6H_5) QDI в смешанных растворителях хлорбензол PhCl + пропанол-1 PrOH [17–19]. Изучение проводилось при T = 343 K, барботаж аргона, кинетические закономерности изучались по начальным скоростям расходования хинондиимина w_{ODI} .

Необходимые для дальнейшего плотности *d* и относительные диэлектрические проницаемости є хлорбензола и пропанола-1 представлены ниже [22]:

$$d_{PhCl} = 1.10 \text{ Kr } \pi^{-1},$$

$$\epsilon_{PhCl} (298 \text{ K}) = 5.62$$

$$(\partial \epsilon / \partial T = -0.0168 \text{ K}^{-1}),$$

$$d_{PrOH} = 0.800 \text{ Kr } \pi^{-1},$$

$$\epsilon_{PrOH} (298 \text{ K}) = 20.1$$

$$(\partial \epsilon / \partial T = -0.142 \text{ K}^{-1}).$$

С использованием этих данных были вычислены представленные в табл. 1 диэлектрические про-

$$\varepsilon(343 \text{ K}) = \varepsilon(298 \text{ K}) + 45(\partial \varepsilon/\partial T), \quad (1)$$

а также диэлектрических проницаемостей є составленных из них смесей

$$\varepsilon = v_{\rm PhCl} \varepsilon_{\rm PhCl} + v_{\rm PrOH} \varepsilon_{\rm PrOH}, \qquad (2)$$

где v_{PhCl} и v_{PrOH} — объемные доли хлорбензола и пропанола-1 соответственно [22].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Реакция PhSH с QDI протекает по уравнению

PhSH +
$$N \rightarrow N$$
 Продукты
QDI

Продуктами являются фенилтиозамещенные по центральному кольцу N,N'-дифенил-1,4-фенилендиамины (I), фенилтиозамещенные хинондиимины (II) (схема 1), а также N,N'-дифенил-1,4-фенилендиамин H_2QDI и дифенилдисульфид **PhSSPh** [8–10, 23, 24]. Раньше других образуются соединения I, которые затем под действием исходного диимина QDI и/или других окислителей превращаются в соответствующие тиозамещенные хинондиимины II. На начальных стадиях в условиях [PhSH] > [QDI] реакция не продвигается дальше стадии образования монотиозамещенного N,N'-дифенил-1,4-фенилендиамина I, n = 1.

Ниже представлена кинетическая схема реакции на неглубоких стадиях [16, 17]:

нецепная реакция

 $\text{QDI} + \text{PhSH} \rightarrow (\text{I}, n = 1), \quad k_{1\text{HII}} \qquad (\text{I}_{\text{HII}})$

$$\text{TPH} \to \text{Ph}_2\text{N}^{\bullet} \xrightarrow{+\text{PhSH}} \text{PhS}^{\bullet}, \quad k_i \qquad (i)$$

$$QDI + PhSH \rightarrow HQDI^{\bullet} + PhS^{\bullet}, \quad k_1$$

$$HQDI^{\bullet} + PhSH \rightarrow H_2QDI + PhS^{\bullet}, \quad (I)$$

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 4 2019

нильные радикалы Ph₂N[•], не взаимодействуюшие с QDI, но очень активные в отрыве подвижных атомов Н [25]. В схеме 1 учитывается, что суммарная реакция протекает по двум направлениям: цепному и нецепному. Стадия (Інц) представляет собой бимолекулярную реакцию нецеп-

Обратимая реакция (a, f) ассоциации и фрагмен-

тации аддукта RA[•] введена в механизм по анало-

гии с известной в литературе обратимой реакцией

аддуктообразования между тиильными радикала-

ми и ненасыщенными углеводородами [26-29]. В представленном механизме (см. схему 1) при-

нято допущение о том, что радикальный аддукт

RA[•] может не только дефрагментироваться на исходные реагенты, но и изомеризоваться в тиоза-

мещенный диариламинильный радикал AmN[•]Ph

который играет роль второго сорта радикалов, ве-

Ph

HN

дущих цепь на стадии (III).

Ph

RA

Ph

 $PhS^{\bullet} + QDI \leftrightarrow RA^{\bullet} \rightarrow AmN^{\bullet}Ph$, k_{2} (II)

$$\operatorname{AmN}^{\bullet}\operatorname{Ph} + \operatorname{PhSH} \to (I, n = 1) + \operatorname{PhS}^{\bullet}, \quad k_3 \quad (III)$$

В качестве инициатора здесь для конкретности

указан тетрафенилгидразин Ph₂N-NPh₂ (TPH),

распадающийся при нагревании на дифенилами-

$$PhS^{\bullet} + PhS^{\bullet} \rightarrow PhSSPh. \quad k_4$$
 (IV)

ного взаимодействия реагентов, остальные стадии относятся к цепной реакции.

Согласно схеме, в отсутствие инициатора образование первичных фенилтиильного C₆H₅S[•] (PhS^{\bullet}) и 4-анилинодифениламинильного $C_6H_5 N^{\bullet}-C_{6}H_{4}-NH-C_{6}H_{5}$ (HQDI[•]) радикалов идет по бимолекулярной реакции (I) между ООІ и PhSH. Радикалы HODI[•] затем по реакции с PhSH быстро заменяются на радикалы PhS[•], которые являются одним из двух сортов радикалов, ведущих цепь суммарной цепной реакции. Радикалы PhS[•] продолжают цепь, участвуя в сложной реакции (II), включающей в себя стадию образования нестабильного радикального аддукта RA[•]

кулярного переноса высокоподвижного атома Н связи С-Н кольца к атомам азота QDI (или к атомам О и N в случае реакции PhSH с N-фенил-1,4бензохинонмоноимином $(C_6H_5-N=C_6H_4=O),$ **QMI**). Например, энергия активации мономолекулярной изомеризации аддукта, образующегося при "прилипании" радикала

PhS[•] к QMI составляет ~200 кДж/моль, что даже больше прочности разрывающейся по ходу реакции связи С-Н (~160 кДж/моль) [30]. Для реакции (iso) был предложен альтернативный бимолекулярный механизм с участием тиола, встраивающегося в четырехчленное переходное состояние, расширяя его до шестичленного, выгодного для протекания реакции. По завершении реакции тиол регенерируется, т.е. он выступает в качестве катализатора цепной реакции на сложной стадии (II) продолжения цепи:

RA

Ph (iso)

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 2019 $N_{0}4$

(a, f)

(iso_{cat})

Экспериментальные данные свидетельствуют о том, что реакция (II) является лимитирующей стадией продолжения цепи [16, 17]. Вид выражения для скорости этой стадии (т.е. скорости w_{AmNPh} образования AmN[•]Ph) зависит от соотношения констант скорости реакций ассоциации k_a , фрагментации k_f и изомеризации k_{add} ради-

кального аддукта RA^{\bullet} . Если $k_{add}[PhSH] \gg k_{f}$, то

$$w_{2} = k_{2}[QDI][PhS^{\bullet}] = w_{AmNPh} =$$

= $k_{add}[PhSH][RA^{\bullet}] = k_{a}[QDI][PhS^{\bullet}]$ (3a)
 $\mu \quad k_{2} = k_{a}.$

Если $k_{\rm f} \gg k_{\rm add}$ [PhSH], то [RA[•]] = = $(k_{\rm a}/k_{\rm f})$ [QDI][PhS[•]],

откуда

$$w_{2} = k_{2}[QDI][PhS^{\bullet}] = w_{AmNPh} =$$

$$= k_{add}[PhSH][RA^{\bullet}] =$$

$$= (k_{add}k_{a}/k_{f})[PhSH][QDI][PhS^{\bullet}],$$

$$\mu \quad k_{2} = (k_{add}k_{a}/k_{f})[PhSH].$$
(3b)

Эксперимент показывает, что главный пара-

метр цепной реакции QDI с PhSH $k_2/k_4^{1/2}$ (см. ниже) не зависит от концентрации PhSH [17-19]. Это указывает на то, что при протекании реакции выполняется соотношение (3а), т.е. что неравенство k_{add} [PhSH] $\gg k_{f}$ соблюдается даже при самых малых экспериментальных концентрациях PhSH. В этом случае можно ожидать, что значение k_2 , определенное по кинетическим закономерностям цепной реакции QDI с PhSH, совпадает со значением k_a , т.е. константы скорости "прилипания" радикала PhS[•] к двойной C = C-связи циклогексадиенового кольца хинондиимина ODI. Получим оценку k_2 из значений $k_2/k_4^{1/2}$ в табл. 1. Полагая, что константа скорости рекомбинации фенилтиильных радикалов PhS[•] близка к диффузионному пределу $k_4 = 6 \times 10^9$ л моль⁻¹ с⁻¹ [31, 32], получим $k_2 = 1.2 \times 10^6$ л моль⁻¹ с⁻¹ в хлорбензоле. Полученная оценка лежит в диапазоне экспериментально измеренных констант скорости реакций присоединения PhS[•] к олефинам разного строения в разных растворителях [32]. При допущении, что k_4 не зависит от содержания пропанола- 1^1 , были получены значения k_2 в смешанных растворителях хлорбензол + пропанол-1, которые представлены в табл. 1. Видно, что значение k_2

уменьшается в 2 раза при замене растворителя с хлорбензола на пропанол-1.

Обсудим возможные причины уменьшения k_2 . В принципе, можно ожидать двойственное влияние пропанола-1 на k_2 . По-видимому, пропанол-1 может каталитически ускорять стадию изомеризации радикального аддукта RA[•] в радикал AmN[•]Ph, аналогично рассмотренному выше тиофенолу PhSH [30]. Однако, ощутимого влияния пропанола-1 на скорость реакции ожидать не следует, даже несмотря на гораздо более высокую концентрацию спирта по сравнению с PhSH. Это следует из сделанного выше замечания о том, что PhSH уже при самые малых экспериментальных концентрациях очень эффективно катализирует изомеризацию RA[•] в AmN[•]Ph, т.е. что выполняется неравенство k_{add} [PhSH] $\geq k_{\rm f}$.

Противоположное тормозящее действие пропанола-1 на стадию (II) можно ожидать вследствие комплексообразования хинонимина с пропанолом-1. Хинонимины образуют комплексы как с хлорбензолом, так и с пропанолом-1, при этом комплексы с пропанолом-1 гораздо прочнее [34]. Комплексообразование, в основном, обусловлено образованием Н-комплексов, при этом в качестве акцепторов протонов в хинониминах выступают как их гетероатомы (атомы N – в QDI а также атомы N и O – в QMI), так и π -электронные системы. Энтальпии образования ΔH водородосвязанных комплексов хинониминов с пропанолом-1, в которых акцепторами протонов являются гетероатомы хинониминов, были определены в [34] методами квантовой химии, а также в рамках аддитивно-мультипликативной модели водородной связи [35]. Для обоих хинониминов получены довольно высокие и близкие друг к другу значения: $\Delta H = -23 \text{ кДж моль}^{-1}$.

При обсуждении влияния пропанола-1 на k_2 гораздо больший интерес представляют, очевидно, термодинамические характеристики Н-комплексов, образующихся при взаимодействии протона спирта с π -электронными системами хинониминов – реакционными центрами реакции. Эти данные в [34] не представлены, поэтому мы вычислили энтальпию образования *ΔH* таких комплексов в настоящей работе, также используя для этого аддитивно-мультипликативную модель [35]. Эта модель позволяет вычислять энтальпию Н-комплексообразования двух частиц с одним водородным мостиком при следующих стандартных условиях: 1) состав комплекса 1 : 1, 2) температура 298 K, 3) растворитель CCl₄. Расчет ΔH ведется по формуле

$$\Delta H$$
, кДж моль⁻¹ = 4.96 $E_{\rm a}E_{\rm d}$,

¹ При изучении реакций с участием тиильных радикалов обычно не учитывают их сольватацию растворителями, в частности, спиртами [28, 33]

где E_a и E_d — эмпирические энтальпийные протоноакцепторный (для π -системы хинониминов) и протонодонорный (пропанол-1) факторы, которые характеризуют относительную способность соединений к образованию водородной связи. Значения E_a и E_d были найдены нами с использованием компьютерной программы НҮВОТ [36]:

 $E_{\rm a} = 0.38$ (для π -системы хинониминов), $E_{\rm d} = -1.54$ (для атома Н пропанола-1).

На основании этих значений E_a и E_d получаем

 $\Delta H(\pi...HO) = -2.90 \text{ кДж моль}^{-1}.$

Как видим, реакция образования π -комплексов является слабо экзотермической. Несмотря на оценочный характер полученной величины ΔH , эти данные показывают, что эта реакция действительно может внести определенный вклад в процессы в системе. Комплексообразование с пропанолом-1 приведет к блокировке π -систем хинониминов, т.е. к снижению их эффективных концентраций, являющихся реакционными центрами в реакции (2) "прилипания" радикалов PhS[•] к циклогексадиеновому кольцу хинонимина. Следствием указанного π -комплексообразования может стать уменьшение k_2 при замене растворителя с хлорбензола на пропанол-1. Данные в табл. 1 согласуются с таким заключением.

Альтернативную интерпретацию влияния пропанола-1 на k_2 можно получить также в рамках электростатических моделей неспецифической сольватации. Используя данные в табл. 1, мы построили зависимость $\lg k_2$ от функции Кирквуда ($\varepsilon - 1$)/($2\varepsilon + 1$), см. рисунок 1.

$$\lg k_{2} = \lg k_{2(0)} - \frac{1}{2.303kT} \frac{\varepsilon - 1}{2\varepsilon + 1} \left(\frac{\mu_{\text{PhS}^{\bullet}}^{2}}{r_{\text{PhS}^{\bullet}}^{3}} + \frac{\mu_{\text{QDI}}^{2}}{r_{\text{QDI}}^{3}} - \frac{\mu_{\neq}^{2}}{r_{\neq}^{3}} \right),$$
(4)

где μ и *r* – дипольные моменты и радиусы реагентов PhS[•] и QDI, а также активированного комплекса реакции (2) между PhS[•] и QDI. Видно, что экспериментальные точки вполне удовлетворительно укладываются на прямую

lg
$$k_2 = (7.2 \pm 0.2) - (3.0 \pm 0.4)(\varepsilon - 1)/(2\varepsilon + 1).$$

 $R = 0.969$

Как можно было ожидать, прямая имеет небольшой наклон, что характерно для радикальных реакций. Отрицательное значение тангенса угла наклона свидетельствует о том, что активированный комплекс менее полярен по сравнению с суммарной полярностью реагентов. Получение дополнительной информации наталкивается, однако, на затруднения, которые в значительной мере связаны с тем, что хинондиимин QDI суще-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 4 2019

Рис. 1. Зависимость $\lg k_2$ от функции ($\varepsilon - 1$)/($2\varepsilon + 1$) бинарного растворителя хлорбензол + пропанол-1; температура 343 К.

ствует в двух своих формах: *син*- и *анти*-, сильно различающихся по своим свойствам (в газовой фазе $\mu_{cuh} = 2.11 \ D$, $\mu_{ahmu} = 0 \ D$ [30]). В растворах обе формы присутствуют в соизмеримых концентрациях, но их абсолютные величины неизвестны

Обсудим влияние растворителя на скорости реакции по каждому направлению и на состав продуктов. Из кинетической схемы реакции получается следующее выражение для суммарной скорости реакции w_{ODI}

$$w_{\rm QDI} = (k_1 + k_{\rm HII})[\rm QDI][\rm PhSH] + \frac{k_2}{k_4^{1/2}}[\rm QDI]\{0.5w_i + k_1[\rm QDI][\rm PhSH]\}^{1/2}, \qquad (5)$$

где w_i — скорость инициирования при распаде инициатора. Выражение (5) учитывает расходование QDI в цепной реакции, а также по нецепному каналу I_{нц} и в стадии I радикалообразования (учет скорости этой стадии необходим при коротких цепях).

В табл. 1 представлены усредненные значения k_1 и $k_{1\text{нц}}$, полученные в [19] из обработки по уравнению (5) результатов опытов как без инициатора, так и в его присутствии. Таблица 1 показывает, что при переходе от хлорбензола к пропанолу-1 значения k_1 и $k_{1\text{нц}}$ увеличиваются почти в равной мере, приблизительно в 20 раз, при этом абсолютные значения k_1 в 20–30 раз меньше соответству-

ВАРЛАМОВ

[QDI] × 10 ⁴	$[PhSH] \times 10^4$	$w_{i(0)} \times 10^9$	$w_{\rm QDI} \times 10^8$	$W_{\rm HII} \times 10^8$	$w_{\rm II} \times 10^8$	w _u /w _{QDI}	Длина цепи					
моль л ⁻¹			МОЛЬ Ј									
$N_{\rm PrOH} = 0$												
1	1	0.168	1.66	0.252	1.41	0.848	83.3					
3	1	0.504	8.05	0.756	7.30	0.906	144.3					
1	5	0.84	4.43	1.26	3.17	0.716	37.3					
3	5	2.52	20.2	3.78	16.4	0.813	64.5					
0.86	27.5	3.97	12.0	5.96	6.05	0.504	14.7					
0.86	27.5		(13.7)									
$N_{\rm PrOH} = 0.194$												
1	1	0.828	3.30	0.96	2.34	0.709	27.8					
3	1	2.48	15.0	2.88	12.1	0.808	48.2					
1	5	4.14	10.2	4.80	5.35	0.527	12.4					
3	5	12.4	41.8	14.4	27.4	0.655	21.5					
0.86	27.5	19.6	33.3	22.7	10.6	0.318	4.9					
0.86	27.5		(23.7)									
			N _{PrOH} =	= 0.803	1		1					
1	1	3.93	7.70	3.20	4.50	0.585	11.0					
3	1	11.8	32.6	9.6	23.0	0.705	19.0					
1	5	19.7	26.6	16.0	10.6	0.399	4.9					
3	5	58.9	101.0	48.0	53.0	0.525	8.5					
0.86	27.5	92.9	98.3	75.7	22.7	0.230	1.9					
0.86	27.5		(124.5)									
$N_{\rm PrOH} = 1$												
1	1	3.93	8.51	4.8	3.71	0.436	8.9					
3	1	11.8	33.2	14.4	18.8	0.567	15.5					
1	5	19.6	32.8	24.0	8.83	0.269	4.0					
3	5	58.9	115.7	72.0	43.7	0.378	6.9					
0.86	27.5	92.8	132.8	113.5	19.3	0.145	1.6					
0.86	27.5		(180.9)									

Таблица 2. Кинетические параметры реакции QDI с PhSH в зависимости от мольной доли пропанола-1 N_{PrOH} в бинарных растворителях PhCl+PrOH, а также экспериментальные скорости реакции (значения в скобках) при $[ODI]_0 = 8.6 \times 10^{-5}$ и $[PhSH]_0 = 2.75 \times 10^{-3}$ моль π^{-1} [19]: $T = 343 \pm 0.2$ K, барботаж аргона

Примечание. $w_{i(0)} = 2k_1$ [QDI][PhSH], $w_{HII} = k_{1HII}$ [QDI][PhSH], $w_{III} = w_{QDI} - w_{HIII}$, длина цепи $v = (w_{III}/w_{i(0)}) - 0.5$.

ющих значений $k_{1 \text{нц}}$ независимо от состава смешанного растворителя.

Используя константы скорости реакций из табл. 1, мы рассчитали скорости суммарной реакции w_{QDI} и обоих ее направлений (нецепного $w_{\text{нц}}$ и цепного $w_{\text{ц}}$) при нескольких концентрациях реагентов [QDI]₀ и [PhSH]₀ из диапазона варьирования их значений в реальных экспериментах. Полученные результаты представлены в табл. 2. Здесь же для сравнения приведены экспериментальные данные для опытов при [QDI]₀ = 8.6×10^{-5} и [PhSH]₀ = 2.75×10^{-3} моль π^{-1} .

Из табл. 2 видно, что скорость обоих направлений реакции увеличивается при увеличении $N_{\rm PrOH}$, причем скорость нецепного направления $w_{\rm HII}$ растет быстрее, чем скорость цепного направления $w_{\rm II}$. Об этом же свидетельствуют результаты расчета отношения скорости цепного направления к скорости суммарной реакции $w_{\rm II}/w_{\rm QDI}$, см. табл. 2. Очевидно, что следствием уменьшения отношения $w_{\rm II}/w_{\rm QDI}$ с ростом $N_{\rm PrOH}$ является увеличение выхода продуктов нецепной реакции при замене растворителя с хлорбензола на пропанол-1. Кроме того, из данных табл. 2 следует, что такая замена растворителя сопровождается уменьшением длины цепи V цепной реакции. Это

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 4 2019

означает, что при замене хлорбензола на пропанол-1 будет наблюдаться увеличение выхода продуктов, образующихся на стадиях инициирования и обрыва цепей, т.е. H_2QDI и PhSSPh. Сделанные замечания согласуются с немногочисленными литературными данными, полученными, однако, при относительно больших глубинах превращения. Так, в работе [12] обнаружено значительное влияние природы растворителя на состав продуктов реакции QMI с тиолами.

Данные в табл. 2 и табл. 1 не находятся в кажущемся противоречии друг с другом. Действительно, при увеличении $N_{\rm PrOH}$ значения k_1 и $k_{1\rm Hu}$ в табл. 1 увеличиваются пропорционально друг другу. В то же время, из табл. 2 следует, что скорость нецепного направления $w_{\rm Hu}$ при этом растет быстрее, чем скорость цепного направления $w_{\rm q}$. В действительности такое "противоречие" объясняется уменьшением длины цепи V цепной реакции с ростом $N_{\rm PrOH}$, см. последний столбец табл. 2.

Рассмотрим более подробно выражение для длины цепи v. Для этого из уравнения (5) получим выражение для скорости цепной реакции $w_{\rm II} = w_{\rm QDI} - w_{\rm HII} = w_{\rm QDI} - k_{\rm 1HI}$ [QDI][PhSH] и разделим его на скорость зарождения цепей в неинициированной реакции $w_{\rm i(0)} = 2k_1$ [QDI][PhSH]:

$$\mathbf{v} = \frac{w_{\rm II}}{w_{\rm i(0)}} = \frac{w_{\rm QDI} - w_{\rm HII}}{2k_{\rm I}[\rm QDI][\rm PhSH]} = \\ = 0.5 + \frac{k_2}{2k_{\rm A}^{1/2}k_{\rm I}^{1/2}} \left(\frac{[\rm QDI]}{[\rm PhSH]}\right)^{1/2}.$$
(6)

Первое слагаемое 0.5 в правой части (5) учитывает расходование QDI в реакции (I) радикалообразования, и при не очень коротких цепях этим слагаемым можно пренебречь.

Из (6) видно, что второй член в правой части при одном и том же отношении концентраций QDI и PhSH зависит от сомножителя $k_2/2(k_4k_1)^{1/2}$. Табл. 1 показывает, что параметр $k_2/(2k_4)^{1/2}$ при переходе от хлорбензола к пропанолу-1 уменьшается всего в 2 раза, что недостаточно для объяснения довольно значительного уменьшения длины цепи при увеличении $N_{\rm PrOH}$. Более сильное влияние на v оказывает, таким образом, рост k_1 , т.е. увеличение скорости инициирования с ростом $N_{\rm PrOH}$ (почти 20 раз при переходе от хлорбензола к пропанолу-1, см. табл. 1), так как длина цепи обратно пропорциональна $k_1^{1/2}$.

На основании данных в табл. 2 можно сделать вывод о том, что состав продуктов на начальных стадиях реакции зависит не только от природы растворителя, но также и от соотношения концентраций исходных реагентов. Чтобы установить влияние концентраций QDI и PhSH на состав продуктов, получим из (5) выражение для w_{μ}/w_{QDI} . Для

упрощения пренебрежем k_1 по сравнению с $k_{\text{нц}}$ в первом слагаемом в правой части (5), и тогда для неинициированной реакции ($w_i = 0$) получим

$$\frac{w_{\rm II}}{w_{\rm QDI}} = \left[1 + \frac{k_{\rm 1HI}k_4^{1/2}}{k_1^{1/2}k_2} \left(\frac{[\rm PhSH]}{[\rm QDI]}\right)^{1/2}\right]^{-1}.$$
 (7)

Как видим из (7), выход продуктов цепной реакции увеличивается с ростом концентрации QDI и уменьшается с ростом концентрации PhSH.

Итак, представленные выше результаты показывают, что закономерности двунаправленной реакции PhSH с QDI существенно зависят от содержания пропанола-1 в его смеси с хлорбензолом. При 343 К замена хлорбензола на пропанол-1 приводит к увеличению суммарной скорости реакции более чем на порядок, при этом скорость нецепного направления увеличивается в большей степени, чем скорость цепного направления. При увеличении содержания пропанола-1 уменьшается длина цепи цепной реакции, а это влияет на состав продуктов реакции PhSH с ODI. Замена хлорбензола на пропанол-1 вызывает уменьшение в 2 раза константы скорости лимитирующей стадии продолжения цепи (реакции хинондиимина с фенилтиильным радикалом), что можно удовлетворительно объяснить образованием Hкомплексов между π-системой хинондиимина и протоном пропанола-1.

Работа выполнена при финансовой поддержке РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *O'Brien P.J.* // Chem.-Biol. Interactions. 1991. V. 80. P. 1–41.
- 2. Monks T.J., Hanzlik R.P., Cohen G.M. et al. // Toxicology and Appl. Pharmacol. 1992. V. 112. P. 2.
- 3. Wlodek L. // Pol. J. Pharmacol. 2002. V. 54. P. 215.
- 4. *Kumagai Y.* // J. of Health Science. 2009. V. 55. № 6. P. 887.
- Dahlin D.C., Miwa G.T., Lu A.Y., Nelson S.D. // Proc. Nat. Acad. Sci. USA. 1984. V. 81. P. 1327.
- Cohen S.D., Khairallah E.A. // Drug. Metabol. Rev. 1997. V. 29. P. 59.
- Li W.-W., Heinze J., Haehnel W. // J. Am. Chem. Soc. 2005. V. 127. № 17. P. 6140.
- Snell J.M., Weissberger A. // J. Amer. Chem. Soc. 1939. V. 61. P. 450.
- The Chemistry of the Quinoid Compounds. Ed. S. Patai. Vol. 1. Part 1–2. John Wiley and Sons, 1974, London-New York-Sydney-Toronto. 1247 p.
- The Chemistry of the Quinoid Compounds. Ed. S. Patai, Z. Ruppoport. Vol. 2. Part 1–2. John Wiley and Sons, 1988. Chichester, New York, Brisbane, Toronto, Singapore. 1675 p.
- Кутырев А.А., Москва В.В. // Успехи химии. 1991. Т. 60. С. 134.

- 12. Афанасьева Г.Б., Цой Е.В., Чупахин О.Н., Сидоров Е.О., Коновалов С.В. // Журн. орг. химии. 1985. Т. 21. С. 1926.
- 13. Vadnere M.K., Maggiora L., Mertes M.P. // J. Med. Chem. 1986. V. 29. P. 1714.
- 14. Lu S., Li W.W., Rotem D., Mikhailova E., Bayley H. // Nature Chemistry. 2010. V. 2. P. 921.
- 15. Гадомская А.В., Варламов В.Т. // Докл. АН. 2011. Т. 439. С. 767.
- 16. Гадомская А.В., Гадомский С.Я., Варламов В.Т. // Кинетика и катализ. 2012. Т. 53. С. 550.
- 17. *Варламов В.Т., Гадомская А.В. //* Журн. физ. химии. 2015. Т. 89. С. 10. DOI 7868/S0044453715040299
- Варламов В.Т., Гадомский С.Я., Гадомская А.В. // Кинетика и катализ. 2015. Т. 56. С. 277. DOI 10.1134/S0023158415030222
- 19. Варламов В.Т., Гадомская А.В. // Изв. АН. Сер. хим. 2016. № 8. С. 2046. DOI 10.1007/s11172-016-1550-5
- 20. Takahashi N., Schreiber J., Fisher V., Mason R.P. // Arch. Biochem. Bbiophys. 1987. V. 252. № 1. P. 41.
- Butler J., Hoey B.M. // Free Rad. Biol. Med. 1992.
 V. 12. P. 337.
- 22. Фиалков Ю.Я. Растворитель как средство управления химическим процессом. Л., Химия, 1990. 240 с.
- Maender O.W., Rostek C.J., Katritzky A.R., Odens H.H., Voronkov M.V., US Pat. 7 718 722 (from 18.05.2010). www.archpatent.com/patents/7718722.
- 24. Gelling I.R., Knight G.T. // Plastics and Rubber: Processing September. 1977. P. 83.
- 25. Денисов Е.Т., Варламов В.Т. // Кинетика и катализ. 1997. Т. 38. С. 36.

- Walling C., Helmreich W. // J. Am. Chem. Soc. 1959.
 V. 81. P. 1144.
- 27. Griesbaum K. // Angew. Chem. Int. Ed. 1970. V. 9. P. 273.
- 28. Chatgilialoglu Ch., Altieri A., Fischer H. // J. Am. Chem. Soc. 2002. V. 124. P. 12816.
- 29. *Türün O., Meier M.A.R.* // Eur. J. Lipid Sci. Techn. 2013. V. 115. P. 41.
- 30. Варламов В.Т., Крисюк Б.Э. // Изв. АН. Сер. хим. 2016. № 2. С. 401. DOI 10.1007/s11172-016-1312-4
- Ito O., Nogami K., Matsuda M. // J. Phys. Chem. 1981.
 V. 85. P. 1365.
- 32. Ito O. Reactions of Aromatic Thiyl Radicals. In: The Chemistry of Free Radicals. S-Centered Radicals. Ed. by Z.B. Alfassi. Chichester; New York; Weinheim; Brisbane; Singapore; Toronto: John Wiley & Sons, 1999. Ch. 6.
- Chatgilialoglu C., Asmus K.-D. // Sulfur-Centered Reactive Intermediates in Chemistry and Biology. NATO ASI Series A: Life and Science. New York: Plenum Press. 1990. V. 197. P. 327.
- 34. Варламов В.Т., Крисюк Б.Э., Григорьев В.Ю. // Изв. АН. Сер. хим. № 10. С. 851. DOI 10.1007/s11172-018-2298-х
- Raevsky O.A., Grigor'ev V.Yu., Kireev D.B., Zefirov N.S. // Quant. Struct.-Act. Relat. 1992. V. 11. P. 49.
- 36. Раевский О.А., Григорьев В.Ю., Трепалин С.В. Свидетельство об официальной регистрации программы для ЭВМ НҮВОТ (Hydrogen Bond Thermodynamics) № 990090 от 26 февраля 1999 г., Москва, Федеральная служба по интеллектуальной собственности, патентам и товарным знакам.