ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2019, том 93, № 4, с. 497–502

_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА ____ И ТЕРМОХИМИЯ

УДК 544.012:013:016.2

ФАЗОВЫЕ РАВНОВЕСНЫЕ СОСТОЯНИЯ В СИСТЕМАХ ДИФЕНИЛОКСИД-*н*-ГЕПТАДЕКАН И ДИФЕНИЛ-ДИФЕНИЛОКСИД-*н*-ГЕПТАДЕКАН

© 2019 г. И. Г. Яковлев^{а,*}, И. К. Гаркушин^а, А. В. Колядо^а

^aСамарский государственный технический университет, Самара, 443100, Россия *e-mail: yakovlev.ivan.g@gmail.com Поступила в редакцию 19.09.2017 г.

Проведен расчет точек нонвариантных равновесий в системах дифенилоксид—*н*-гептадекан и дифенил—дифенилоксид—*н*-гептадекан методом Шредера—Ле Шателье. По данным расчета было проведено планирование эксперимента и исследование двойной и тройной систем методом ДСК. Определены температуры плавления и составы двойной и тройной эвтектик. Проведено сравнение расчетных и экспериментальных данных. Измерены плотность и температура вспышки в открытом тигле.

Ключевые слова: дифференциальная сканирующая калориметрия, дифенил, дифенилоксид, н-гептадекан, фазовые равновесия

DOI: 10.1134/S0044453719040319

Условия проведения некоторых высокотемпературных процессов на химических, нефтехимических и других производствах обуславливают невозможность применения прямого нагрева реакционных аппаратов И сопутствующего оборудования. В таком случае для достижения необходимых температур используют высококипящие теплоносители. В роли таких теплоносителей могут выступать индивидуальные органические вещества и их смеси. Для поддержания температуры в диапазоне от 373 до 673 К применяют высококипящие органические соединения, такие как дифенил, дифениловый эфир, нафталин, тетрахлордифенил (арохлор 1428), кремнийорганические соединения, глицерин и др., обладающие низким давлением насыщенных паров [1]. Индивидуальные органические соединения имеют высокие температуры плавления, что приводит к серьезным затруднениям при использовании их в качестве однокомпонентного теплоносителя изза возможной кристаллизации в теплопередающих контурах химической аппаратуры, что особенно актуально в условиях холодного климата. В связи с этим необходимо предусматривать дополнительный обогрев коммуникаций и аппаратуры. Одним из способов решения проблемы кристаллизации теплоносителя в теплопередающих контурах является применение в качестве теплоносителя двух- и трехкомпонентных смесей органических веществ, обладающих более низкой температурой плавления, чем компоненты, входящие в их состав. На данный момент практическое применение в промышленности нашел двухкомпонентный теплоноситель Даутерм A с температурой плавления около 285.45 К (12.3°С) и плотностью при 298.15 К равной 1056 кг/м³. Даутерм А представляет собой эвтектический сплав, содержащий 26.5 мас. % дифенила и 73.5 мас. % дифенилоксида (дифениловый эфир) [2].

В настоящее время исследование новых эффективных теплоносителей с более низкой температурой плавления является важной задачей. Введение в теплоноситель Даутерм А третьего компонента, например *н*-алкана, позволит снизить температуру плавления и плотность.

Анализ открытых источников информации выявил отсутствие данных по экспериментальным исследованиям системы дифенилоксид—*н*гептадекан. Для возможности расчета и дальнейшего изучения трехкомпонентной системы дифенил—дифенилоксид—*н*-гептадекан была изучена система дифенилоксид—*н*-гептадекан и в данной работе приведена экспериментальная фазовая диаграмма.

Кроме температуры плавления и составов эвтектических сплавов для эвтектик изученных систем были исследованы: плотность, энтальпия плавления, температура кипения и температура вспышки в открытом тигле. На основе полученных значений энтальпии плавления была рассчитана энтропия плавления эвтектик.

Рис. 1. Расчетная фазовая диаграмма в системе дифенилоксид-*н*-гептадекан.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Экспериментальные исследования проводили с использованием установки на базе среднетемпературного дифференциального сканирующего калориметра теплового потока [3], термостатирование холодных спаев осуществляли с помощью ультратермостата U-10. Точность измерения температуры составляла ± 0.25 К, в качестве охлаждающего агента использовали сухой лед. Исследования проводили в диапазоне температур от 233.15 до 343.15 К. Скорость нагрева образцов составляла 4 К/мин. Для исследования использовали образцы массой от 10 до 15 мг. Калибровали установку по реперным веществам [4]. Содержание основного вещества в применяемых реактивах составляло не менее 99 мас. %.

Температуру вспышки определяли в открытом тигле на аппарате ТВО. Температуру измеряли с помощью термометра ТЛ-2 с ценой деления 1 К [5].

Плотность эвтектического состава при 298.15 К определяли пикнометрическим методом в соответствии с требованиями государственного стандарта [6].

Температуру кипения определяли для сплава эвтектического состава, нагревая колбу и регистрируя температуру с помощью термометра с ценой деления 0.5 К.

Для исследования использовали *н*-гептадекан $[h-C_{17}H_{36}]$ CAS 629-78-7 с содержанием основного вещества 99.0 мас. %, дифениловый эфир [(Ph)₂O] CAS 101-84-8 с содержанием основного вещества 99.0 мас. % и дифенил [(Ph)₂] CAS 92-52-4 с содержанием основного вещества 99.0 мас. % Исходные вещества заводского изготовления использовали без предварительной очистки.

Все экспериментальные исследования проводили при давлении 0.100 ± 0.002 МПа.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Расчет характеристик фазовых равновесий в исследуемых системах осуществляли с помощью уравнений Шредера—Ле Шателье. Коэффициенты активности компонентов в растворе принимали равными 1:

$$\ln x_i = \frac{\Delta_{\rm m} H_{ij} (T_E - T_{{\rm nn},ij})}{R T_{{\rm nn},ij} T_E},$$

где x_i — мольная доля компонента; $\Delta_m H_{ij}$ — удельная энтальпия плавления двухкомпонентной эвтектики, Дж/моль; T_E — температура плавления эвтектического состава, К; $T_{\text{пл. }ij}$ — температура плавления двухкомпонентной эвтектики, К; R — универсальная газовая постоянная, равна 8.314 Дж/(моль K).

Методика построения фазовой диаграммы с использованием уравнения Шредера-Ле Шателье для двухкомпонентных органических систем приведена в работах [7, 8]. Расчет трехкомпонентной системы проводили в два этапа, основываясь на алгоритме расчета двухкомпонентных систем. Первый этап заключался в определении температуры плавления трехкомпонентной эвтектики и соотношения дифенилоксида и н-гептадекана в ее составе (расчет политермического разреза РО). Второй этап – расчет разреза (Ph)₂ – Z. Так как из расчета разреза РО известна температура плавления эвтектики Е, решение уравнения Шредера-Ле Шателье сводится к установлению содержания дифенила в трехкомпонентной эвтектике при известном значении температуры плавления. Найденное значение в мольных долях представляет собой искомую величину содержания дифенила в сплаве эвтектического состава. Соотношение дифенилоксида и н-гептадекана в трехкомпонентной эвтектике известно из расчета разреза РО.

Перед экспериментальными исследованиями фазовые равновесия в системе дифенилоксид—*н*-гептадекан были рассчитаны с помощью уравнения Шредера—Ле Шателье без учета полиморфного превращения *н*-гептадекана. Расчетная фазовая диаграмма приведена на рис. 1.

Фазовая диаграмма системы $(Ph)_2O - H - C_{17}H_{36}$ построена по расчетным данным (рис. 1) и экспериментальным данным 11 составов (табл. 1), и представлена полем однофазного равновесия выше кривой ликвидуса $ae_3b \rightarrow X$ и четырьмя двухфазными полями: $X + (Ph)_2O$, $X + \beta - H - C_{17}H_{36}$, $(Ph)_2O + \beta - H - C_{17}H_{36}$ и $(Ph)_2O + \alpha - H - C_{17}H_{36}$ (рис. 2). Для каждого элемента фазовой диаграммы характерны следующие фазовые равновесия:

линия ae_3 : Ж \Leftrightarrow (Ph)₂O (моновариантное равновесие),

линия e_3b : Ж $\Leftrightarrow \beta$ -*н*-С₁₇H₃₆ (моновариантное равновесие),

ФАЗОВЫЕ РАВНОВЕСНЫЕ СОСТОЯНИЯ

Содержание компонентов			T, °C			
<i>н</i> -С ₁₇ Н ₃₆		(Ph) ₂ O		Ликвилуса	Солилуса	Полиморфного
мас. %	мол. %	мас. %	мол. %	onneong jou	e conneg eu	перехода
30.0	23.3	70.0	76.7	25.2	13.7	10.5
50.0	41.5	50.0	58.5	21.8	13.7	10.3
60.0	51.5	40.0	48.5	17.0	11.2	10.8
64.0	55.7	36.0	44.3	15.0	12.7	10.1
65.0	56.8	35.0	43.2	13.2	13.2	10.0
66.3	58.2	33.7	41.8	14.8	13.5	9.8
70.0	62.3	30.0	37.7	16.0	13.4	11.0
90.0	86.4	10.0	13.6	21.0	13.6	11.0
93.0	90.4	7.0	9.6	21.6	_	9.9
95.0	93.1	5.0	6.9	21.6	_	10.9
97.0	95.8	3.0	4.2	21.8	_	10.0

Таблица 1. Экспериментально изученные составы системы (Ph)₂O – *н*-C₁₇H₃₆

точка e_3 : Ж \Leftrightarrow (Ph)₂O + β -*н*-C₁₇H₃₆ (нонвариантное равновесие).

Линии моновариантных равновесий пересекаются в точке e_3 с координатами: температура 13.2°С и содержании h-C₁₇H₃₆ 56.8 мол. % + (Ph)₂O 43.2 мол. %. Минимальная линия кристаллизации (e_3b) соответствует выпадению из расплава кристаллов β -n-C₁₇H₃₆.

В солидусе отмечается α/β полиморфный переход *н*-гептадекана. При температуре выше полиморфного перехода α/β -*н*-C₁₇H₃₆, в солидусе твердыми фазами являются смесь кристаллов (Ph)₂O + β -*н*-C₁₇H₃₆, при температуре ниже полиморфного перехода α/β -*н*-C₁₇H₃₆ – смесь кристаллов (Ph)₂O + α -*н*-C₁₇H₃₆.

Сравнение экспериментальных и расчетных данных, полученным по системе дифенилоксид *н*-гептадекан, приведено в табл. 2.

Следовательно, эвтектики в ограняющих двухкомпонентных системах трехкомпонентной системы характеризуются следующими значениями:

– в системе дифенил–дифенилоксид температура плавления эвтектики составляет 285.45 К при содержании дифенила 26.5 мас. % и дифенилоксида 73.5 мас. %, энтальпия плавления эвтектического сплава – 98.2 кДж/кг [2];

– в системе дифенил—*н*-гептадекан температура плавления эвтектики составляет 290.35 К при содержании дифенила 18.7 мас. % и *н*-гептадекана 81.3% мас., энтальпия плавления эвтектического сплава – 117.3 кДж/кг [9]; – в системе дифенилоксид–*н*-гептадекан температура плавления эвтектики – 286.35 К, при содержании дифенилоксида 35.0 мас. % и *н*-гептадекана 65.0 мас. % энтальпия плавления эвтектического сплава – 117.9 кДж/кг.

В результате расчетов по приведенному алгоритму были определены характеристики трехкомпонентной эвтектики E: 40.9% мас. *н*-гептадекана, 12.9 мас. % дифенила и 46/2 мас. % дифенилоксида, температура плавления $T_E = 266.25$ К (рис. 3).

Рис. 2. Фазовая диаграмма системы дифенилоксид*н*-гептадекан.

Метод	[<i>н</i> -С ₁₇ Н ₃₆], мас. %	<i>T</i> _e , K
Расчет методом Шредера – Ле Шателье	53.4	281.55
Эксперимент	65.0 ± 2	286.35 ± 0.25
Среднее относительное отклонение от экспери- ментальных данных, %	17.8	1.68

Таблица 2. Сравнение расчетных и экспериментальных данных в системе дифенилоксид – *н*-гептадекан

Экспериментальные исследования проводили согласно правилам проекционно-термографического метода (ПТГМ) [10]. На концентрационный треугольник нанесены данные по исходным компонентам (температуры плавления), по двухкомпонентным системам (температуры плавления и составы эвтектик e_1, e_2, e_3). Фазовые равновесные состояния для элементов треугольника составов тройной системы приведены в табл. 3. Максимальное поле кристаллизации принадлежит более тугоплавкому компоненту (Ph)₂.

В поле кристаллизации дифенила для экспериментального исследования выбран политермический разрез РО [P: (Ph)₂ 30.9 мол. %, (Ph)₂O 69.1 мол. %, O: (Ph)₂ 40.0 мол. %, H-C₁₇H₃₆ 60.0 мол. %]. Двойные эвтектики e₂ и e₃ расположены возле вершины H-C₁₇H₃₆, поэтому при планировании

Рис. 3. Фазовый комплекс системы дифенил-дифенилоксид-*н*-гептадекан с расчетными *E*' и экспериментальными *E* данными (мас. %).

эксперимента выбраны для изучения на микрокалориметре составы, отвечающие фигуративным точкам 1-5 и \overline{E} (табл. 4).

Из *T*–*х*-диаграммы политермического разреза РО была определена температура плавления *E*, выявлено направление \overline{E} на эвтектику и установлено соотношение дифенилоксида и *н*-C₁₇H₃₆ в ней: (Ph)₂O 57.1 мас. %, *н*-C₁₇H₃₆ 42.9 мас. %. *T*–*х*диаграмма политермического разреза РО показана на рис. 4. Исследование *T*–*х*-диаграммы разреза (Ph)₂ $\rightarrow \overline{E} \rightarrow E$ (рис. 5), исходящего из полюса кристаллизации (Ph)₂ и проходящего через направление на эвтектику \overline{E} , позволило выявить состав эвтектики *E* в трехкомпонентной системе. Эвтектический сплав содержит 15.0 мас. % дифенила + 48.5 мас. % дифенилового эфира + + 36.5 мас. % *н*-гептадекана; *t*_{пл} = 9.8°C (282.95 K).

Сравнение данных, полученных методом Шредера—Ле Шателье и эксперимента, представлено в табл. 5.

Отклонение расчетных данных по температуре плавления и составе эвтектики от экспериментальных свидетельствует о наличии в исследуемой системе межмолекулярного взаимодействия, которое может быть учтено с помощью коэффициентов активности компонентов системы. Существующие расчетные методы определения коэффициентов активности (ASOG, UNIFAC и др.) используют константы взаимодействия групп, определение которых проводят с помощью экспериментальных данных по системам, близким к прогнозируемым. Учитывая, что количество данных по фазовым равновесиям в системах дифенил-дифенилоксид-н-алкан достаточно мало, прогнозирование с использованием указанных методов не представляется возможным.

Рис. 4. *Т*-*х*-диаграмма разреза РО трехкомпонентной системы дифенил-дифенилоксид-*н*-гептадекан.

ФАЗОВЫЕ РАВНОВЕСНЫЕ СОСТОЯНИЯ

*	· ·	
Элемент диаграммы	Условия равновесия	Фазовые реакции
(Ph) ₂ <i>e</i> ₂ <i>Ee</i> ₁ , поле	Дивариантное	$X \leftrightarrows (Ph)_2$
(Ph) ₂ Oe ₃ Ee ₁ , поле	Дивариантное	$\mathbf{X} \leftrightarrows (\mathbf{Ph})_2\mathbf{O}$
<i>н</i> -С ₁₇ Н ₃₆ <i>e</i> ₂ <i>Ee</i> ₃ , поле	Дивариантное	$\mathfrak{X} \leftrightarrows \beta$ -н-С ₁₇ \mathbf{H}_{36}
<i>e</i> ₂ <i>E</i> , линия	Моновариантное	$\mathbf{X} \leftrightarrows (\mathbf{Ph})_2 + \beta$ -н- $\mathbf{C}_{17}\mathbf{H}_{36}$
<i>е</i> ₃ <i>E</i> , линия	Моновариантное	$X \leftrightarrows (Ph)_2 O + \beta - \mu - C_{17} H_{36}$
<i>e</i> ₁ <i>E</i> , линия	Моновариантное	$\mathbf{X} \leftrightarrows (\mathbf{Ph})_2 + (\mathbf{Ph})_2\mathbf{O}$
Е, точка	Нонвариантное	$\mathbb{X} \leftrightarrows (\mathrm{Ph})_2 + (\mathrm{Ph})_2\mathrm{O} + \beta \textbf{-} \textbf{H} \textbf{-} \mathrm{C}_{17}\mathrm{H}_{36}$

Таблица 3. Фазовые реакции в системе дифенил-дифенилоксид-*н*-гептадекан

Кроме температуры плавления для сплавов эвтектических составов систем дифенилоксид-*н*гептадекан и дифенил-дифенилоксид-*н*-гептадекан дополнительно измерили плотность, температуру вспышки в открытом тигле, энтальпию плавления, температуру кипения. Значения энтропии плавления сплавов эвтектических составов исследуемых систем рассчитывали по формуле:

$$\Delta_{\rm m} S_e = \Delta_{\rm m} H / T_e \,,$$

Таблица 4. Экспериментально изученные составы системы (Ph)₂–(Ph)₂O– μ -C₁₇H₃₆

Номер фигуратив- ной точки	Компоненты	Состав, мас. %	<i>T</i> , °C
1	(Ph) ₂	70	$t_1 = 9.88$
	(Ph) ₂ O <i>н</i> -C ₁₇ H ₃₆	17 13	$t_2 = 10.88$ $t_3 = 53.29$
2	$(Ph)_2$	47	$t_1 = 10.61$
	(Ph) ₂ O	30	$t_2 = 13.73$
	<i>н</i> -С ₁₇ Н ₃₆	23	$t_3 = 35.22$
3	(Ph) ₂	30	$t_1 = 9.01$
	(Ph) ₂ O	60	$t_2 = 12.0$
	<i>н</i> -С ₁₇ Н ₃₆	10	$t_3 = 24.0$
4	(Ph) ₂	30	$t_1 = 9.5$
	(Ph) ₂ O	50	$t_2 = 10.5$
	μ -C ₁₇ H ₃₆	20	$t_3 = 27.0$
$ar{E}$	(Ph) ₂	30	$t_1 = 9.5$
	(Ph) ₂ O	40	$t_2 = 10.37$
	<i>н</i> -С ₁₇ Н ₃₆	30	$t_3 = 29.47$
5	(Ph) ₂	30	$t_1 = 9.5$
	(Ph) ₂ O	30	$t_2 = 10.28$
	<i>н</i> -С ₁₇ Н ₃₆	40	$t_3 = 12.01$
			$t_4 = 28.62$
E	(Ph) ₂	15	$t_1 = 9.8$
	(Ph) ₂ O	48.5	$t_2 = 10.96$
	<i>н</i> -С ₁₇ Н ₃₆	36.5	

где $\Delta_m S$ — энтропия плавления сплава эвтектического состава, Дж/(моль K); $\Delta_m H$ — энтальпия плавления сплава эвтектического состава, Дж/моль; T_e — температура плавления сплава эвтектического состава, K.

Выбор этих параметров обусловлен значимостью при выборе теплоносителя в процессе расчета теплообменного аппарата.

Таблица 5. Сравнение экспериментальных и расчетных данных в системе дифенил-дифенилоксид-*н*гептадекан

Метод	[<i>н</i> -С ₁₇ Н ₃₆ , %] мас. %	<i>T_e</i> , K
Расчет методом Шредера — Ле Шателье	40.9	266.5
Эксперимент	36.5 ± 2	282.9 ± 0.25
Среднее относительное отклонение от экспери- ментальных данных	12.1%	5.8%

Таблица 6. Свойства сплава эвтектического состава

Параметр	дифенилоксид — <i>н</i> -гептадекан	дифенил — дифенилоксид — <i>н</i> -гептадекан
ρ, г/см ³	0.7926 ± 0.0005	0.9323 ± 0.0005
<i>Т</i> , К	133 ± 1.00	393.15 ± 1.00
$\Delta_{ m m} H$, кДж/кг	117.9 ± 12.0	84.69 ± 6.3
$\Delta_{\rm m}S$, Дж/(моль K)	86.4	56.1
<i>Т</i> _{кип} , К	565.65 ± 1.00	537.15 ± 1.00

Обозначения: р — плотность при 298.15 К, T — температура вспышки в открытом тигле, $\Delta_{\rm m}H$ — энтальпия плавления, $\Delta_{\rm m}S$ — энтропия плавления, $T_{\rm Kип}$ — температура кипения.

Рис. 5. T-x- диаграмма разреза (Ph)₂ $\rightarrow \vec{E} \rightarrow E$ в трехкомпонентной системе дифенил-дифенилоксид-*н*гептадекан.

Таким образом, изучение фазовых равновесий методом ДТА позволило установить следующие значения температур плавления эвтектик и содержанию компонентов:

в двухкомпонентной системе дифенилоксид– *н*-гептадекан: $T_E = 286.35$ K, (Ph)₂O – 35.0 мас. % и *н*-C₁₇H₃₆ – 65.0 мас. %;

в трехкомпонентной системе дифенил-дифенилоксид-*н*-гептадекан: $T_E = 282.95$ K, (Ph)₂ – 15.0 мас. %, (Ph)₂O – 48.5 мас. % и *н*-C₁₇H₃₆ – 36.5 мас. %.

Метод с использованием уравнения Шредера—Ле Шателье может быть использован для предварительного прогнозирования фазовых равновесий в подобных трехкомпонентных органических эвтектических системах.

В соответствии с полученными данными, составы, отвечающие эвтектике в системах дифенилоксид-*н*-гептадекан и дифенил-дифенилоксид—*н*-гептадекан могут быть рекомендованы к использованию в качестве теплоносителя, с температурным диапазоном эксплуатации от 286 до 560 К и от 290 до 537 К соответственно.

Работа выполнена в рамках базовой части государственного задания Самарского государственного технического университета. Проект № 4.5534.2017/8.9.

СПИСОК ЛИТЕРАТУРЫ

- 1. Каган С.З., Чечеткин А.В. Органические высокотемпературные теплоносители и их применение в промышленности. М.: "Гос. науч.-технич. изд. химич. литер.", 1951. 172 с.
- 2. Чечеткин А.В. Высокотемпературные теплоносители. М.: Энергия, 1971. 496 с.
- 3. *Мощенский Ю.В.* // Приборы и техника эксперимента. 2003. № 6. С. 143–144.
- 4. ASTM E 967-97 "Standard Practice for Temperature Calibration of Differential Scanning Calorimeters and Differential Thermal Analyzers".
- ГОСТ 4333-87. Нефтепродукты. Методы определения температур вспышки и воспламенения в открытом тигле. М.: ФГУП "СТАНДАРТИН-ФОРМ", 2008. 6 с.
- ГОСТ 18995.1-73. Продукты химические жидкие. Методы определения плотности. М.: ИПК Издательство стандартов, 2004. 4 с.
- Гаркушин И.К., Колядо А.В., Дорохина Е.В. Расчет и исследование фазовых равновесий в двойных системах из органических веществ. Екатеринбург: УрО РАН, 2011, 191 с.
- Гаркушин И.К., Дорохина Е.В., Колядо А.В. // Бутлеровские сообщения. 2009. Т. 16. № 3. С. 41.
- 9. Гаркушин И.К., Колядо А.В., Яковлев И.Г. // Нефтяная провинция. 2016. № 3. С. 128.
- 10. Трунин А.С., Космынин А.С. Проекционно-термографический метод исследования гетерогенных равновесий в конденсированных многокомпонентной системе. Куйбышев, 1977. 68 с. – Деп. в ВИНИТИ 12.04.77. № 1372–77.