_____ КОЛЛОИДНАЯ ХИМИЯ ____ И ЭЛЕКТРОХИМИЯ ____

УДК 541.13:669.73

ВЛИЯНИЕ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ НА ВОССТАНОВЛЕНИЕ ИОНОВ КАДМИЯ(II) НА КАДМИЕВОМ ЭЛЕКТРОДЕ

© 2019 г. М. К. Касымова^{*a*}, М. К. Наурызбаев^{*b*}, Айгуль Мамырбекова^{*c*,*}, Г. Н. Жылысбаева^{*c*}, Айжан Мамырбекова^{*c*,**}

^а Южно-Казахстанский государственный университет им. М. Ауэзова, Шымкент, Казахстан

^b Казахский национальный университет им. аль-Фараби, Алматы, Казахстан

^с Университет Ахмеда Ясави, Туркестан, Казахстан

* e-mail: aigul.mamyrbekova@ayu.edu.kz

** *e-mail: aizhan.mamyrbekova@ayu.edu.kz* Поступила в редакцию 25.07.2018 г.

Исследовано влияние высокомолекулярных, растворимых в воде поверхностно-активных веществ (ПАВ) с различными функциональными группами (сополимер метакрилоиламинофенола с акриловой кислотой, гидролизат отходов кожевенной промышленности и сополимер ацетата винилового эфира моноэтаноламина) на электровосстановление ионов кадмия(II) на одноименном электроде в различных электролитах: 1 М КСl, КBr, KNO₃, HCOONa, NH₂SO₃H, 0.5 M Na₂SO₄, 0.35 M Na₃C₆H₅O₇ · 2H₂O. Показано, что в растворе 1.0 М КCl, КBr ингибирования электровосстановления ионов кадмия(II) адсорбционными слоями ПАВ не наблюдается. Установлено, что ингибирующее действие полимеров на электровосстановление ионов кадмия(II) в электролитах возрастает в следующей последовательности: KCl > KBr > KNO₃ > NH₂SO₃H > Na₂SO₄ > Na₃C₆H₅O₇ · 2H₂O > HCOONa.

Ключевые слова: ионы кадмия, электровосстановление, поверхностно-активные вещества, электролит, кадмиевый электрод, ток обмена

DOI: 10.1134/S0044453719050170

В последнее время изучению действия поверхностно-активных веществ (ПАВ) на электродные процессы посвящено большое количество работ, большинство из них отражает влияние на электродные процессы низкомолекулярных соединений и только незначительное число – действие высокомолекулярных соединений [1-4]. Введение в электролиты органических ПАВ – один из эффективных способов управления кинетикой электродных процессов, вследствие чего совершенствование технологических процессов электроосаждения металлов и их сплавов невозможно без широкого использования известных и поиска новых органических ПАВ [5, 6]. Присутствие ПАВ, как известно, затрудняет протекание электродных процессов, оказывая на них тормозящее действие, что объясняется блокировкой поверхности электрода [7, 8]. Ингибирующее действие органических добавок зависит также и от ряда других факторов, в том числе и от состава электролита [9-12]. Тормозящее действие добавки зависит от природы анионов электролита, поэтому невозможно предугадать сохранение эффекта ингибирования в различных электролитах. Знание закономерностей влияния органических веществ на анионы фонового электролита и их взаимодействия с ними дает возможность интерпретировать механизм электродных процессов, позволяет в ряде случаев регулировать скорость электрохимических реакций.

Обзор литературы показывает, что природа аниона фона оказывает влияние как на формирование двойного электрического слоя, так и на кинетику и механизм электровосстановления металлов [13]. Однако большинство работ выполнено на ртутном электроде и только незначительное их число проведено на твердых электродах [14–16].

Цель данной работы — изучение влияния ряда органических соединений на скорость процесса электровосстановления кадмия на одноименном электроде в электролитах в присутствии различных анионов фонового электролита.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследовали влияние следующих ПАВ: сополимер метакрилоиламинофенола с акриловой кислотой (СМААФ-АК) (*M*_r = 15–20 тыс.), гидролизат отходов кожевенной промышленности (ГОКП) и сополимер ацетата винилового эфира моноэтаноламина (ВЭМЭА) ($M_r = 50-100$ тыс.). Исследовали электролиты следующего состава: 1 М КСl, КBr, KNO₃, HCOONa, NH₂SO₃H, 0.5 M Na₂SO₄, 0.35 M Na₃C₆H₅O₇ · 2H₂O.

В качестве фонового электролита выбрали КСІ и КВг ввиду сильной адсорбционной активности. Известно ускоряющее действие галогенных ионов на электродные процессы. Na₃C₆H₅O₇ · · 2H₂O, HCOONa выбрали из числа органических

кислот, так как они инертны, ион NO_3^- относится к малоадсорбирующимся анионам.

Представляет интерес исследование в качестве фонового электролита 1.0 M NH_2SO_3H для сравнения с другими электролитами, так как тормозящее действие SO_3H -ионав присутствии ПАВ велико. Определенный интерес представляет изучение Na_2SO_4 в качестве фонового электролита, так как анион SO_4^{2-} адсорбционно малоактивен.

Исследование электрохимического поведения ионов кадмия(II) проводили в интервале концентраций ПАВ 0.067×10^{-2} — 1.33×10^{-2} мас. % при 298—328 К. Изучение кинетики разряда ионов кадмия(II) на одноименном поликристаллическом электроде проводили методом снятия поляризационных кривых на потенциостате П-5827М.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Проведенные исследования по электровосстановлению ионов кадмия(II) на твердом электроде на фоне 1.0 M KCl, 1.0 M KBr и 1.0 M KNO₃ показали отсутствие влияния ПАВ на разряд ионов кадмия(II). Это объясняется высокой специфической адсорбцией галогенных ионов на поверхности кадмиевого электрода, способных конкурировать с адсорбцией молекул адсорбата, в результате чего торможения не наблюдается. Деполяризующее действие галогенных ионов на процесс ингибирования может быть вызвано двумя явлениями. Первое заключается в изменении строения адсорбционного слоя в результате адсорбции как галогенных ионов, так и молекул ПАВ. Второе связано с каталитическим действием галогенных ионов, небольшое содержание их в растворе ускоряет электродный процесс.

На рис. 1 приведены поляризационные кривые электровосстановления ионов кадмия(II) на кадмиевом электроде на фоне 0.5 M Na₂SO₄ в отсутствие и в присутствии ПАВ при T = 298 K. Введение добавки ПАВ в раствор приводит к существенному торможению разряда ионов кадмия(II), что проявляется в уменьшении токов восстановления и значительном увеличении поляризации. При увеличении содержания ПАВ в растворе степень ингибирования возрастает, увеличивается спад предельного тока в области отрицательных потенциалов. Поляризационные кривые электровосстановления ионов кадмия(II) в присутствии СМААФ-АК и ГОКП имеют N-образную форму, характерную для процессов разряда ионов кадмия(II) в присутствии азотсодержащих ПАВ. В растворе 1.0 М NH₂SO₃H введение добавки ПАВ приводит к торможению электродных процессов. Это проявляется в уменьшении предельного диффузионного тока и проявляется сильнее для ГОКП, чем для СМААФ-АК и ВЭМЭА.

Аналогичная картина наблюдается и в растворах 1.0 М НСООNа и 0.35 MNa₃C₆H₅O₇ · 2H₂O. В растворе 0.35 М $Na_3C_6H_5O_7 \cdot 2H_2O$ в присутствии ВЭМЭА наблюдается ускорение электродного процесса, что проявляется в увеличении токов восстановления и уменьшении поляризации. Увеличение токов восстановления может характеризоваться сильным сглаживающим эффектом ПАВ. Вероятно, при малых концентрациях ВЭМ-ЭА, имеющий карбоксильную группу, адсорбируясь на электроде положительным углеродным концом, а кислородным - в раствор, способствует ускорению процесса за счет подтягивающего действия отрицательных частиц на ионы Cd²⁺ с образованием промежуточных комплексов. Следует отметить, что в случае СМААФ-АК и ГОКП с увеличением концентрации добавок указанный эффект исчезает, и наблюдается торможение процесса, проявляющееся в смещении потенциала полуволны ($E_{1/2}$) в область отрицательных значений. Уменьшение токов восстановления связано, по-видимому, с ростом степени заполнения поверхности электрода молекулами адсорбата.

По методу, описанному в работе [17], проведен анализ полученных поляризационных кривых и построены зависимости для процесса электровосстановления ионов кадмия(II)

$$\ln i/(1-e^{(nF\eta/RT)})-\eta$$
,

где i — плотность тока, n — количество передаваемых электронов, F — постоянная Фарадея, η — перенапряжение, R — универсальная газовая постоянная, T — абсолютная температура. В исследованной области поляризации зависимости линейны и параллельны друг другу, что указывает на постоянство величины коэффициента переноса α .

Процесс электровосстановления ионов кадмия(II) протекает в две стадии:

$$\operatorname{Cd}^{2^+} \to \operatorname{Cd}^{2^+}_{\mathrm{s}} + 2\mathrm{e} \to \operatorname{Cd}.$$

В случае торможения стадии переноса электрона не нарушается стадия адсорбции иона Cd²⁺ на электроде. Постоянство коэффициента переноса свидетельствует о неизменности механизма про-

Рис. 1. Поляризационные кривые электровосстановления ионов кадмия(II) на кадмиевом электроде, полученные при T = 298 К на фоне 0.5 М Na₂SO₄ в отсутствие и в присутствии ПАВ: а – СМААФ-АК, б – ГОКП, в – ВЭМЭА. С_{ПАВ} × × 10³, мас. %: 1 - 0.00, 2 - 2.00, 3 - 5.30, 4 - 13.30.

цесса разряда ионов Cd^{2+} . Из зависимостей $\ln i/(1 - e^{(nF\eta/RT)}) - \eta$ рассчитаны величины токов обмена j_0 для разряда ионов кадмия(II). Величины токов обмена ($j_0 \times 10^3$, A/cm^2) электровосстановления ионов кадмия(II) в различных электролитах в присутствии ПАВ приведены в табл. 1–3.

Анализ данных таблиц показывает, что скорость электровосстановления ионов кадмия(II) в зависимости от аниона фона в отсутствие ПАВ уменьшается в ряду:

$$NH_2SO_3H > Na_2SO_4 > Na_3C_6H_5O_7 \cdot 2H_2O > > HCOONa.$$

Введение добавки ПАВ приводит к уменьшению величины j_0 , что указывает на торможение данного процесса. Следует отметить, что в растворе 0.5 М Na₂SO₄ в присутствии ПАВ наблюдается сильное торможение процесса электровосстановления ионов кадмия(II). Это объясняется образованием

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 4 2019

адсорбционной пленки ПАВ на поверхности электрода. Тормозящее действие добавки ПАВ зависит от природы анионов электролита и в присутствии СМААФ-АК усиливается в ряду:

$$NH_2SO_3H < Na_3C_6H_5O_7 \cdot 2H_2O <$$

< HCOONa < Na_3SO_4 .

а в случае ГОКП и ВЭМЭА:

$$NH_2SO_3H < Na_3C_6H_5O_7 \cdot 2H_2O <$$

 $< Na_2SO_4 < HCOONa.$

С целью выяснения влияния температуры в исследованных электролитах нами проведено изучение электровосстановления ионов кад-мия(II) при T = 298 - 328 К.

Поляризационные кривые электровосстановления ионов кадмия(II), полученные при 308– 328 К в растворе 1.0 М NH_2SO_3H , свидетельствуют, что и при T = 328 К наблюдается торможение разряда ионов кадмия(II). Ингибирование сопро-

КАСЫМОВА и др.

Таблица 1. Величины токов обмена ($j_0 \times 10^3$, А/см²) электровосстановления ионов кадмия(II) в различных электролитах в присутствии СМААФ-АК при T = 298 - 328 К

Электролит	<i>Т</i> , К	$C_{\Pi AB} imes 10^3$, мас. %					
		0.0	2.0	4.0	5.3	7.0	13.3
0.5 M Na ₂ SO ₄	298	5.0	4.4	3.8	2.5	2.2	1.0
	308	9.0	8.2	7.4	6.2	5.4	5.0
	318	13.5	10.2	9.4	8.3	6.5	7.0
	328	19.4	17.8	16.2	15.4	13.3	13.0
1.0 M NH ₂ SO ₃ H	298	6.2	6.1	6.1	5.9	5.3	5.0
	308	7.3	6.8	6.5	6.0	5.7	5.5
	318	9.9	6.3	6.0	5.9	5.9	5.7
	328	11.2	8.5	7.4	7.1	6.7	6.1
1.0 M HCOONa	298	3.2	2.85	2.9	2.8	2.7	2.8
	308	4.9	4.0	3.5	3.4	3.2	2.6
	318	9.0	—	—	—	—	9.0
	328	14.4	-	—	—	-	14.4
$0.35 \text{ M Na}_3\text{C}_6\text{H}_5\text{O}_7 \cdot 2\text{H}_2\text{O}$	298	3.6	3.5	3.5	3.45	2.9	3.1
	308	4.8	4.7	4.5	4.4	4.2	4.0
	318	5.1	5.0	5.0	4.4	4.0	3.8
	328	8.1	6.8	5.0	5.0	4.9	4.8

Таблица 2. Величины токов обмена ($j_0 \times 10^3$, А/см²) электровосстановления ионов кадмия(II) в различных электролитах в присутствии ГОКП при T = 298 - 328 К

Электролит	<i>Т</i> , К	$C_{\Pi AB} \times 10^3$, мас. %					
		0.0	2.0	4.0	5.3	7.0	13.3
0.5 MNa ₂ SO ₄	298	5.0	4.8	4.2	3.6	3.0	2.0
	308	9.0	8.1	8.4	7.8	7.6	7.0
	318	13.5	13.0	12.4	12.0	11.5	10.5
	328	19.4	19.2	19.0	19.0	18.8	18.4
1.0 M NH ₂ SO ₃ H	298	6.2	5.8	5.6	5.5	5.4	5.3
	308	7.3	7.0	6.7	6.1	5.9	5.8
	318	9.9	8.0	7.5	7.0	6.7	6.2
	328	13.3	7.8	7.8	7.8	7.8	7.8
1.0 M HCOONa	298	3.2	2.8	2.6	2.4	2.1	1.9
	308	4.9	4.5	4.4	4.2	4.1	3.7
	318	9.0	8.6	8.5	8.2	7.0	6.1
	328	14.4	—	13.4	12.2	11.8	11.1
$0.35 \text{ M Na}_3\text{C}_6\text{H}_5\text{O}_7 \cdot 2\text{H}_2\text{O}$	298	3.6	2.9	3.0	3.0	3.1	2.7
	308	4.8	4.5	4.3	4.1	3.9	3.7
	318	5.8	5.0	4.4	3.3	3.0	2.8
	328	6.3	6.0	5.5	4.2	3.1	2.9

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 4 2019

Таблица 3. Величины токов обмена ($j_0 \times 10^3$, A/см²) электровосстановления ионов кадмия(II) в различных электролитах в присутствии ВЭМЭА при T = 298 - 328 К

Электролит	<i>Т</i> , К	$C_{\Pi AB} imes 10^3$, мас. %					
		0.0	2.0	4.0	5.3	7.0	13.3
0.5 M Na ₂ SO ₄	298	5.0	2.1	2.0	1.8	1.6	1.5
	308	9.0	_	_	—	—	—
	318	13.5	_	_	—	—	—
	328	19.4	—	—	-	—	—
1.0 M NH ₂ SO ₃ H	298	6.2	5.7	5.5	5.5	5.4	5.3
	308	7.3	6.7	6.7	6.6	6.0	5.4
	318	9.9	8.0	6.9	6.8	6.7	5.6
	328	11.2	10.1	8.5	7.7	6.7	6.3
1.0 M HCOONa	298	3.2	2.8	3.0	2.7	2.5	1.0
	308	4.9	—	—	—	—	4.9
	318	9.0	_	_	—	—	9.0
	328	14.4	—	—	—	—	14.4
$0.35 \text{ M Na}_3\text{C}_6\text{H}_5\text{O}_7 \cdot 2\text{H}_2\text{O}$	298	3.6	2.6	2.6	2.8	2.8	3.0
	308	4.8	4.7	4.6	4.5	4.1	3.9
	318	5.1	5.0	4.9	4.8	4.8	4.8
	328	8.1	7.8	7.5	7.3	7.1	7.0

вождается уменьшением токов восстановления и увеличением поляризации. Следует отметить, что и при T = 328 К наблюдается ослабление ингибирующего действия СМААФ-АК. Аналогичная картина наблюдается в растворах 1.0 М НСООNа, 0.5 М Na₂SO₄, 0.35 М Na₃C₆H₅O₇ · 2H₂O.

В растворах 1.0 М КСl, КВr, KNO₃ ингибирования электровосстановления ионов кадмия адсорбционной пленкой ПАВ с повышением температуры не наблюдается, т.е. температура не влияет на ингибирующее действие ПАВ.

Полученные зависимости $\ln i/(1 - e^{(nF\eta/RT)}) - \eta$ для разряда ионов кадмия(II) в отсутствие и в присутствии ПАВ линейны и параллельны друг другу, т.е. механизм торможения процесса электровосстановления ионов кадмия(II) в присутствии ПАВ при повышенных температурах остается неизменным. Величины коэффициента переноса α для разряда ионов кадмия(II) на кадмиевом электроде остаются постоянными. Постоянство α является свидетельством неизменности механизма процесса разряда ионов кадмия(II) в присутствии ПАВ. Ингибирование осуществляется на стадии проникновения ионов деполяризатора в поверхностный слой.

Рассчитанные в этих условиях токи обмена $(j_0 \times 10^3, \text{ A/cm}^2)$ приведены в табл. 1–3. Данные табл. 1–3 показывают, что при всех исследованных температурах с увеличением содержания

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 4 2019

ПАВ ингибиторные свойства ПАВ сохраняются, и при всех изученных температурах наблюдается ингибирование процесса. Уменьшение *j*_o служит доказательством торможения электродного процесса. Ингибиторные свойства ГОКП и ВЭМЭА

Рис. 2. Температурно-кинетические кривые электровосстановления ионов кадмия(II) в различных фоновых электролитах в отсутствие ПАВ: 1 - 0.5 M Na₂₋ SO₄, 2 - 1.0 M HCOONa, 3 - 1.0 M NH₂SO₃H, 4 - 0.35M Na₃C₆H₅O₇ · 2H₂O.

ПАВ	0.5 M Na ₂ SO ₄	1.0 M NH ₂ SO ₃ H	1.0 M HCOONa	$0.35 \text{ M Na}_3\text{C}_6\text{H}_5\text{O}_7 \cdot 2\text{H}_2\text{O}$
Без ПАВ	22.9	21.1	23.2	39.0
СМААФ-АК	34.4	50.9	32.5	63.7
ГОКП	14.1	38.2	31.3	56.2
ВЭМЭА	11.3	18.0	15.4	29.0

Таблица 4. Значения эффективной энергии активации (А_{эфф}, кДж/моль) электровосстановления ионов кадмия(II) в различных электролитах

сохраняются и при T = 328 К. В растворе 0.5 М Na₂SO₄ с увеличением температуры ингибирующее действие ГОКП ослабляется.

По методу, предложенному в работе [18], проведен температурно-кинетический анализ поляризационных кривых в интервале температур T = 298-328 К в отсутствие ПАВ. Температурнокинетические кривые для разряда ионов кадмия(II) в отсутствие ПАВ (рис. 2) и в присутствии ПАВ (рис. 3) линейны и не зависят от перенапряжения.

Из полученных данных рассчитаны эффективные энергии активации электровосстановления ионов кадмия(II) в различных электролитах в отсутствие и в присутствии ПАВ, которые приведены в табл. 4. Из табл. 4 видно, что в присутствии СМААФ-АК во всех электролитах значение $A_{эф\phi}$ возрастает. Увеличение $A_{эф\phi}$ свидетельствует о возникновении дополнительного энергетического барьера при адсорбции ПАВ. В присутствии

Рис. 3. Температурно-кинетические кривые электровосстановления ионов кадмия(II) в различных фоновых электролитах в присутствии СМААФ-АК: 1 - 0.5 M Na₂SO₄, 2 - 1.0 M HCOONa, 3 - 1.0 M NH₂SO₃H, 4 - 0.35 M Na₃C₆H₅O₇ · 2H₂O.

ГОКП значения $A_{3\phi\phi}$ также возрастает за исключением 0.5 MNa₂SO₄. А в случае ВЭМЭА значения $A_{3\phi\phi}$ во всех электролитах ниже, чем в электролите без ПАВ, что связано, вероятно, с понижением степени заполнения поверхности электрода при повышении температуры.

Таким образом, полученные экспериментальные данные позволяют сделать заключение, что адсорбция исследованных ПАВ приводит как к торможению процесса разряда ионов кадмия(II) на кадмиевом электроде, так и к ускорению электродного процесса в зависимости от природы добавки и условий электролиза. Температурные исследования показывают, что разряд ионов кадмия(II) в присутствии СМААФ-АК и ГОКП ингибируются и при T = 328 K, что свидетельствует о температурной устойчивости адсорбционного слоя исследованных ПАВ. При прочих разных условиях значения $A_{3\phi\phi}$ выше для СМА-АФ-АК и для цитратного фонового электролита, что свидетельствует о более сильном ингибировании электровосстановления Cd²⁺ этой добавкой во всех фоновых электролитах и о возрастании энергетического барьера для разряда деполяризатора на фоне цитратных комплексов кадмия(II).

СПИСОК ЛИТЕРАТУРЫ

- Loshkaryov M.A., Loshkaryov Y.M. // Surface Technology. 1978. V. 6. № 6. P. 397.
- 2. Demeev B.B., Dauletbay A., Nauryzbaiev M.K. // Chem. Eng. Trans. 2016. V. 47. P. 211.
- 3. *Некрасов Л.Н., Выходцева Л.Н.* // Электрохимия. 1995. Т. 31. № 11. С. 1235.
- 4. Nieszporek J. // S. Afr. J. Chem. 2014. V. 67. P. 1.
- 5. Лошкарев М.А., Лошкарев Ю.М., Кудина И.П. // Электрохимия. 1977. Т. 13. № 5. С. 71.
- Metikos-Hukovic M., Babic R., Grubac Z., Brinic S. // J. Appl. Electrochem. 1996. № 26. P. 443.
- 7. *Лошкарев Ю.М.* // Журн. аналит. химии. 1993. Т. 48. № 6. С. 999.
- Muller E., Emous H., Porfler H.-D., Lipkowsky J.J. // J. Electroanalyt. Chem. 1982. № 142. P. 39.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 4 2019

- 9. Grishina E.P., Ramenskaya L.M., Vladimirova T.V., Pimenova A.M. // Russ. J. Appl. Chem. 2007. V. 80. № 2. P. 249.
- Kolosnitsin V.S., Yapryntseva O.A. // Ibid. 2004. V. 77. № 1. P. 60.
- Dalbanbay A., Nefedov A.N., Nurmanova R.A., Nauryzbayev M.K. // Chem. Bull. Kazakh. Nat. Univ. 2017. № 87(4). P. 12.
- 12. Soliman H.M. // App. Surf. Sci. 2002. V. 195. P. 155.
- 13. Афанасьев Б.Н., Дамаскин Б.Б. // Электрохимия. 1980. Т. 16. № 3. С. 280.
- Kuta J., Cmoler J. // Collect. Czech. Chem. Commun. 1968. V. 33. № 6. P. 1656.
- 15. Дяткина С.Л., Дамаскин Б.Б., Выгодская М.З. // Электрохимия. 1980. Т. 16. № 7. С. 996.
- 16. Касымова М.К., Мендалиева Д.К., Наурызбаев М.К. // Вестн. КазГУ. Серия хим. 1997. № 8. С. 47.
- 17. Делахей П. Двойной слой и кинетика электродных процессов. М.: Мир, 1967. 351 с.
- Vlcek A.A. // Collect. Czech. Chem. Commun. 1959. V. 24. № 11. P. 3538.