____ КОЛЛОИДНАЯ ХИМИЯ _ И ЭЛЕКТРОХИМИЯ

УЛК 544.1

ВОЛЬТАМПЕРОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ПРИЧИН КОНЦЕНТРАЦИОННОГО ТУШЕНИЯ ЛЮМИНЕСЦЕНЦИИ $Zn_{2-2\nu}Mg_{2\nu}SiO_4$: Mn

© 2019 г. Н. А. Зайцева^{*a,b,**}, М. Ю. Янченко^{*a*}, Л. Ю. Булдакова^{*a*}, Т. А. Онуфриева^{*a*}, Т. И. Красненко^{*a*}

^а Российская академия наук, Уральское отделение, Институт химии твердого тела, Екатеринбург, Россия ^bУральский государственный горный университет, Екатеринбург, Россия *e-mail: natalzay@vandex.ru

Поступила в редакцию 19.07.2018 г.

Рассмотрено влияние допирования люминофора $Zn_{2-2x}Mn_{2x}SiO_4$ ($x \le 0.2$) магнием на зарядовое состояние марганца и причины тушения люминесценции. Установлено, что введение ионов магния и увеличение их доли в катионной подрешетке кристаллофосфора стабилизирует марганец в двухзарядном состоянии. Показано, что концентрационное тушение люминесценции в этом случае вызвано только кластеризацией двухзарядных ионов марганца.

Ключевые слова: ортосиликат цинка, вольтамперометрия, содопирование, зарядовые состояния ионов марганца, концентрационное тушение люминесценции, кластеризация DOI: 10.1134/S0044453719050340

Одним из самых популярных кристаллофосфоров, обеспечивающих зеленое свечение в цветовой гамме современных дисплеев, остается Zn₂SiO₄ : Mn, обладающий насыщенным цветом излучения, термической и химической стабильностью. Известно, что структура матрицы Zn₂SiO₄ образована чередующимися тетраэдрами $[SiO_4]^{4-}$ и $[ZnO_4]^{6-}$, связанными по вершинам общими атомами кислорода. Марганец может замещать ионы цинка, образуя твердый раствор состава $Zn_{2-2x}Mn_{2x}SiO_4$, люминесценция которого обусловлена электронным переходом ${}^{4}T_{1} - {}^{6}A_{1}$ в ионах Mn²⁺. В ряде работ показано, что интенсивность люминесценции растет при замещении цинка марганцем до x = 0.13 [1-4] и падает при дальнейшем увеличении х. На основании исследования монокристаллов $Zn_{2-2x}Mn_{2x}SiO_4$ при $x \le$ ≤ 0.03 авторы [5] установили наличие обменных пар Mn²⁺-Mn²⁺ и выдвинули предположение, что причиной концентрационного тушения является кластеризация ионов-активаторов. Однако, детальное комплексное исследование кристаллохимических, магнитных, вольтамперометрических свойств представительного набора составов из всей протяженной области твердого раствора Zn_{2-2x}Mn_{2x}SiO₄ позволило нам установить, что причиной концентрационного тушения люминесценции при x > 0.13 является окисление части ионов-активаторов до состояния Mn³⁺ [6, 7]. Такое изменение степени окисления ионов-заместителей обусловлено возможностью уменьшения деформационных напряжений структуры ортосиликата цинка, вызванных разницей в размерах ионов ($r(Zn^{2+}) = 0.74$ Å, $r(Mn^{2+}) = 0.80$ Å [8]). Показано [7], что при увеличении концентрации марганца параметры элементарной ячейки твердого раствора растут. Мы предположили, что предварительное замещение части ионов цинка в структуре Zn_2SiO_4 ионами меньшего радиуса, например магния ($r(Mg^{2+}) = 0.71$ Å [8]), уменьшит исходные параметры элементарной ячейки и тем самым позволит ввести в структуру большее количество Mn²⁺. При этом интенсивность свечения данного кристаллофосфора должна увеличиться за счет увеличения концентрации оптически-активных ионов марганца. Проведенное нами кристаллохимическое исследование протяженности твердого раствора при содопировании ортосиликата цинка магнием и марганцем показало возможность получения однофазных составов $Zn_{2-2x-2\nu}Mn_{2x}Mg_{2\nu}SiO_4$ при концентрации ионов магния до 30 ат. % и марганца до 20 ат. % [9]. Однако, вопреки ожиданиям, интенсивность свечения полученных люминофоров оказалась меньше, чем для образцов без магния с теми же концентрациями марганца. Так как причиной оптической дезактивации ионов Mn²⁺ может быть либо их окисление, либо объединение в обменные кластеры, целью настоящей работы яв-

N⁰	Состав	x	у	<i>a</i> , Å	<i>c</i> , Å	<i>V</i> , Å ³
1	Zn ₂ SiO ₄	0	0	13.930(1)	9.303(7)	1563.49
2	$Zn_{1.74}Mn_{0.26}SiO_4$	0.13	0	13.978(2)	9.349(9)	1582.12
3	Zn _{1.66} Mn _{0.26} Mg _{0.08} SiO ₄	0.13	0.04	13.971(7)	9.350(5)	1580.75
4	$Zn_{1.50}Mn_{0.26}Mg_{0.24}SiO_4$	0.13	0.12	13.967(3)	9.349(9)	1579.65
5	$Zn_{1.70}Mn_{0.30}SiO_4$	0.15	0	13.985(9)	9.356(9)	1585.06
6	$Zn_{1.62}Mn_{0.30}Mg_{0.08}SiO_4$	0.15	0.04	13.977(9)	9.356(7)	1583.20
7	$Zn_{1.46}Mn_{0.30}Mg_{0.24}SiO_4$	0.15	0.12	13.973(8)	9.356(5)	1582.23
8	$Zn_{1.60}Mn_{0.40}SiO_4$	0.20	0	13.996(6)	9.371(4)	1589.92
9	$Zn_{1.52}Mn_{0.40}Mg_{0.08}SiO_4$	0.20	0.04	13.994(8)	9.372(9)	1589.78
10	$Zn_{1.36}Mn_{0.40}Mg_{0.24}SiO_4$	0.20	0.12	13.994(1)	9.375(8)	1590.10

Таблица 1. Параметры элементарных ячеек твердого раствора $Zn_{2-2x} - 2_xMn_{2x}Mg_{2y}SiO_4$

ляется вольтамперометрическое определение зарядового состояния ионов марганца и их возможной кластеризации в $Zn_{2-2x}Mn_{2x-2y}Mg_{2y}SiO_4$, а также установление механизма концентрационного тушения люминесценции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы $Zn_{2-2x-2v}Mn_{2x}Mg_{2v}SiO_4$ синтезировали на воздухе твердофазно, в два этапа. На первом этапе синтеза из оксидов ZnO, SiO2 и MgO ступенчатым отжигом при температурах до 1400°С получали силикаты со структурой виллемита $Zn_{2-2v}Mg_{2v}SiO_4$ (y = 0.12, 0.04). На втором этапе к магнийзамещенным силикатам добавляли взятые в необходимых соотношениях SiO₂ и Mn₂O₃ (квалификация всех оксидов не ниже "ч. д. а.") и отжигали повторно с промежуточными перетираниями при 1200-1250°C до получения однофазных образцов. Такая методика синтеза позволила избежать образования в качестве промежуточных фаз шпинелей ZnMn₂O₄ и MgMn₂O₄. В результате были получены две серии твердых растворов $Zn_{2-2x-2y}Mn_{2x}Mg_{2y}SiO_4$, где x = 0.13, 0.15 и 0.20, v = 0.04 id 0.12.

Фазовый состав контролировали рентгенографически (Shimadzu, Cu K_{α} -излучение, в интервале углов 20 от 10° до 60° с шагом сканирования 0.02°), используя базу порошковых стандартов PDF2, ICDD USA, release 2009. Расчет параметров элементарной ячейки Zn_{2-2x-2y}Mn_{2x}Mg_{2y}SiO₄ (тригональная сингония, пр. гр. R-3) был выполнен методом полнопрофильного анализа Ритвельда с использованием программы Fullprof.

Вольтамперометрические исследования проводили на полярографе ПУ-1. В качестве индикаторного электрода применяли угольно-пастовый электроактивный электрод (УПЭЭ), площадь видимой поверхности которого составляла 0.125 см². Активная часть электрода состояла из смеси изучаемого вещества, спектрально чистого графита и связующего — вазелинового масла, взятых в соотношении 1 : 8 : 3 по массе соответственно. Электродами сравнения и вспомогательным служили насыщенные хлоридсеребряные электроды ЭВЛ-1МЗ. В качестве фонового электролита использовали раствор, содержащий 0.25 моль/л сульфата натрия и 0.5 моль/л аммиака. Для изучения восстановительных превращений в образцах задавали катодную развертку потенциала от нуля до —1800 мВ и регистрировали токи восстановления. Скорость изменения потенциалов составила 30 мВ/с.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Выбор концентраций ионов-допантов был обусловлен следующими соображениями. Граничные концентрации ионов марганца в $Zn_{2-2x}Mn_{2x}SiO_4$ определены с одной стороны максимальной интенсивностью люминесценции (x = 0.13), с другой – предельной величиной изоморфной емкости твердого раствора (x = 0.20) [7]. Введение различных концентраций содопанта меньшего радиуса Mg^{2+} позволит установить качественные закономерности в изменении кристаллохимических параметров и вольтамперометрических характеристик.

В табл. 1 приведены кристаллохимические параметры однофазных образцов $Zn_{2-2x-2y}Mn_{2x}Mg_{2y}SiO_4$.

Замещение ионов цинка в Zn_2SiO_4 (образец 1) марганцем ведет к существенному увеличению параметров элементарной ячейки (образцы 2, 5, 8), что связано с увеличением размеров металлкислородных тетраэдров. При долях марганца x == 0.13 (образцы 2, 3, 4) и x = 0.15 (образцы 5, 6, 7) увеличение концентрации ионов магния ведет к закономерному уменьшению параметров *a* и *V* при практически неизменном параметре *c*. Для образцов с x = 0.20 (образцы 8, 9, 10) замещение ионов цинка на магний почти не сказывается на значениях параметров элементарной ячейки. Эта аномалия может иметь следующее объяснение. Ранее нами было показано [7], что при концентрации ионов марганца x = 0.20 часть ионов Mn^{2+} переходит в окисленное состояние Mn^{3+} с появлением вакансий в позициях цинка (образец 8). Введение в этот образец магния должно было бы уменьшить значения кристаллохимических параметров образцов 9 и 10, однако их неизменность позволяет предположить, что ионы магния стабилизируют марганец в двухзарядном состоянии, а вызванный этим рост размеров металл-кислородных полиэдров компенсируется их уменьшением за счет вводимого магния.

Изложенные выше обсуждения изменения кристаллохимических параметров дают основания предположить, что ионы марганца во всех изучаемых образцах находятся в двухзарядном состоянии. В этом случае рост концентрации ионов Mn^{2+} в содопированных образцах должен вызывать рост интенсивности люминесценции, что противоречит результатам [9]. В связи с этим продолжением нашего исследования явилось прямое определение зарядовых состояний ионов марганца методом вольтамперометрии с УПЭЭ.

На рис. 1 приведены катодные поляризационные кривые образцов Zn_{1.36}Mn_{0.4}Mg_{0.24}SiO₄, $Zn_{1.52}Mn_{0.4}Mg_{0.08}SiO_4$, Zn_{1.46}Mn_{0.3}Mg_{0.24}SiO₄, $Zn_{1.62}Mn_{0.3}Mg_{0.08}SiO_4$ и оксидов-эталонов Mn_2O_3 и ZnO. С ростом приложенного потенциала ионы цинка и марганца в составе УПЭЭ восстанавливаются, что отражается на поляризационных кривых в виде максимумов [10]. При увеличении потенциала на вольтамперограмме Mn_2O_3 зафик-сированы максимумы при $E_1 = -1030$ мВ и $E_2 =$ = -1560 мВ, соответствующие процессам ступенчатого восстановления $Mn^{3+} \rightarrow Mn^{2+}$ и $Mn^{2+} \rightarrow$ \rightarrow Mn⁰. Восстановление ZnO (Zn²⁺ \rightarrow Zn⁰) происходит при потенциале E = -1450 мВ. Пиков восстановления Mg²⁺ в данных условиях не наблюдается, так как восстановление ионов магния происходит при потенциалах, более отрицательных, чем — 1800 мВ.

Вольтамперограммы твердых растворов $Zn_{2-2x-2y}Mn_{2x}Mg_{2y}SiO_4$ существенно отличаются от таковых для $Zn_{1.6}Mn_{0.4}SiO_4$ [7]. Однозначным свидетельством присутствия ионов Mn^{3+} в безмагниевом силикате $Zn_{1.6}Mn_{0.4}SiO_4$ является наличие максимума на его поляризационной кривой при –1020 мВ. Этот максимум, соответствующий превращению $Mn^{3+} \rightarrow Mn^{2+}$, на зависимостях для $Zn_{2-2x-2y}Mn_{2x}Mg_{2y}SiO_4$ (кривые *1*– *4*) отсутствует. Это означает, что допирование магнием действительно стабилизирует марганец в структуре ортосиликата цинка в зарядовом состоянии Mn^{2+} . На представленных поляризаци-

Рис. 1. Катодные вольтамперограммы $Zn_{1.36}Mg_{0.24}Mn_{0.4}SiO_4$ (1), $Zn_{1.52}Mg_{0.08}Mn_{0.4}SiO_4$ (2), $Zn_{1.46}Mg_{0.24}Mn_{0.3}SiO_4$ (3), $Zn_{1.62}Mg_{0.08}Mn_{0.3}SiO_4$ (4), ZnO (5) и Mn_2O_3 (6).

онных кривых 1-4 в области потенциалов от -1400 до -1580 мВ наблюдается пик сложной формы, который является результатом наложения максимумов, отвечающих процессам восстановления ионов Zn^{2+} и ионов Mn^{2+} . Кроме того, в интервале потенциалов от -1650 до -1750 мВ регистрируется дополнительный пик, отсутствующий на кривых восстановления эталона Mn₂O₃ и ранее исследованного Zn_{1.6}Mn_{0.4}SiO₄. Можно предположить, что появление максимума в этой области потенциалов восстановления обусловлено тем, что не все ионы Mn²⁺ были восстановлены при -1400 до -1580 мВ. Восстановление остальных ионов Mn²⁺ требует больше энергии, поскольку они могут находиться в более связанном, кластеризованном состоянии [11], обусловленном взаимодействием Mn²⁺-Mn²⁺. Аналогичный эффект кластеризации описан нами в [12] на примере взаимодействия ионов ванадия в структуре ортосиликата цинка. Следовательно, именно кластеризация ионов марганца является причиной концентрационного тушения люминесценции в $Zn_{2-2x-2y}Mn_{2x}Mg_{2y}SiO_4$.

Таким образом, в результате проведенного комплексного кристаллохимического и электрохимического исследования установлено, что частичное замещение ионов цинка магнием в люминофоре Zn_2SiO_4 : Мп предотвращает окисление активатора люминесценции Mn^{2+} . Концентрационное тушение люминесценции в $Zn_{2-2x-2y}Mn_{2x}Mg_{2y}SiO_4$ вызвано только кластеризацией двухзарядных ионов марганца.

Работа выполнена при поддержке РФФИ в рамках научного проекта № 18–38–00568мол_а.

СПИСОК ЛИТЕРАТУРЫ

- 1. Onufrieva T.A., Krasnenko T.I., Zaitseva N.A. et al. // Mater. Res. Bull. 2018. V. 97. P. 182.
- Babu Ch., Rao B.V., Ravi M., Babu S. // J. Molecular Structure. 2017. V. 1127. P. 6.
- Ramakrishna P.V., Murthy D.B.R.K., Sastry D.L., Samatha K. // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014. V. 129. P. 274.
- 4. Sreekanth Chakradhar R.P., Nagabhushana B.M., Chandrappa G.T. et al. // J. Chem. Phys. 2004. V. 121. P. 10250.
- Robbins D.J., Mendez E.E., Giess E.A., Chang I.F. // J. Electrochem. Soc. 1984. V. 131(1). P. 141.
- Zaitseva N.A., Onufrieva T.A., Barykina J.A. et al. // Mater. Chem. and Physics. 2018. V. 209. P. 107.
- Onufrieva T.A., Buldakova L.Yu., Yanchenko M.Yu. et al. // Russian J. of Phys. Chem. A. 2018. V. 92. № 7. P. 1413.

- 8. *Shannon R.D.* // Acta Cryst. A. 1976. V. 32. № 5. P. 751.
- 9. Онуфриева Т.А., Бакланова И.В., Ротермель М.В. и *др.* // Электронный журнал "Фазовые переходы, межфазные границы и наноматериалы". http://ptint.ru/ru/ 2018. № 1. С. 26. http://pti-nt.ru/ru/issue/publication/434-kristallohimicheskie-i-lyuminescentnye-svoiystva-zn2-2x-2ymg2xmn2ysio4-sostrukturoiy-villemita
- Брайнина Х.З., Нейман Е.Я., Слепушкин В.В. Инверсионные электроаналитические методы. М.: Химия, 1988. 239 с.
- 11. Бонд А.М. Полярографические методы в аналитической химии. М.: Химия, 1983. 328 с.
- 12. Krasnenko T.I., Yanchenko M.Yu., Zaitseva N.A. et al. // Russian J. of Phys. Chem. A. 2017. V. 91. № 9. P. 1824.