СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 536.4

МОДЕЛИРОВАНИЕ ЖИДКОЙ СУРЬМЫ МЕТОДОМ МОЛЕКУЛЯРНОЙ ДИНАМИКИ

© 2019 г. Д. К. Белащенко^{а,*}

^а Национальный исследовательский технологический университет "Московский институт стали и сплавов", Москва, Россия

> *e-mail: dkbel75@gmail.com Поступила в редакцию 03.09.2018 г. После доработки 03.09.2018 г. Принята к публикации 03.09.2018 г.

Рассчитан потенциал модели погруженного атома (EAM) для жидкой сурьмы и построены методом молекулярной динамики модели сурьмы при температурах до 2023 К и при условиях ударного сжатия до давлений 131 ГПа. Установлено, что потенциал ЕАМ хорошо описывает поведение побочного максимума парной корреляционной функции (ПКФ). Получено хорошее согласие с опытом для структуры жидкости, плотности и скорости звука на бинодали и расхождения с опытом для энергии. Установлено, что коэффициент самодиффузии завышен вблизи точки плавления, но это расхождение исчезает при нагревании; расчетная ударная адиабата хорошо согласуется с опытом; при давлениях до 8 ГПа структура моделей жидкой сурьмы не согласуется с дифракционными данными в отношении формы первого пика ПКФ. Сделан вывод, что особенности структуры аномального металла – сурьмы – определяются наличием интервала расстояний справа от первого пика ПКФ, на котором кривизна межчастичного потенциала отрицательна.

Ключевые слова: сурьма, жидкость, аномалия, молекулярная динамика, потенциал EAM **DOI:** 10.1134/S0044453719060062

Сурьма принадлежит к небольшой группе аномальных металлов (полуметаллов). плавяшихся с vменьшением объема. Данные о термохимических свойствах жидкой фазы (очень скудные, особенно в отношении теплоемкости и энтальпии) приведены в [1, 2], о плотности – в [3], о скорости звука и сжимаемости – в [4-6]. Коэффициенты самодиффузии жидкой сурьмы приведены в [7-10]. Структуру жидкой сурьмы исследовали неоднократно в [6, 11–19]. В дифракционных работах применяли как рентгеновское, так и нейтронное излучение. Характерный признак аномальной структуры сурьмы — наличие побочного максимума справа от первого пика парной корреляционной функции (ПКФ) (см. рис. 1). Таблицы ПКФ для двух температур приведены в [11, 12]. В [14] исследована структура жидкой сурьмы под давлением до 9.4 ГПа, при температурах на 50 К выше точки плавления.

Некоторые характеристики структуры жидкой сурьмы приведены в табл. 1. Виден значительный разброс координаты (r_1) первого пика ПКФ: от 2.83 до 3.28 Å. Эта координата является важной характеристикой структуры жидкости. У плотных некристаллических структур величина $\rho_1 = r_1 (N/V)^{1/3} = 1.08 \pm 0.2$ [20] (N – число частиц в

объеме V). У сурьмы, с учетом данных [11, 12], при 923 К получается $\rho_1 = 1.041$; по данным [6], $\rho_1 = 0.967$. У висмута, расположенного ниже в Периодической системе, при 553 К величина $\rho_1 = 1.034$ [11, 12] и 1.006 [21]. Таким образом, структура жидкой сурьмы (и в меньшей степени — висмута) рыхлая.

Работ по моделированию жидкой сурьмы сравнительно немного. В [24, 25] было проведено моделирование жидкой сурьмы методами Монте-Карло и молекулярной динамики (МД) с применением эффективных парных потенциалов. В [10, 23, 26] исследованы свойства жидкой сурьмы квантово-механическими методами. Результаты этих расчетов не совпадают. Так, в [23] высота первого пика ПКФ (g_1) сурьмы при 1072 К получена равной ~ 2.3 и немного выше данных [11, 12] (2.17), а в [10] высота немного меньше 2.0, что согласуется с данными [6], но не с [23]. Кроме того, координаты r_1 в [10, 23] отличаются на 0.23 Å, а в [11, 16] — на 0.33 Å (табл. 1). Скорость звука в [10] превышает фактическую [5] в ~1.24 раза, что означает завышение модуля всестороннего сжатия в ~1.5 раза. Следовательно, силы межчастич-

Рис. 1. ПКФ жидкой сурьмы; 1 - 923 К (плотность модели 6.469 г/см³, давление 10^{-4} ГПа, невязка $R_g = 0.035$); 2 - 948 К (плотность модели 6.461 г/см³, давление 10^{-3} ГПа, невязка $R_g = 0.035$); штриховые линии – дифракционные данные [6], маркеры – модели с потенциалом ЕАМ-1.

ного взаимодействия в [10] заметно более жесткие, чем в реальной сурьме.

Принято считать, что рыхлость структуры обусловлена участием направленной связи (как, например, в жидких Si и Ge), причем это участие ослабевает с ростом температуры. В рамках концепции парного взаимодействия это приводит к потенциалам, зависящим от температуры, что исключает возможность применения теории жидкостей и статистической механики вообще. Поэтому особый интерес представляет проверка возможности моделировать одноатомные жидкости с рыхлой структурой с помощью модели погруженного атома (Embedded Atom Model – EAM). Учет направленности связи в модифици-

рованном варианте MEAM [27] в случае лития не привел к хорошим результатам [28].

При расчетах потенциала ЕАМ по методике [29] парный вклад в потенциал определяется методом МД с помощью алгоритма Шоммерса [30]. В этом алгоритме используется ПКФ жидкости, и правильный выбор целевой ПКФ очень важен. Вследствие различия значений r_1 эффективный диаметр частиц в [6] меньше, чем в [11] на 7%. Поскольку на начальном этапе наших расчетов не было оснований предпочесть какие-то из этих данных, то были использованы ПКФ работ [11] и [6] по отдельности. Для обоих вариантов можно получить межчастичные потенциалы, которые при 923–930 К приводят к хорошему согласию соответствующих расчетной и дифракционной ПКФ.

Излучение	<i>Т</i> , К	<i>р</i> , ГПа	<i>r</i> ₁ , Å	$g(r_1)$	Ссылка	Год
Рентген	933	0	3.28	2.25	[11, 12, 22]	1971
Рентген	923	0	2.95	2.56	[7, 16]	1983
Рентген	927	0	3.08	2.1	[13]	1994
Рентген	954	0.7-9.4	2.99	2.0	[14]	2008
Нейтрон	923	0	3.05	1.87	[6]	2010
Нейтрон	923	0	3.02	2.05	[17]	2013
Ab initio	1073	0	~3.06	~2.3	[23]	1996
CPMD	900	0	2.83	~2.15	[10]	2017
Crystal A7	298	0	2.908	—	—	—

Таблица 1. Характеристики структуры жидкой сурьмы

Потенциал ЕАМ. Мы применили потенциал ЕАМ в форме [31]:

$$U = \sum_{i=1}^{N} \Phi(\rho_i) + \sum_{i< j}^{N} \phi(r_{ij}), \quad \rho_i = \sum_j \psi(r_{ij}),$$

где $\varphi(r)$ — это обычный парный потенциал, а $\Phi(\rho)$ — потенциал погружения. Потенциал погружения выражается через эффективную электронную плотность $\psi(r)$ и имеет вид [29, 32]:

$$\begin{split} \psi(r) &= p_1 \exp(-p_2 r), \\ \Phi(\rho) &= a_1 + c_1(\rho - \rho_0)^2 \quad \text{при} \quad \rho_1 \leq \rho \leq \rho_6, \\ \Phi(\rho) &= a_i + b_i(\rho - \rho_{i-1}) + c_i(\rho - \rho_{i-1})^2 \\ \text{при} \quad \rho_i \leq \rho \leq \rho_{i-1} \quad (i = 2, 3, 4, 5), \\ \Phi(\rho) &= [a_6 + b_6(\rho - \rho_5) + c_6(\rho - \rho_5)^2] \times \\ \times [2\rho/\rho_5 - (\rho/\rho_5)^2] \quad \text{при} \quad \rho \leq \rho_5, \\ \Phi(\rho) &= a_7 + b_7(\rho - \rho_6) + c_7(\rho - \rho_6)^m \\ \text{при} \quad \rho_6 \leq \rho \leq \rho_7, \\ \Phi(\rho) &= a_8 + b_8(\rho - \rho_7) + c_8(\rho - \rho_7)^n \\ \text{при} \quad \rho_7 \leq \rho \leq \rho_8, \\ \Phi(\rho) &= a_9 + b_9(\rho - \rho_8) + c_9(\rho - \rho_8)^q \\ \text{при} \quad \rho > \rho_8. \end{split}$$

Методика расчета потенциала ЕАМ для жидких металлов описана, например, в [20, 29, 32, 33]. Коэффициент a_1 определяется по энергии системы, c_1 — по модулю всестороннего сжатия, а остальные коэффициенты — по зависимости плотности от температуры вдоль бинодали и при высоких давлениях — по форме ударной адиабаты. Энергия рассчитывается по отношению к идеальному газу при абсолютном нуле, и для сурьмы в стандартном состоянии равна — 255.8 кДж/моль (так как для одноатомного газа сурьмы $\Delta H_{298}^0 = 262$ кДж/атом).

Сурьмы $\Delta H_{298} = 202$ КДж/атом). Распет париого вклада в поте

Расчет парного вклада в потенциал ЕАМ сурьмы. На первом этапе расчета применили алгоритм Шоммерса [30] с целевой ПКФ работы [6], полученной методом рассеяния нейтронов. При этом парный вклад в потенциал ЕАМ получается в виде гистограммы. На рис. 1 показаны дифракционная [6] и модельная ПКФ сурьмы при 923 К и реальной плотности 6.469 г/см³ [3] (давление модели близко к нулю: ~10⁻⁴ ГПа). Стандартное отклонение между этими кривыми ("невязка" R_{a}) составляет всего 0.035, и они визуально практически совпадают. Расчетная высота 1-го пика (~2.00) хорошо согласуется с дифракционными данными. При 948 К согласие МД-расчетов с дифракционными данными также очень хорошее (рис. 1). Минимальное межчастичное расстояние

Рис. 2. Парный вклад в потенциал EAM-1 жидкой сурьмы. Использованы дифракционные данные [6] при 923 К.

при 923 К равно 2.50 Å [6]. Отметим, что поведение ПКФ на малых расстояниях определяется в дифракционных исследованиях довольно неточно в связи с особенностями фурье-преобразования структурного фактора. Полученную алгоритмом Шоммерса гистограмму парного вклада в потенциал аппроксимировали кусочнонепрерывным полиномом восьмой степени с семью участками по оси расстояний (точки деления $r_1, r_2, ..., r_8$) по формуле:

$$\varphi(r), \exists B = \sum_{i=1}^{k} \sum_{n=0}^{L} a_{in}(r - r_{i+1})^{n} H(r_{i}, r_{i+1})$$

при $r > r_{i}$.

Для сурьмы выбрали k = 7 и L = 8. В этом выражении $H(r_i, r_{i+1}) - функция Хевисайда, равная единице при <math>r_i \le r \le r_{i+1}$ и нулю в остальных случаях, i -это номер интервала на оси r (i = 1, 2, ..., 7). Потенциал и его производная непрерывны в точках $r = r_i$. Параметры парного потенциала для расстояний 2.45 Å < r < 8.50 Å приведены в табл. 2. Радиус обрыва потенциала равен 8.50 Å. Этот потенциал был продолжен на область расстояний $0 < r \le r_1 = 2.45$ Å (где алгоритм Шоммерса не работает) по формуле:

$$\varphi(r), \exists B = 0.624984 - 8.33299(r_1 - r) + 4.05\{\exp[3.90(r_1 - r)] - 1\}.$$

Здесь *r* выражено в Å. Крутизна потенциала подобрана из практических соображений. Этот парный потенциал (ниже – EAM-1) показан на рис. 2. Особенность его – наличие справа от 1-го пика ПКФ (при 3.35 Å < r < 3.65 Å) участка функции с отрицательной кривизной, где вторая производная $d^2\varphi(r)/dr^2 < 0$.

БЕЛАЩЕНКО

Таблица 2. Коэффициенты разложения в ряд парного вклада в потенциал EAM-1 сурьмы

а.	Номер интервала $i/границы интервала r_i - r_{i+1}, Å$											
u _{im}	1/2.45 - 2.95	2/2.95 - 3.35	3/3.35 - 4.25	4/4.25 - 5.25								
a_{i0}	-0.34052286297083D-01	-0.10206601023674D+00	-0.15387345850468D+00	-0.45517113059759D-01								
a_{i1}	-0.43543878197670D+00	-0.64289897680283D-01	0.31281515955925D-01	0.12173445522785D+00								
a_{i2}	0.79988354490688D+01	-0.10446374702544D-01	0.16163095847520D+00	-0.75965754995017D-01								
a_{i3}	0.13880239261187D+03	0.42519779401006D+00	0.22675945044999D+00	-0.27750872904007D+00								
a_{i4}	0.97165603782985D+03	0.63646535281818D+01	0.98344626187728D+00	-0.76677699825408D+00								
a_{i5}	0.30715896813361D+04	0.16178582313063D+02	0.21162367495247D+01	-0.14408420503691D+01								
a_{i6}	0.44011159253280D+04	0.28705377041447D+02	0.22073569773159D+01	-0.14760286584363D+01								
a_{i7}	0.22677572627070D+04	0.32882464722684D+02	0.12201261353870D+01	-0.78146211217038D+00								
a_{i8}	0.0000000000000D+00	0.15583486695052D+02	0.30020285606349D+00	-0.16766332636135D+00								
a _{im}	5/5.25 - 6.70	6/6.70 - 7.90	7/7.90 - 8.50									
a_{i0}	0.13424860313535D-01	0.69338572211564D-02	0.0000000000000D+00									
a_{i1}	0.22264212369919D-01	-0.22848144173622D-01	0.0000000000000D+00									
a_{i2}	-0.11534605023863D-01	-0.93902434824288D-01	-0.42496021155636D+00									
a_{i3}	0.64332199836180D-02	-0.48555583312640D+00	-0.68657963361552D+01									
a_{i4}	0.17138190267704D+00	-0.12331432859250D+01	-0.36733663637953D+02									
a_{i5}	0.28994127333399D+00	-0.17144812557699D+01	-0.94960436728153D+02									
a_{i6}	0.18525492003923D+00	-0.13559759198066D+01	-0.12938371628906D+03									
a_{i7}	0.53728397246003D-01	-0.56662788698492D+00	-0.89593005903844D+02									
a_{i8}	0.61586411022590D-02	-0.96582622333612D-01	-0.24888865418622D+02									

Потенциал погружения. Значения параметров эффективной электронной плотности $\psi(\mathbf{r})$ были приняты равными $p_1 = 4.4660$, $p_2 = 1.200$, чтобы среднее значение $\langle \rho \rangle$ на атомах модели немного выше точки плавления было равно единице. Часть параметров потенциала погружения EAM-1

Рис. 3. Потенциал погружения ЕАМ-1.

была определена по температурной зависимости плотности вдоль бинодали, энергии и изотермическому модулю всестороннего сжатия металла (K_T). Модуль K_T сурьмы был рассчитан по значениям плотности [3] и скорости звука [5] с учетом МД-расчетов теплоемкостей C_V и C_p (соответственно 24.1 и 27.6 Дж/(моль K)); при 923 К он равен 20.6 ГПа. Согласно [4], при 933 К значение K_T = 21.6 ГПа. Параметры потенциала погружения ЕАМ-1, относящиеся к сжатым состояниям, определены по форме ударной адиабаты сурьмы (см. ниже). Все эти цифры приведены в табл. 3. Потенциал погружения сурьмы показан на рис. 3.

Расчетные свойства моделей сурьмы. МД-модели имели размер 2000 атомов в основном кубе. Релаксацию проводили алгоритмом Л. Верле с шагом по времени $\Delta t = 0.01t_0$, где $t_0 = 1.123 \times 10^{-13}$ с. При расчетах учитывали тепловые вклады от электронов проводимости в энергию и давление по методу [29, 32], принимая число электронов проводимости на атом равным 5. Значения тепловой энергии электронов $E_{\rm el}$ приведены в табл. 4. Электронный вклад в давление $p_{\rm el}$ рассчитывали по формуле $p_{\rm el}V = (2/3)E_{\rm el}$ [34]. Свойства моделей вдоль бинодали приведены в табл. 5. Получено

n	$-a_n$	b_n	<i>C</i> _n		
1	1.6490	0	0.9412		
2	1.639588	-0.188240	-0.175		
3	1.619519	-0.146240	2.200		
4	1.521916	-0.938240	0.500		
5	1.423092	-1.038240	0		
6	1.194679	-1.038240	0		
7	1.618505	0.338832	1.080000		
8	0.943993	1.808219	-0.140000		
9	0.340105	1.683982	-0.550000		
	Значе	ния р _і			
ρ ₁	ρ ₂	ρ ₃	ρ_4		
0.90	0.78	0.60	0.50		
ρ ₅	$ ho_6$	ρ_7	ρ_8		
0.28	1.18	1.85	2.20		
т	п	q	—		
2.20	1.50	1.50	_		

Таблица 3. Коэффициенты a_n, b_n, c_n и ρ_i

хорошее согласие с опытом для плотности (*d*) и модуля K_T . При нагревании до 2000 К наблюдается постепенное занижение расчетной энергии модели сурьмы по сравнению с экспериментом [1, 2] (до 6.5 кДж/моль при 2023 К), частично обусловленное недостаточной точностью данных [1, 2] (теплоемкость принята равной 31.38 Дж/(моль К) при всех температурах до 1800 К).

В настоящей работе теплоемкости C_p и C_V рассчитывались методом МД с применением потенциала EAM-1 на интервалах температур шириной 100 К, а модуль всестороннего сжатия — на интервалах объема шириной ~0.5%. В табл. 6 приведены результаты расчетов теплоемкостей и скорости звука $u_s (u_s = (K_T C_p / dC_V)^{1/2})$ в моделях расплавов. В интервале 923–2023 К теплоемкости C_p и C_V меняются довольно слабо, а модуль K_T убывает в ~2 раза. Расчетная и фактическая скорости звука показаны на рис. 4. Несмотря на различную форму зависимости от температуры, расхождения с опытом по скорости звука не превышают ~10%.

Плотность колебательных состояний (DOS) в модели сурьмы с потенциалом EAM-1 при 1000 К монотонно убывает с ростом частоты ω (рис. 5), в отличие от расчетов [10], где получен промежуточный максимум DOS около энергии фонона 12 мэВ (при $\omega t_0 \approx 2.05$). Однако, DOS обращается в нуль и у нас, и в [10] при энергии фонона ~30 мэВ.

Коэффициенты самодиффузии. МД-расчеты показали, что потенциал ЕАМ-1 приводит к значению коэффициента самодиффузии D при 923 К $(8.3 \times 10^{-5} \text{ см}^2/\text{с})$, превышающему экспериментальное [7–9] в ~1.5 раза (табл. 6). Завышение получается и при расчете через автокорреляционную функцию скоростей (9.80 \times 10⁻⁵ см²/с при 1000 К). Такое расхождение с опытом заслуживает внимания, так как обычно экспериментальные значения превосходят расчетные благодаря дополнительному вкладу от конвекции. С ростом температуры это расхождение уменьшается и при 1250 К полностью исчезает. Впрочем, экспериментальные значения D соседей сурьмы по Периодической системе также довольно высоки: D = = 7.72 × 10⁻⁵ см²/с при 973 К для олова [36], 11.5 × × 10⁻⁵ см²/с при 1073 К для висмута [37].

Используем довольно точное соотношение Стокса–Эйнштейна:

 $D = kT/4\pi\eta r_{\rm a}$,

где η — динамическая вязкость и r_a — ионный радиус атома. Для жидких металлов величина r_a

ТК	$Z = V_0/V$											
1, 1	1.00	1.30	1.35	1.40	1.45	1.50	1.55	1.60	1.65	1.70	1.75	1.80
298	0	0	0	0	0	0	0	0	0	0	0	0
1000	0.73	0.62	0.60	0.58	0.57	0.56	0.54	0.54	0.52	0.51	0.50	0.50
2000	3.14	2.64	2.57	2.51	2.45	2.40	2.34	2.30	2.25	2.20	2.16	2.13
3000	7.15	6.01	5.86	5.72	5.59	5.46	5.34	5.23	5.13	5.02	4.93	4.84
5000	19.97	16.78	16.37	15.97	15.61	15.26	14.92	14.62	14.32	14.04	13.76	13.52
7000	39.13	32.89	32.09	31.31	30.61	29.93	29.27	28.66	28.08	27.52	27.00	26.52
10000	79.53	66.95	65.34	63.76	62.34	60.96	59.62	58.40	57.22	56.10	55.02	54.06
15000	176.7	149.4	145.8	142.4	139.3	136.2	133.3	130.6	128.0	125.5	123.1	121.0

Таблица 4. Тепловой вклад электронов в энергию сурьмы (E_{el} , кДж/моль) при различных значениях T и $Z = V_0/V$ ($V_0 = 18.178 \text{ см}^3/\text{моль}$)

БЕЛАЩЕНКО

	• ·									
ТК	<i>d</i> , г/см ³		$\langle \mathbf{o} \rangle^{\mathbf{b}}$	R	E _{eT} ,		<i>−U</i> , кДж/мол	Ь	K_T , I Ha	
1,11	МД	Эксп [3]	\P7	- g	кДж/моль	$-U_{\rm MD}$	$-(U_{\rm MD}+E_{\rm eT})$	Эксп [1, 2]	МД	Эксп [4]
1	2	3	4	5	6	7	8	9	10	11
298	6.863	6.698	1.064	_	0	237.86	237.86	255.81 ^d	24.75	42
923	6.473	6.452	1.004	0.040	0.644	218.95	218.31	218.67	20.61	20.6
948	6.460	6.437	1.001	0.034	0.668	218.46	217.79	217.89	20.09	-
1000	6.424	6.406	0.995	—	0.753	217.16	216.41	216.26	17.30	—
1023	6.410	6.392	0.992	—	0.793	216.57	215.78	215.54	19.22	—
1073	6.383	6.361	0.991	_	0.882	215.42	214.54	213.97	17.56	—
1123	6.349	6.331	0.984	—	0.980	214.26	213.28	212.39	19.32	—
1173	6.321	6.300	0.978	_	1.077	213.08	212.00	210.83	17.55	—
1223	6.287	6.270	0.974	—	1.181	211.94	210.76	209.26	17.27	—
1273	6.259	6.240	0.972	—	1.291	210.85	209.56	207.69	15.72	-
1323	6.232	6.209 ^a	0.966	—	1.400	209.71	208.31	206.12	17.33	-
1373	6.201	6.180 ^a	0.958	—	1.524	208.66	207.14	204.55	14.54	—
1423	6.165	6.151 ^a	0.954	—	1.651	207.38	205.73	202.98	15.48	—
1773	5.960	5.948 ^a	0.919	—	2.668	199.62	196.95	192.00	14.73	-
2023	5.824	5.803 ^a	0.899	—	3.557	194.26	190.70	184.16 ^c		-

Таблица 5. Термодинамические свойства моделей Sb, полученные при $p \sim 0.001$ ГПа (метод МД)

Примечания: ^а – данные [35], ^b – стандартные отклонения растут сверху вниз от 0.051 до 0.132, ^с – экстра/интерполяция, ^d – значение для кристалла А7. Модель при 298 К была аморфной.

тк <i>С_р, Д</i>		/(моль К)	C_{V}	$(\partial p/\partial T)_V,$	$u_{\rm s},$	$D \times 10^5, {\rm cm}^2/{\rm c}$				
<i>1</i> , K	МД	Эксп [1, 2]	Дж/(моль К)	МПа/К	МД	Эксп [5]	МД	DFT [10]	Эксп [7]	Эксп [8, 9]
1	2	3	4	5	6	7	8	9	10	11
298	44.74	25.26	_	_	_	3420	_	_	_	_
923	26.93	31.38	20.36	1.688	2045	_	8.66	4.45 ^a	5.58	5.65
948	26.70	31.38	20.62	1.689	2019	1900 ^a	9.68	—	_	_
1000	26.26	31.38	19.71	1.718	2016	1912 ^a	9.55	5.16	6.46	6.91
1023	26.08	31.38	20.14	1.732	1977	1916 ^a	9.93	—	_	_
1073	25.73	31.38	20.37	1.742	1896	1923 ^a	10.4	—	7.51	8.37
1123	25.41	31.38	19.22	1.693	1888	1929	11.2	_	_	_
1173	25.14	31.38	19.34	1.759	1897	1929	12.5	6.66	7.88	8.91
1223	24.91	31.38	19.12	1.684	1887	1928	12.1	_	9.21	11.0
1273	24.73	31.38	19.17	1.594	1806	1924	13.6	10.5	10.9	13.2
1323	24.59	31.38	18.59	1.525	1845	1920	14.1	_	_	-
1373	24.50	31.38	19.11	1.647	1783	1913	14.4	_	_	_
1423	24.45	31.38	18.46	1.533	1818	1907	15.8	_	_	-
1773	25.31	31.38	17.50	1.389	1740	—	19.6	—	_	_
2023	27.25	—	16.62	1.159	1715	—	22.6	—	—	_

Таблица 6. Некоторые свойства моделей Sb, полученные методом МД при $p \sim 0.001$ ГПа

Примечания: а – экстраполяция

Рис. 4. Скорость звука в жидкой сурьме; 1 – МД расчет с потенциалом ЕАМ-1, 2 – данные [5].

близка обычно к радиусу однозарядного иона [29]. В случае сурьмы при 923 К значение $\eta = 1.37 \times 10^{-3}$ Па с, и при $D = 8.3 \times 10^{-5}$ см²/с мы получаем радиус $r_a = 0.89$ Å (в [6] было принято $r_a \approx 1.5$ Å). Ионные радиусы для Sb³⁺ и Sb⁵⁺ равны соответственно 0.76 и 0.60 Å, а для иона Sb⁺ еще немного больше, так что значение $D = 8.3 \times 10^{-5}$ см²/с оказывается вполне разумным. Отсюда следует, что данные [7, 8], возможно, требуют уточнения. Однако, завышение коэффициентов самодиффузии (вблизи от точки плавления) при использовании потенциала ЕАМ может быть обусловлено неучетом ковалентного вклада в межчастичное взаимодействие. Этот вклад занижает подвижность атомов, но его роль должна постепенно убывать с ростом температуры.

Структура моделей жидкой сурьмы. Согласно [6], побочный максимум ПКФ в районе 4.2 Å сохраняется при нагревании вдоль бинодали до ~1100 К, далее до 1323 К виден в виде перегиба и исчезает при более высоких температурах. Как видно из рис. 1, расчетная и дифракционная ПКФ при 923 К практически совпадают. При 948 К наблюдается такое же совпадение двух ПКФ. Невязки R_{o} здесь очень малы (~0.035). При дальнейшем повышении температуры невязки остаются очень небольшими (0.039 при 1223 К и 0.047 при 1423 К), и согласие между дифракционными и модельными ПКФ остается очень хорошим вплоть до 1423 К (рис. 6). Наши ПКФ согласуются также с квантово-механическими расчетами [10] при всех температурах (до 1373 К).

Известно несколько способов расчета координационного числа (КЧ) в жидких металлах, однако для сурьмы, при наличии побочного максимума ПКФ, можно только применить вариант КЧ-2, когда КЧ равен удвоенной величине интеграла функции $G(r) = 4\pi r^2 (N/V)g(r)$ на участке от r = 0 до координаты (r_{1g}) первого максимума G(r). Найденные таким образом КЧ приведены в табл. 7. Значения КЧ невелики (3.56-3.94), что характерно для рыхлых систем типа жидких Si и Ge. Они очень слабо убывают с ростом температуры. Для сравнения, КЧ у металлов – соседей сурьмы по Периодической системе, рассчитанные тем же способом, значительно больше, чем у сурьмы: 8.85 (Sn) и 7.13 (Bi). Авторы [6] рассчитывали КЧ при 900-1400 К интегрированием до точки перегиба между первым пиком и побочным максимумом ПКФ и получили уменьшение КЧ от 6.6 до 6.1 с ростом температуры. Завышение по отношению к нашим значениям обусловлено асимметрией 1-го пика ПКФ. Метод расчета КЧ индивидуально для каждого атома [10] дает при 900-1300 К значения от 5.31 до 5.05.

Рис. 5. Плотность колебательных состояний в модели сурьмы при 1000 К. Площадь под кривой нормирована на единицу. Потенциал EAM-1.

Рис. 6. Парные корреляционные функции моделей сурьмы; 1 - 1223, 2 - 1423 К. Штриховые линии – дифракционные данные [6], маркеры – ПКФ МД-модели с потенциалом ЕАМ-1. Данные при 1423 К сдвинуты по оси ординат. Невязки R_{g} равны 0.039 при 1223 К и 0.047 при 1423 К.

Топологические характеристики модели сурьмы. Примем обозначения: r_1 – координата 1-го пика ПКФ, r_{min} – минимальное межчастичное расстояние в модели, r_{mm} – максимальное возможное значение r_{min} , равное $1.067(V/N)^{1/3}$ [20, 38], $g_1 = g(r_1)$ – высота 1-го пика ПКФ, r_{1g} – координата 1-го пика функции $G(r) = 4\pi r^2 (N/V)g(r)$. Далее обозначим $\rho_1 = r_1 (N/V)^{1/3}$, $\rho_{\min} = r_{\min} (N/V)^{1/3}$, $\rho_{mm} = 1.067$ и $y = \rho_{\min}^{-1} - r_{mm}^{-1}$. В [20, 38] показано, что для плотных некристаллических структур выполняется *Первое топологическое правило*, согласно которому, 1.067 < ρ_1 < 1.12. Для рыхлых структур (например, жидких и аморфных C, Si, Ge, As, Sb, S, Se, Te) ρ_1 < 1.02. Высота первого пика ПКФ опреде-

<i>Т</i> , К	r_{\min} , Å	<i>r</i> ₁ , Å	$g(r_1)$	<i>r</i> ₂ , Å	$r_{ m lg,}$ Å	КЧ	ρ_1	S
1	2	3	4	5	6	7	8	9
298	2.525	3.058	3.698	6.34	3.07	4.30	0.9900	1.435
923	2.445	3.046	2.148	6.37	3.08	3.94	0.9672	0.9152
948	2.446	3.047	2.119	6.36	3.08	3.94	0.9668	0.9036
1000	2.444	3.047	2.080	6.36	3.07	3.93	0.9651	0.8906
1023	2.444	3.044	2.065	6.36	3.08	3.88	0.9635	0.8852
1073	2.444	3.043	2.028	6.37	3.08	3.87	0.9616	0.8715
1123	2.443	3.044	1.995	6.35	3.09	3.86	0.9602	0.8615
1173	2.443	3.042	1.958	6.37	3.09	3.84	0.9584	0.8503
1223	2.398	3.042	1.933	6.37	3.09	3.81	0.9565	0.8981
1273	2.398	3.039	1.900	6.35	3.10	3.78	0.9543	0.8870
1323	2.399	3.041	1.880	6.38	3.10	3.79	0.9534	0.8807
1373	2.399	3.046	1.851	6.43	3.11	3.84	0.9534	0.8719
1423	2.399	3.038	1.830	6.40	3.11	3.75	0.9505	0.8628
1773	2.396	3.037	1.702	6.38	3.12	3.62	0.9380	0.8359
2023	2.394	3.037	1.632	6.43	3.14	3.56	0.9308	0.8213

Таблица 7. Характеристики структуры моделей Sb при $p \sim 0.001$ ГПа

ляется *вторым правилом*, согласно которому, выполняется соотношение:

$$g_{1p} = 1 + 0.600y^{-0.77} + 0.0001y^{-3}$$

$$\pi p \mu \quad g_1 > 2.0, \qquad (1)$$

$$g_{1p} = 1 + 0.225y^{-1.73} \quad \pi p \mu \quad g_1 < 2.0.$$

Здесь g_{1p} — расчетное ("теоретическое") значение высоты пика для плотных некристаллических структур. Для моделей аморфных структур с различными парными потенциалами отношение $s = g_1/g_{1p} = 1.035 \pm 0.050$, а для моделей жидкостей $s = 1.001 \pm 0.050$. График уравнения (1) называется "главной последовательностью" [20, 38]. Точки для рыхлых структур типа непрерывной случайной сетки (S, Si, Te) располагаются выше главной последовательности.

В табл. 7 приведены характеристики структуры моделей жидкой сурьмы на бинодали. Величина ρ_1 плавно уменьшается при нагревании (от 0.967 до 0.931), отношение *s* также плавно убывает от 0.915 до 0.821. Только при переходе от 1175 до 1225 К наблюдается небольшой скачок *s* из-за смещения координаты r_{\min} (от 2.443 к 2.398), которое связано скорее с методом обработки данных вблизи точки r_{min.} Таким образом, нет оснований делать вывод о структурных превращениях в модели сурьмы на бинодали. Однако низкие значения s < 1 (до 0.821) означают, что второе топологическое правило не выполняется для аномальных систем с побочным максимумом ПКФ. Переход части ближайших соседей атомов в отдельную "подгруппу субпика" приводит к понижению высоты 1-го пика ПКФ и к уменьшению отношения s.

Итак, межчастичный потенциал EAM-1 хорошо описывает структуру жидкой сурьмы во всем исследованном интервале температур, и не требуется вводить дополнительных предположений об участии направленной связи (со своим специфическим потенциалом взаимодействия) и о повышении ригидности структуры с ростом температуры [6]. Аномальная форма ПКФ сурьмы (побочный максимум) объясняется отрицательной кривизной потенциала в интервале 3.35–3.65 Å (см. рис. 2), при которой межчастичные силы убывают при сближении частиц. Специфическое влияние отрицательной кривизны на свойства жидкостей обсуждается, например, в [39].

Эта особенность потенциала сурьмы не исчезает при нагревании. Она позволяет объяснить поведение аномального металла без привлечения механизмов, рассматриваемых для кристаллических систем с дальним порядком (Peierls distortion [6, 25]), и без участия ковалентной связи.

Построение моделей в условиях ударного сжатия. Характеристики ударной адиабаты сурьмы приведены в [40, 41]. Экспериментальная адиаба-

Рис. 7. Ударная адиабата сурьмы; *1* – экспериментальные данные [40, 41], *2* – метод МД с потенциалом ЕАМ-1.

та Гюгонио показана на рис. 7. По оси абсцисс отложена величина $Z = V_0/V$, где V – мольный объем сжатого металла, и исходный объем $V_0 =$ = 18.178 см³/моль. Адиабата хорошо описывается выражением:

$$p, \Gamma \Pi a = 244.14Z^2 - 519.47Z + 275.17$$
(2)

(критерий $R^2 = 0.98733$). По форме адиабаты были рассчитаны приведенные в табл. 3 оптимальные значения параметров потенциала погружения в EAM-1, отвечающие за сжатые состояния. Эти параметры определили по методу [29, 32], исходя из условий, что давление (с учетом электронного вклада $p_{\rm el}$) при данной степени сжатия должно равняться фактическому, а энергия модели (также с учетом электронного вклада $E_{\rm el}$) должна равняться фактической, равной:

$$U = U_{298} + 0.5(p + p_0)(V_0 - V) =$$

= $U_{298} + 0.5pV_0(1 - 1/Z).$ (3)

Было учтено, что исходное давление $p_0 \approx 0$. Кроме того, исходная энергия $U_{298} = -255.8$ кДж/моль (табл. 5).

Свойства моделей сурьмы, построенных при условиях ударного сжатия с использованием потенциала EAM-1, приведены в табл. 8 и на рис. 7, 8. В целом получено очень хорошее согласие с опытом по энергии (колонки 8 и 9) и давлению (колонки 2 и 11). Температура и коэффициент самодиффузии плавно возрастают вдоль ударной адиабаты (см. рис. 8).

Структура под давлением. В работе [14] были исследованы структурные свойства жидкой сурьмы под давлением до 9.4 ГПа при температурах на 50 К выше линии плавления методом дифракции синхротронного излучения. Они не вполне согласуются с данными [6] при обычном давлении, где координата 1-го пика вблизи $T_{\rm m}$ близка к 3.04 Å; в [14] эта координата близка к 2.98 Å. Соответ-

				-			2,0		0		
Z	р, ГПа (2)	U ₂ – U ₁ , кДж/моль (3)	<i>Т</i> , К (модель)	μ, эВ	Е _{еТ} , кДж/моль	<i>р</i> _{еТ} , ГПа	$U_{298} + U_2 U_1,$ кДж/моль	$E_{ m MD}$ + + $E_{ m eT},$ кДж/моль	<i>p</i> _{MD} , ГПа (модель)	$p_{\rm MD} + p_{\rm eT}, $ $\Gamma \Pi a$	$D \times 10^5$, cm^2/c
1	2	3	4	5	6	7	8	9	10	11	12
1.00	0	0	298	11.00	0.0	0.0	-255.8	-255.8	0.0	0.0	—
1.30	12.26	26.13	300	13.10	0.0	0.0	-229.68	-221.79	13.68	13.68	<10 ⁻⁶
1.35	18.83	44.37	350	13.43	0.022	0.001	-211.44	-212.19	18.47	18.47	0.166
1.40	26.43	68.63	875	13.77	0.435	0.022	-187.18	-187.04	26.14	26.16	2.06
1.45	35.24	99.41	1600	14.08	1.550	0.082	-156.40	-157.39	35.36	35.44	5.23
1.50	45.28	137.18	2700	14.40	4.416	0.243	-118.63	-119.04	45.21	45.45	8.17
1.55	56.54	182.34	4100	14.72	10.02	0.570	-73.47	-72.85	55.57	56.14	11.3
1.60	69.02	235.23	5700	15.03	19.00	1.115	-20.58	-19.61	66.81	67.92	12.8
1.65	82.72	296.16	7500	15.34	32.24	1.950	40.35	42.25	79.36	81.31	15.9
1.70	97.64	365.40	9400	15.64	49.59	3.093	109.59	110.76	92.80	95.89	16.7
1.75	113.78	443.19	11450	15.98	72.05	4.627	187.38	188.24	107.98	112.6	19.3
1.80	131.14	529.74	13 5 50	16.20	98.93	6.526	273.93	272.69	125.15	131.68	20.8

Таблица 8. Свойства моделей Sb при условиях ударного сжатия; $U_{298} = -255.81 \text{ кДж/моль}, V_0 = 18.178 \text{ см}^3/моль$

ственно координата 2-го пика равна 6.35 Å в [6] и 6.40 в [14]. Можно сравнить наши расчеты с данными [14]. Мы построили методом МД с потенциалом EAM-1 модели сурьмы при давлениях 3.0, 4.1, 6.5 и 9.4 ГПа и при температурах соответственно 925, 855, 930 и 1030 К (на 50 К выше линии плавления, согласно [42]). Электронные вклады в давление при этих температурах невелики (до 0.032 ГПа при 1030 К). При давлении

9.4 ГПа плотность модели составила 8.059 г/см³. Координаты пиков ПКФ этой модели равны $r_1 = 2.995$ Å и $r_2 = 6.01$ Å, что немного больше данных [14]: $r_1 = 2.94 \pm 0.01$ и $r_2 = 5.95 \pm 0.03$ Å. Однако имеется значительное расхождение по форме графиков дифракционных и модельных ПКФ по высоте 1-го пика (см. рис. 9). Высота 1-го пика ПКФ модели монотонно растет с давлением от 2.38 до 2.56, а высота пиков в [14] практически по-

Рис. 8. Температура (1) и коэффициент самодиффузии D (2) моделей сурьмы в состояниях на ударной адиабате.

Рис. 9. ПКФ сурьмы при 930 К и различных давлениях: *1* – 3.0, *2* – 4.1 ГПа. Штриховые линии – данные [14], маркеры – модели с потенциалом EAM-1.

стоянна (~2.0). Невязки по ПКФ здесь довольно велики: от $R_g = 0.118$ при давлении 3.0 ГПа до 0.166 при давлении 9.4 ГПа.

Координационные числа модели рассчитывали по методу КЧ-2 (см. выше). При указанных выше давлениях КЧ = 4.76, 5.14, 5.37 и 5.72. Авторы [14] получили КЧ = 4.7 при 0.7 ГПа и 5–7 при более высоких давлениях. Эти данные в общем согласуются, несмотря на расхождения в форме ПКФ. Однако в целом результаты моделирования значительно отличаются от данных дифракционного исследования [14]. Для выяснения причин этих расхождений была дополнительно построена серия моделей сурьмы на изотерме 930 К при давлениях от 0 до 8 ГПа (потенциал EAM-1). Некоторые свойства этих моделей приведены в табл. 9. Значения КЧ (метод КЧ-2) постепенно увеличиваются от 3.92 до 5.72 с ростом плотности, а приведенная координата первого пика ρ_1 возрастает при этом от 0.967 до 1.023 (несмотря на убывание r_1 , в отличие от данных [14], где r_1 увеличивается от 2.98 до 3.01 Å с ростом давления до 5 ГПа). Судя по этим величинам, структура жидкой сурьмы рыхлая при всех давлениях до 9.4 ГПа, но степень рыхлости значительно меньше, чем на бинодали. Кроме того, высота 1-го пика ПКФ модели увеличивается с ростом давления (в [14] от давления не зависит), а приведенная высота 1-го пика *s* всюду близка к единице. Это указывает на хорошую выполнимость второго топологического правила у моделей и на отсутствие признаков ковалентной связи, что не согласуется с концепцией [14]. Мы не видим также никаких особенностей вблизи 3 и 5 ГПа, которые указывали бы, согласно [14], на значительную роль ковалентной связи в этих условиях.

<i>р</i> , ГПа	<i>d</i> , г/см ³	r_{\min} , Å	$r_1, \text{\AA}$	$g(r_1)$	<i>r</i> ₂ , Å	$r_{ m lg,}$ Å	КЧ	ρ_1	S
0	6.469	2.445	3.046	2.16	6.35	3.08	3.92	0.9669	0.9200
1.0	6.751	2.446	3.045	2.24	6.31	3.08	4.34	0.9807	0.9334
2.0	6.980	2.445	3.038	2.33	6.28	3.07	4.58	0.9893	0.9495
3.0	7.175	2.445	3.030	2.37	6.26	3.07	4.77	0.9958	0.9509
4.0	7.353	2.445	3.022	2.44	6.20	3.07	4.93	1.0013	0.9637
5.0	7.521	2.445	3.012	2.49	6.12	3.05	5.02	1.0052	0.9704
6.0	7.671	2.445	3.013	2.54	6.12	3.05	5.31	1.0122	0.9762
7.0	7.812	2.446	3.011	2.58	6.06	3.04	5.51	1.0177	0.9780
8.0	7.936	2.446	3.007	2.61	6.05	3.04	5.66	1.0220	0.9784
9.37 ^a	8.059	2.444	2.995	2.56	6.02	3.02	5.72	1.0234	0.9405

Таблица 9. Характеристики структуры моделей сурьмы на изотерме 930 К

Примечание: а при 1030 К

Расчеты по дифракционным данным [11, 12]. На дифракционной ПКФ сурьмы при 933 К, полученной в [11, 12], также наблюдается побочный максимум вблизи 4.8 А. Алгоритм Шоммерса приводит к модельной ПКФ с невязкой R_{g} = = 0.049. Назовем полученный потенциал ЕАМ-2. Кривизна этого потенциала отрицательна в интервалах 2.80-2.85, 3.70-3.90, 4.45-4.55 и 5.05-6.25 Å. При релаксации модели сурьмы этот вариант дает коэффициент самодиффузии при 933 К, равный 4.78×10^{-5} см²/с, что близко к опытным данным (4.45-5.65) × 10⁻⁵ см²/с при 933 К [7, 8]. И здесь причиной аномалии является отрицательная кривизна потенциала. Однако при переходе от ЕАМ-1 к ЕАМ-2 "выигрыш" в коэффициентах самодиффузии сопровождается проигрышем в отношении координаты 1-го пика, значительно отличающейся от всех остальных структурных исследований (см. табл. 1). Поэтому вариант ЕАМ-2 мы считаем пока менее вероятным.

Таким образом, на основе модели погруженного атома (ЕАМ) можно удовлетворительно описать большинство свойств жидкой сурьмы с рыхлой структурой как вдоль бинодали, так и в условиях ударного сжатия (плотность, энергия, модуль всестороннего сжатия, скорость звука, ПКФ, координационные числа, ударная адиабата). Предложенный выше потенциал ЕАМ-1 позволяет рассчитать свойства жидкой сурьмы в широком интервале температур и давлений (эти данные не представлены в статье только из-за недостатка места). Оказалось возможным использовать центрально-симметричный потенциал ЕАМ-1 без включения направленной связи и соображений, заимствованных из зонной теории (Peierls distortion). Причиной аномалий структуры сурьмы является наличие интервалов расстояний. на которых межчастичный потенциал имеет отрицательную кривизну. Однако потенциал ЕАМ-1 не приводит к согласию с дифракционными данными [14] в области давлений до 10 ГПа и с измерениями коэффициента самодиффузии в [7]. Причины этих расхождений пока неясны, и необходимы новые экспериментальные данные.

Автор благодарит проф. Г. Макова (Израиль) за предоставление таблиц ПКФ жидкой сурьмы при 923 и 948 К (ПКФ при остальных температурах были получены оцифровкой графиков из [6]).

СПИСОК ЛИТЕРАТУРЫ

- Герасимов Я.И., Крестовников А.Н., Шахов А.С. Химическая термодинамика в цветной металлургии. Т. 4. М.: Металлургия, 1966 г. 427 с.
- 2. *Robie R.A., Hemingway B.S., Fisher J.R.* Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (10⁵ Pascals) Pressure and at Higher Temperatures // U.S. Geological Survey Bulle-

tin 1452. US Gov. Printing Office. Washington, 1978, 1979, 1984.

- 3. *Assael M.J., Kalyva A.E., Antoniadis K.D. et al.* // High Temperatures-High Pressures. 2012. V. 41. P. 161.
- 4. Филиппов С.И., Казаков Н.Б., Пронин Л.А. // Изв. вузов. Черная металлургия. 1966. № 3. С. 8.
- Greenberg Y., Yahel E., Ganor M. et al. // J. Non-Crystalline Solids. 2008. V. 354. P. 4094.
- Greenberg Y., Yahel E., Caspi E.N. et al. // J. Chem. Phys. 2010. V. 133(9). P. 094506.
- Lamparter P., Steeb S. // Z. Naturforsch. A. 1977. Bd 32. S. 1021.
- Petrescu N., Ganovici L. // Rev. Roum. Chim. 1974.
 V. 19. No. 2. P. 187.
- 9. Лепинских Б.М., Белоусов А.А., Бахвалов С.Г. и др. Транспортные свойства металлических и шлаковых расплавов: Справ. изд. Под ред. Н.А. Ватолина. М.: Металлургия, 1995. 649 с.
- Jones R.O., Ahlstedt O., Akola J., Ropo M. // J. Chem. Phys. 2017. V. 146. P.194502.
- 11. *Waseda Y., Suzuki K. //* Phys. Stat. Solidi. 1971. V. 47. No 2. P. 581.
- 12. Данные на сайте: http://res.tagen.tohoku.ac.jp/~waseda/scm/AXS/index.html
- Halm Th., Neumann H., Hoyer W. // Z. Naturforsch. 1994. Bd 49a. S. 530.
- 14. *Chiba A., Tomomasa M., Higaki T. et al.* // J. Physics: Conf. Series. 2008. V. 121. 022019.
- 15. Lamparter P., Steeb S., Knoll W. // Z. Naturforsch. 1976. Bd 31a. S. 90.
- Lamparter P., Martin W., Steeb S., Freyland W. // Z. Naturforsch. 1983. Bd 38a. S. 329.
- 17. *Mayo M., Yahel E., Greenberg Y., Makov G. //* J. Phys. Condens. Matter. 2013. V. 25. No 50. 550102.
- Lamparter P., Martin W., Steeb S., Freyland W. // J. Non-Crystalline Solids. 1984. V. 61– 62. Part 1. P. 279.
- Gaspard J.P., Bellissent R., Menelle A. et al. // Nuovo Cim. 1990. D12. P. 650.
- Белащенко Д.К. Компьютерное моделирование жидких и аморфных веществ. Научное издание. М.: "МИСИС". 2005. 408 с.
- Greenberg Y., Yahel E., Caspi E.N. et al. // EPL. 2009. V. 86. P. 36004.
- 22. Belashchenko D.K. // Crystallography Reports. 1998. V.43. No 3. P. 362.
- 23. Bichara C., Pellegatti A., Gaspard J.-P. // Phys. Rev. B. 1993. V. 47. P. 5002.
- 24. Hafner J., Jank W. // Phys. Rev. B. 1992. V. 45. P. 2739.
- 25. Seifert K., Hafner J., Kresse G. // J. Non-Crystalline Solids. 1996. V. 205–207 P. 871.
- Hao Qing-Hai, Li Y.D., Kong Xiang-Shan, Liu C.S. // Int. J. Modern Physics B. 2013. V. 27. No. 05. P.1350012.
- 27. Baskes M. I. // Phys. Rev. B. 1992. V. 46. P. 2727.
- Vella J.R., Stillinger F.H., Panagiotopoulos A.Z., Debenedetti P.G. // J. Phys. Chem. B. 2015. V. 119 (29). P. 8960.
- Belashchenko D.K. // Physics Uspekhi. 2013. V. 56. No. 12. P. 1176.

- 30. Schommers W. // Phys. Lett. 1973. V. 43A. P. 157.
- Daw M.S., Baskes M.I. // Phys. Rev. B. 1984. V. 29. No. 12. P. 6443.
- 32. *Belashchenko D.K.* Liquid Metals: From Atomistic Potentials to The Properties, Shock Compression, Earth's Core and Nanoclusters. Nova Science Publ., 2018.
- Belashchenko D.K. // High Temperature. 2017. V. 55. No 3. P. 370.
- 34. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. М.: ГИТТЛ, 1951.
- 35. *Арсентьев П.П., Коледов Л.А.* Металлические расплавы и их свойства. М.: Металлургия, 1976.

- Frohberg G., Kraatz K.-H., Wever H. // In Proc. of the 5th Eur. Symp. on Material Sciences under Microgravity. Schloss Elmau. 5– 7 Nov. 79S4 (ESA SP– 222). P. 201.
- 37. Dőge G. // Z. Naturforsch. 1965. Bd 20a. S. 634.
- 38. Белащенко Д.К. // Металлы. 1989. № 3. С. 136.
- 39. *Gaiduk Eu.A., Fomin Yu.D., Ryzhov V.N. et al.* // arX-iv.org >cond.mat> arXiv:1507.03775.
- 40. *Marsh S.P.* (Ed.). LASL Shock Hugoniot Data. Univ. California Press, Berkeley, 1980.
- 41. Данные на сайте: http://www.ihed.ras.ru/rusbank/
- 42. Tonkov E.Yu., Ponyatovsky E.G. Phase Transformations of Elements Under High Pressure. CRC PRESS, 2005.