____ КОЛЛОИДНАЯ ХИМИЯ ____ И ЭЛЕКТРОХИМИЯ __

УДК 541.13,532.739

ЧИСЛЕННЫЙ РАСЧЕТ КОНЦЕНТРАЦИОННОЙ И ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТЕЙ КОЭФФИЦИЕНТА УДЕЛЬНОЙ ЭЛЕКТРОПРОВОДНОСТИ ВОДНЫХ РАСТВОРОВ ЭЛЕКТРОЛИТОВ

© 2019 г. С. Одинаев^{а,*}, Д. М. Акдодов^b, Х. И. Идибегзода^a

^а Академия наук Республики Таджикистан, Физико-технический институт им. С.У. Умарова, Душанбе, Таджикистан

^b Таджикский национальный университет, Душанбе, Таджикистан * e-mail: odsb42@mail.ru Поступила в редакцию 04.07.2018 г. После доработки 16.11.2018 г. Принята к публикации 19.11.2018 г.

Методом кинетических уравнений получены аналитические выражения для динамического коэффициента удельной электропроводности $\sigma(\omega)$ и модуля электроупругости $\in (\omega)$, когда релаксирующие потоки затухают по экспоненциальному закону. Полученные коэффициенты в подынтегральных выражениях, наряду с молекулярными параметрами, содержат потенциальную энергию взаимодействия $\Phi_{ab}(|\vec{r}|)$ и радиальную функцию распределения $g_{ab}(|\vec{r}|)$. Для определенной модели раствора и явных выражений для $\Phi_{ab}(|\vec{r}|)$, $g_{ab}(|\vec{r}|)$, а также соответствующих значений концентраций *С* и температур *T* проведен численный расчет изочастотного коэффициента удельной электропроводности $\sigma(\omega, c, T)$ водных растворов электролитов LiCl, NaCl, KCl, CsCl. Результаты численных расчетов находятся в удовлетворительном согласии с экспериментом.

Ключевые слова: удельный коэффициент электропроводности, модуль электроупругости, коэффициент трения, время релаксации, потенциал межмолекулярного взаимодействия, радиальная функция распределения

DOI: 10.1134/S0044453719060232

Широкое и оптимальное использование жидкостей и их растворов в промышленности, медицине и в качестве продуктов химической технологии требуют заранее знание следующих их физико-химических свойств, таких как транспортных, упругих, акустических, диэлектрических и электропроводящих свойств. Последние явления исследуются как теоретическими, так и экспериментальными физическими методами. Теоретические изучения этих свойств, которые являются следствием наличия необратимых процессов в жидкостях и их растворах являются сложными и по настоящее времени их исследования остаются открытыми.

Эта сложность при изучении электропроводящих свойств растворов электролитов, на основе строгой микроскопической теории, вызвана трудностями учета вкладов энергии взаимодействия между структурными единицами ионномолекулярных систем в коэффициентах переноса и других физических параметров. Количественная теория электропроводящих свойств сильно разбавленных растворов электролитов дается теорией Дебая–Хюккеля [1–3]. При равновесии в растворах имеет место как ионная, так и дипольная атмосфера [1]. Согласно [3], приложенное внешнее электрическое поле или какое-либо другое атомное поле ионов, прежде всего, разрушает эти атмосферы, а значит и структуру растворителя, но одновременно связывает молекулы растворителя с упорядоченными ионами (сольватация или гидратация). Кроме того, в водных растворах электролитов на гидратацию, кроме фактора взаимодействия между постоянными дипольными моментами полярных молекул воды и ионами, влияет также поляризация (наведенный дипольный момент) молекул и дисперсионный эффект.

В [4–10] приводятся обзоры теоретических работ по исследованию коэффициентов удельной, молярной и эквивалентной электропроводностей растворов электролитов, а также их частотной дисперсии в условиях действия стационарных и переменных внешних электрических полей. В [11–13] развиты теории электропроводности электролитов на основе метода неравновесных многочастичных функций распределения. В [11] обобщается теория электропроводности растворов электролитов Онзагера, основанная на ис-

пользовании строгих зацепляющихся интегролифференциальных уравнений для неравновесных частичных функций распределения при произвольном потенциале взаимодействия между ионами. Теория применяется для интерпретации электропроводности водных растворов шелочных галогенидов до концентрации ~4 моль/л. Объединение иерархии уравнений Эбелинга-Фалькенгагена с феноменологической теорией линейных необратимых процессов для бинарных растворов электролитов приводится в [12], где получены выражения для коэффициента электропроводности через равновесные бинарные функции распределения. В [13] на основе кинетических уравнений для *s*-частичных функций распределения разработана теория электропроводности растворов электролитов для слабых и сильных электрических полей и концентраций до ~1 моль/л. Найдено стационарное решение уравнения для бинарной функции распределения в конфигурационном пространстве и использовано для определения коэффициента электропроводности.

Экспериментальному изучению коэффициентов электропроводности растворов электролитов также посвящено огромное количество работ. В последние годы в [14-17] исследуются коэффициенты удельной электропроводности как простых водных растворов хлоридов щелочных металлов, так и сложных концентрированных водных растворов. Температурная зависимость максимума удельной электропроводности в растворах сильных электролитов от концентрации изучена в [18–21] и установлено, что увеличение температуры приводит к смешению максимума в сторону более высокой концентрации. Для описания характера температурной зависимости электропроводности растворов электролитов, в [22-24] предложены различные уравнения, которые связывают коэффициент электропроводности со свойствами растворителя. Одним из первых вариантов является правило Вальдена, связывающее молярную (эквивалентную) электропроводность при бесконечном разведении λ_0 и вязкости растворителя η, произведение которых должно быть постоянным. Установлено, что величина (λ_0 · η) изменяется не только при переходе от одного растворителя к другому, но также и при повышении температуры. Для слабых водных растворов электролитов при постоянной температуре исследованы зависимость коэффициента удельной электропроводности k от концентрации с и приведенного коэффициента электропроводности $k/k_{\infty} = k^*$ от приведенной концентрации $c^* = c/c_m$, соответственно, которая для всех водных растворов остается постоянной, то есть является аналогом выполнения закона соответственных состояний (ЗСС).

электролитов с учетом вкладов взаимодействия
 структурных единиц раствора и внутренних релаксационных процессов в коэффициент удельной электропроводности и модуль электроупругости, а также их сравнение с существующими
 а- экспериментальными данными. С помощью результатов, полученных нами ранее методом кинетических уравнений, попытаемся установить аналитическое выражение для коэффициента удельной электропроводности, которое было бы удобно для проведения численных расчетов и сравнения результатов с экспериментом.

Представляет большой интерес теоретическое

изучение электропроводящих свойств растворов

ОПРЕДЕЛЕНИЕ ИСХОДНЫХ ВЫРАЖЕНИЙ КОЭФФИЦИЕНТА УДЕЛЬНОЙ ЭЛЕКТРОПРОВОДНОСТИ И МОДУЛЯ ЭЛЕКТРОУПРУГОСТИ РАСТВОРОВ ЭЛЕКТРОЛИТОВ

Ранее, в [25, 26] на основе кинетического уравнения для одночастичной функции распределения $f_a(\vec{q}_a, \vec{p}_a, t)$, с учетом определения импульсных моментов последнего, т.е. системы (4) работы [26], для Фурье-образа вектора плотности тока проводимости $j^{\alpha}(\vec{q}_1, t)$ было получено аналитическое выражение (3) работы [25], которое имеет следующий вид:

$$j^{\alpha}(\omega) = \sum_{a} j^{\alpha}_{a}(\omega) = \sum_{a} \tilde{\sigma}^{0}_{a}(\omega) \times \\ \times \left[E^{\alpha}(\omega) + \frac{1}{n^{0}_{a}e_{a}} \sum_{b} d^{3}_{ab} \int \frac{\partial \Phi_{ab}(r)}{\partial r^{\alpha}} n_{ab}(\omega, \vec{q}_{1}, \vec{r}) d\vec{r} \right],$$
(1)

где $\tilde{\sigma}_{a}^{0}(\omega) = \sigma_{a}^{0}/(1-i\omega\tau_{a}),$ $\sigma_{a}^{0} = n_{a}^{0}e_{a}^{2}\tau_{a}/m_{a},$ $\tau_{a} = m_{a}/\beta_{a}$ – время релаксации потока $j_{a}^{\alpha}(\omega)$ в импульсном пространстве, $n_{a}^{0} = N_{a}/V, \beta_{a}$ – равновесная числовая плотность и коэффициент трения ионов сорта $a, \omega = 2\pi v$ – циклическая частота, v – частота процесса, $n_{ab}(\omega, \vec{q}_{1}, \vec{r})$ – фурьеобраз бинарной плотности частиц $n_{ab}(\vec{q}_{1}, \vec{q}_{2}, t)$ в конфигурационном пространстве, определяемая посредством импульсных моментов двухчастичной функции распределения $f_{ab}(\vec{q}_{1}, \vec{q}_{2}, \vec{p}_{a}, \vec{p}_{b}, t)$ в следующем виде:

$$n_{ab}(\vec{q}_1, \vec{q}_2, t) = \int f_{ab}(\vec{q}_1, \vec{q}_2, \vec{p}_a, \vec{p}_b, t) d\vec{p}_a d\vec{p}_b.$$
(2)

Для определения вектора плотности тока проводимости $j^{\alpha}(\omega)$ согласно (1) следует иметь уравнение для $n_{ab}(\vec{q}_1, \vec{q}_2, t)$, которое на основе кинетического уравнения для двухчастичной функции распределения $f_{ab}(\vec{q}_1, \vec{q}_2, \vec{p}_a, \vec{p}_b, t)$ в суперпозиционном приближении Кирквуда, в [25] получено уравнение имеющее следующий вид:

$$\frac{\partial n_{ab}}{\partial t} + \frac{kT}{d_{ab}^2} \left(\frac{1}{\beta_a} + \frac{1}{\beta_b} \right) \hat{L} n_{ab} = F_{ab}(\vec{q}_1, \vec{r}, t), \qquad (3)$$

где

$$\hat{L} = -\frac{\partial}{\partial r^{\alpha}} \left[\frac{\partial}{\partial r^{\alpha}} - \frac{\partial \ln g_{ab}^{0}(r)}{\partial r^{\alpha}} \right]$$

- оператор Смолуховского,

Z

$$\vec{r} = \frac{\vec{q}_2 - \vec{q}_1}{d_{ab}}, \quad d_{ab} = \frac{d_{aa} + d_{bb}}{2},$$
$$\vec{c}_{ab}(\vec{q}_1, \vec{r}, t) = -\Psi_{ab}(r) \operatorname{div} \vec{\vartheta} - \Psi_{ab}^{\alpha\beta}(r) \times$$

$$\times \left\{ \frac{\partial \vartheta^{\alpha}}{\partial q_{1}^{\beta}} \right\} - \frac{n_{a}n_{b}(\beta_{a}e_{b} - \beta_{b}e_{a})}{\beta_{a}\beta_{b}d_{ab}} \left(\frac{\partial g_{ab}^{0}(r)}{\partial r^{\alpha}} \right) E^{\alpha}(\vec{q}_{1}, t).$$

$$\tag{4}$$

Явный вид функций $\psi_{ab}(r)$, $\psi_{ab}^{\alpha\beta}(r)$, $\left\{ \partial \vartheta^{\alpha} / \partial q_{1}^{\beta} \right\}$ и других параметров, входящих в уравнения (3) и (4), приведены в [27].

Для случая независимых потоков, ограничившись учетом вклада третьего члена в выражении (4), решая уравнение (3) и совершая в нем Фурьепреобразование по времени, подставляя $n_{ab}(\omega)$ в (1) и сравнив полученные результаты с фурье-образом дифференциального закона Ома по времени, для комплексного коэффициента удельной электропроводности $\tilde{\sigma}(\omega)$ получим аналитическое выражение. После разделения в нем действительной и мнимой частей для модуля электроупругости $\in (\omega)$ и коэффициента удельной электропроводности $\sigma(\omega)$ получены выражения (10) и (11) работы [25], которые имеют следующий вид:

$$\epsilon(\omega) = \sum_{a} \frac{(\omega\tau_{a})^{2} \epsilon_{a}^{0}}{1 + (\omega\tau_{a})^{2}} \bigg[1 + \sum_{b} \frac{\pi n_{b} d_{ab}^{3}}{12} q_{ab} \times \\ \times \int d\vec{r} \frac{\partial \overset{*}{\Phi}_{ab}(r)}{\partial r} \int \bigg(G_{ab}^{1}(\omega) - \frac{G_{ab}^{2}(\omega)}{\omega\tau_{a}} \bigg) \frac{\partial g_{ab}^{0}}{\partial r_{1}} d\vec{r}_{1} \bigg],$$
(5)
$$\sigma(\omega) = \sum_{a} \frac{\sigma_{a}^{0}}{1 + (\omega\tau_{a})^{2}} \bigg[1 + \sum_{b} \frac{\pi n_{b} d_{ab}^{3}}{12} q_{ab} \times \\ \times \int d\vec{r} \frac{\partial \overset{*}{\Phi}_{ab}}{\partial r} \int (G_{ab}^{1}(\omega) + \omega\tau G_{ab}^{2}(\omega)) \frac{\partial g_{ab}^{0}}{\partial r_{b}} d\vec{r}_{1} \bigg],$$
(6)

$$\times \int dr \frac{\partial r}{\partial r} \int \left(G_{ab} \left(\omega \right) + \omega \tau_a G_{ab} \left(\omega \right) \right) \frac{\partial u}{\partial r_1} dr_1 \right],$$

$$\text{me} \qquad \sigma_a^0 = \left(n_a e_a^2 \tau_a \right) / m_a, \qquad \varepsilon_a^0 = \sigma_a^0 / \tau_a = n_a^0 e^2 / m_a$$

 $\tilde{G}_{ab}(r,r_{1},\omega) = G_{1}^{ab}(r,r_{1},\omega) - iG_{2}^{ab}(r,r_{1},\omega),$

$$G_{1,2}^{ab}(\mathbf{r},\mathbf{r}_{1},\omega) = \frac{(\mathbf{r}\mathbf{r}_{1})^{-1}}{8\pi^{2}} \left(\frac{\omega\tau_{ab}}{2}\right)^{-1/2} \times \\ \times \left[e^{-\varphi_{1}}\left(\cos\varphi_{1}\mp\sin\varphi_{1}\right) - e^{-\varphi_{2}}\left(\cos\varphi_{2}\mp\sin\varphi_{2}\right)\right],$$
(7)

$$q_{ab} = \frac{4}{\pi} \frac{e_a \beta_b - e_b \beta_a}{e_a (\beta_a + \beta_b)}, \quad \varphi_{1,2} = \varphi_{1,2}^{ab} (r, r_1, \omega) = \left(\frac{\omega \tau_{ab}}{2}\right)^{1/2} (r \mp r_1),$$
$$\Phi_{ab}^* (r) = \frac{\Phi_{ab} (r)}{kT_0}, \quad \tau_{ab} = \frac{d_{ab}^2}{kT} \frac{\beta_a \beta_b}{\beta_a + \beta_b}, \quad G_1^{ab} (r, r_1, \omega) = 0$$

 $G_2^{ab}(r, r_1, \omega)$ — фурье-образ фундаментального решения (т.е. функция Грина) уравнения Смолуховского для бинарной плотности $n_{ab}(\omega)$ в конфигурационном пространстве.

Уравнения (5) и (6) с учетом (7) описывают частотную дисперсию этих коэффициентов с учетом вкладов как трансляционных, так и структурных релаксационных процессов при наличии степенного закона затухания $t^{-d/2}$ (d – размерность пространства). Однако эти коэффициенты в подынтегральных выражениях для потенциальных частей содержат сумму и разность $G_1^{ab}(\omega) \pm G_2^{ab}(\omega) - фундаментальных решений уравнения Смолуховского (функций Грина), которые являются очень сложными и в таком виде трудно привести их к теоретическим расчетам, а также их сравнение с экспериментальными результатами. Поэтому переходим к рассмотрению электропроводящих свойств растворов электролитов, когда релаксационные процессы протекают по экспоненциальному закону.$

В [28] для получения замкнутого уравнения для одночастичной функции распределения $f_a(\vec{q}_1, \vec{p}_a, t)$ было решено уравнение для $f_{ab}(\vec{q}_1, \vec{q}_2, \vec{p}_a, \vec{p}_b, t)$ методом Грэда и получена формула, которая определяется посредством импульсных моментов нулевого и первого порядка последнего, т.е. бинарной плотно-

сти $n_{ab}(\vec{q}_1, \vec{q}_2, t)$ и бинарного потока $J^{\alpha}_{ab}(\vec{q}_1, \vec{q}_2, t)$ частиц в конфигурационном пространстве. Ограничившись первым членом этого решения в определении (2), затем линеаризуя ее, для $n_{ab}(\vec{q}_1, \vec{r}, t)$ получим

$$n_{ab}(\vec{q}_{1},\vec{r},t) = n_{ab}^{o}(r) + n_{a}'(\vec{q}_{1},t)n_{b}^{o}g_{ab}^{o}(r) + + n_{a}^{o}n_{b}'(\vec{q}_{2},t)g_{ab}^{o}(r) + n_{a}^{o}n_{b}^{o}g_{ab}'(\vec{q}_{1},\vec{r},t),$$
(8)

где $n_{ab}^o = n_a^o n_b^o g_{ab}^o(r), n_a^o, n_b^o, g_{ab}^o(r)$ и $n_a'(\vec{q}_1, t), n_b'(\vec{q}_2, t),$

 $g'_{ab}(\vec{q}_1, \vec{r}, t)$ — равновесные и неравновесные плотности и радиальная функция распределения частиц сорта *a* и *b*.

Подставляя (8) в (3), заменяя оператор Смолуховского на релаксационный член вида

$$-\omega_{ab}\hat{L}n_{ab}(\vec{q}_{1},\vec{r},t) = -\frac{n_{ab}(\vec{q}_{1},\vec{r},t) - n_{ab}^{0}(\vec{r})}{\tau_{ab}},$$

линеаризуя и исключая $\partial n'_a/\partial t$, $\partial n'_b/\partial t$ из законов сохранения зарядов, для возмущенной части радиальной функции распределения $g'_{ab}(\vec{q}_1, \vec{r}, t)$ получим следующее уравнение [29]:

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 6 2019

$$\frac{\partial g_{ab}'(\vec{q}_1, \vec{r}, t)}{\partial t} + \frac{1}{\tau_{ab}} g_{ab}'(\vec{q}_1, \vec{r}, t) = F_{ab}'(\vec{q}_1, \vec{r}, t), \qquad (9)$$

где

$$F_{ab}'(\vec{q}_1,\vec{r},t) = -\frac{1}{d_{ab}} \left(\frac{e_b}{\beta_b} - \frac{e_a}{\beta_a}\right) \left(\frac{\partial g_{ab}(r)}{\partial r^{\alpha}}\right) E^{\alpha}(\vec{q},t).$$

Совершая Фурье-преобразование по времени в (8) и (9), в случае независимых потоков, подставляя полученные результаты в (1), для компоненты вектора плотности тока проводимости $j^{\alpha}(\vec{q}_{1}, \omega)$ имеем:

$$j^{\alpha}(\vec{q}_{1},\omega) = \sum_{a} \frac{\sigma_{a}^{0}}{1 - i\omega\tau_{a}} \times \left\{ 1 + \sum_{b} \frac{\pi^{2}}{3} \frac{d_{ab}^{3} n_{b}^{0} q_{ab}}{1 - i\omega\tau_{ab}} \int \frac{\partial \Phi_{ab}^{*}(r)}{\partial r} \frac{\partial g_{ab}^{0}(r)}{\partial r} r^{2} dr \right\} \times (10)$$
$$\times E^{\alpha}(\vec{q}_{1},\omega),$$

где

$$q_{ab} = rac{4}{\pi} rac{e_a eta_b - e_b eta_a}{e_a (eta_a + eta)}, \quad au_{ab} = rac{d^2_{ab}}{k T_0} iggl(rac{eta_a eta_b}{eta_a + eta_b}iggr),$$

 $\Phi_{ab}^{*}(r) = \Phi_{ab}(r)/kT_0$ – безразмерная энергия межчастичного взаимодействия.

Сравнивая выражение (10) с Фурье-образом дифференциального закона Ома $j^{\alpha}(\vec{q}_{1}, \omega) = \tilde{\sigma}(\omega)E^{\alpha}(\vec{q}_{1}, \omega)$, для комплексного коэффициента удельной электропроводности $\tilde{\sigma}(\omega)$ получаем следующее аналитическое выражение:

$$\tilde{\sigma}(\omega) = \sum_{a} \frac{\sigma_a^0}{1 - i\omega\tau_a} \left\{ 1 + \sum_{b} \frac{G_0^{ab}(r)}{1 - i\omega\tau_{ab}} \right\},\tag{11}$$

где $n_b^* = \frac{\pi}{6} d_{ab}^3 n_b^0$ – приведенная плотность частиц сорта *b*,

$$G_0^{ab}(r) = 2\pi n_b^* q_{ab} \int \frac{\partial \Phi_{ab}^*(r)}{\partial r} \frac{\partial g_{ab}^0(r)}{\partial r} r^2 dr.$$
(12)

По аналогии с определениями комплексных модулей объемной $\tilde{K}(\omega)$, сдвиговой $\tilde{\mu}(\omega)$ и термической $\tilde{Z}(\omega)$ упругостей [28, 30], введем комплексный электроупругий модуль в виде

$$\tilde{\epsilon}(\omega) = -i\omega\tilde{\sigma}(\omega) = \epsilon(\omega) - i\omega\sigma(\omega), \quad (13)$$

где $\in (\omega)$ — динамический модуль электроупругости, $\sigma(\omega)$ — динамический коэффициент удельной электропроводности.

Подставляя (11) в (13), разделяя реальную и мнимую части, для модуля электроупругости $\in (\omega)$ и коэффициента удельной электропроводности $\sigma(\omega)$ получим следующие выражения:

$$\begin{aligned} & \in(\omega) = \sum_{a} \frac{(\omega\tau_{a})^{2} \in_{a}^{0}}{1 + (\omega\tau_{a})^{2}} \times \\ & \times \left[1 + \sum_{b} \frac{(1 + \tau_{ab}/\tau_{a})G_{0}^{ab}(r)}{1 + (\omega\tau_{a})^{2}(\tau_{ab}/\tau_{a})^{2}} \right], \end{aligned} \tag{14} \\ & \sigma(\omega) = \sum_{a} \frac{\sigma_{a}^{0}}{1 + (\omega\tau_{a})^{2}} \times \\ & \times \left[1 + \sum_{b} \frac{1 - (\omega\tau_{a})^{2}(\tau_{ab}/\tau_{a})}{1 + (\omega\tau_{a})^{2}(\tau_{ab}/\tau_{a})^{2}} G_{0}^{ab}(r) \right], \end{aligned} \tag{15}$$

где $G_0^{ab}(r)$ определяется согласно выражению (12).

Согласно (14) и (15), динамический модуль электроупругости $\in (\omega)$ и коэффициент удельной электропроводности $\sigma(\omega)$ содержат вклады трансляционных τ_a , τ_b и структурных τ_{ab} релаксационных процессов, где подынтегральное выражение функции $G_0^{ab}(r)$ непосредственно связаны со структурой раствора, определяемой посредством $\Phi_{ab}^*(r)$ и $g_{ab}^0(r)$.

Таким образом, полученные формулы (14) и (15) описывают электропроводящие свойства растворов электролитов, когда релаксирующие потоки затухают по экспоненциальному закону и при определенном выборе модели раствора позволяют вычисление $\in (\omega)$ и $\sigma(\omega)$ в зависимости от концентрации *с*, плотности ρ и температуры *T*, в широком диапазоне изменения частот ω .

ВЫБОР МОДЕЛИ РАСТВОРА И ПРОВЕДЕНИЕ ЧИСЛЕННЫХ РАСЧЕТОВ

Согласно аналитическим выражениям (14) и (15), модуль электроупругости $\in (\omega)$ и коэффициент удельной электропроводности $\sigma(\omega)$, наряду с межмолекулярным потенциалом взаимодействия $\Phi_{ab}(|\vec{r}|)$ и радиальной функцией распределения $g_{ab}(|\vec{r}|)$, еще содержат времена релаксации τ_a , τ_b и τ_{ab} , которые непосредственно определяются через коэффициенты трения ионов β_a и β_b . Последние зависят как от структуры раствора, так и от термодинамических параметров состояния.

Согласно гидродинамической теории диффузии в [3], коэффициент трения растворов электролитов определяется посредством температуры и коэффициентом диффузии. Значение последнего берется из эксперимента. Однако теоретическое определение коэффициента диффузии является сложным. Определение коэффициента треодноатомных жидкостей на основе ния микроскопической теории, согласно главе VI работы [31], выражаются посредством автокорреляционных функций скорости или силы и являются очень сложным. Там же, в сферико-симметрич-

paryphi dia bodinia paribopoli Naci a Csci ilpa $\omega = 10^{\circ}$ (V $^{\circ}$ 10 1 L)										
с, моль/л [38]	ρ, кг/м ³	<i>t</i> , °C [38]	$ au_1 imes 10^{13},$ c	$ au_2 imes 10^{13},$ c	$\begin{matrix} \tau_{11}\times 10^{11}, \\ c \end{matrix}$	$\tau_{12} = \tau_{21} \times 10^{11}, c$	$\tau_{22} \times 10^{11},$ c	σ, См/м		
								[39]	[38]	Форм (15)
NaCl										
0.490	1008.9	45	0.239	0.303	0.677	1.438	2.617	6.544	6.211	8.81
0.975	1031.9	35	0.169	0.208	0.990	2.130	3.940	10.07	9.697	11.73
1.916	1069.6	30	0.122	0.139	1.398	3.104	5.985	15.87	15.55	15.44
2.821	1105.5	25	0.102	0.106	1.696	3.912	7.958	18.90	18.72	17.50
4.521	1168.8	20	0.087	0.070	2.033	5.147	12.238	21.62	22.20	23.79
CsCl										
1.82	1236.0	55	0.146	0.131	12.874	7.408	5.891	29.29	29.97	23.76
2.64	1353.0	35	0.117	0.102	17.137	10.013	7.999	31.46	33.18	25.46
3.40	1433.0	25	0.103	0.089	20.100	11.919	9.565	33.69	35.02	26.34
4.74	1585.5	20	0.084	0.068	24.910	15.473	12.603	39.50	39.59	28.44
5.87	1685.0	30	0.076	0.057	26.730	17.575	14.596	49.10	48.71	30.62

Таблица 1. Зависимость изочастотного коэффициента удельной электропроводности от концентрации и температуры для водных растворов NaCl и CsCl при $\omega^* = 10^{-6}$ ($\nu \sim 10^7$ Гц)

ном случае, для коэффициента трения одноатомных жидкостей приведено аналитическое выражение, которое определяется посредством интегрирования потенциальной энергии взаимодействия и радиальной функции распределения, а в работе [32] это выражение обобщается для смеси жидкостей, которую в [33] мы пронимали в качестве исходной.

В ранее приведенных численных расчетах по вязкоупругим свойствам растворов электролитов [34] значения β_a и β_b , а следовательно τ_a , τ_b и τ_{ab} , принимались постоянными. Чтобы улучшить согласие теоретически вычисленных значений $\in (\omega)$ и $\sigma(\omega)$ с экспериментальными результатами, следует учесть температурные, плотностные и концентрационные зависимости коэффициентов β_a и β_b . Поэтому для решения этой задачи нами в [33] были использованы аналитические выражения для β_a и β_b , в следующем виде:

$$\beta_{a}^{2} = \sum_{a} \frac{4\pi}{3} \rho_{a} k T \sum_{b} d_{ab} \int_{0}^{\infty} \nabla^{2} \Phi_{ab}^{*}(r) g_{ab}^{0}(r) r^{2} dr,$$

$$\beta_{b}^{2} = \sum_{b} \frac{4\pi}{3} \rho_{b} k T \sum_{a} d_{ab} \int_{0}^{\infty} \nabla^{2} \Phi_{ab}^{*}(r) g_{ab}^{0}(r) r^{2} dr,$$
(16)

где $\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right)$ – радиальная часть оператора Лапласа, $\rho_a = m_a n_a$ – массовая плотность частиц сортов *a* и *b*.

Аналитические выражения $\in (\omega)$, $\sigma(\omega)$, β_a и β_b согласно (14)–(16), определяются посредством потенциальной энергии межчастичного взаимодействия $\Phi_{ab}(r)$ и радиальной функции распределения $g_{ab}^{0}(r)$. Следовательно, для исследования электропроводящих свойств растворов электролитов и проведения численных расчетов потребуется знание явного вида функций $\Phi_{ab}(|\vec{r}|)$ и $g_{ab}(|\vec{r}|)$, которые соответствуют определенной модели раствора.

На основе подробного анализа количественных теорий для ионно-молекулярных систем, приведенных в [3, 4, 8], в приближении теории Мак-Миллана–Майера для $\Phi_{ab}(r)$ и $g_{ab}^0(r)$ в [33] были выбраны следующие модели. Для $\Phi_{ab}(r)$ принято выражение, состоящее из суммы потенциальной энергии Леннард-Джонса и обобщенного потенциала Дебая с учетом конфигурации размеров ионов, которое имеет вид

$$\Phi_{ab}(r) = \frac{4\varepsilon_{ab}}{\varepsilon_{SS}}(r^{-12} - r^{-6}) + \frac{R_{ab}}{r}e^{-xr},$$
 (17)

где $\varepsilon_{ab} = \sqrt{\varepsilon_{aa}\varepsilon_{bb}}, d_{ab} = (d_a + d_b)/2$ – параметры потенциала Леннард-Джонса, которые приведены

B [35],
$$R_{ab} = \frac{fz_a z_b e^2}{k T \varepsilon_{SS} d_{ab}} \frac{\exp(\chi^*)}{1 + \chi^*}; \quad f = \frac{1}{4\pi\varepsilon_0} = 9 \times$$

 $\times 10^9$ м/Ф; ε_0 – электрическая постоянная, ε_{SS} – коэффициент диэлектрической проницаемости растворителя, e – элементарный заряд, z_a , z_b – валентность ионов сортов a и b; $\chi^* = d_{ab}\chi_a$ – приведенный обратный дебаевский радиус экранировки

согласно [36] $\chi^2 = \frac{\sum_a n_a e_a^2}{\epsilon \epsilon_0 k T}$, где $n_a = \frac{N_a}{V}$. Следуя [4], радиальную функцию распределения ионной подсистемы запишем следующим образом:

$$g_{ab}(r) = y(\rho^*)e^{-\frac{\Phi_{ab}(r)}{kT}},$$
 (18)

где $\Phi_{ab}(r)$ – потенциал взаимодействия базисной системы в виде (17), $y(\rho^*)$ – бинарная функция распределения двух полостей, которая согласно [4, 8] на расстоянии r = 1 ($r_{ab} = d_{ab}$), имеет вид

$$y(\rho^*) = \frac{(2 - \rho^*)}{2(1 - \rho^*)^3},$$
(19)

где $\rho^* = \frac{\pi}{6} n d_{ab}^3 = \frac{\pi}{6} \rho \frac{d_{ab}^3 N_0}{M}$ — приведенная плотность, ρ — плотность раствора, N_0 — число Авогадро, M — молярная масса.

Полуфеноменологическая модель в виде (17)-(19) позволяет провести численный расчет коэф-

3.0 0 <u>⊼</u> 2.5 8 $\beta_1\times 10^{13},\, \text{KT/c}$ 2.01.5 15°C 1.0 30°C $= 55^{\circ}C$ $= 80^{\circ}C$ 0.5 15 0 5 10 20 25 c, %

Рис. 1. Зависимости коэффициента трения водного раствора NaCl от концентрации при различных температурах.

фициентов β_a , β_b , времена релаксации τ_a , τ_b , τ_{ab} и $\in (\omega)$, $\sigma(\omega)$ растворов электролитов в широком интервале изменения термодинамических параметров состояния и частот.

На основе (16), с учетом выражений (17)–(19), для соответствующих концентраций и температур были вычислены значения коэффициентов трения β_a и β_b , времена релаксации τ_a , τ_b и τ_{ab} водных растворов LiCl, NaCl, KCl и CsCl. Затем с учетом этих данных и выражения (15), а также выражений (17)–(19), были вычислены температурные и концентрационные зависимости изочастотных $\omega^* = 10^{-6}$ ($v \sim 10^7$ Гц) коэффициентов удельной электропроводности водных растворов LiCl, NaCl, KCl и CsCl, результаты которых приведены в табл. 1, а также на рис. 1–4.

Рис. 2. Концентрационные зависимости изотермического коэффициента трения водных растворов LiCl, NaCl, KCl и CsCl при $t = 20^{\circ}$ C.

Рис. 3. Зависимости изочастотного динамического коэффициента удельной электропроводности водных растворов LiCl (а) и KCl (б) от концентрации, при $\omega^* = 10^{-6}$ ($\nu \sim 10^7$ Гц).

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 6 2019

Рис. 4. Зависимости изочастотного коэффициента удельной электропроводности водного раствора NaCl от температуры (а) и концентрации (б), при $\omega^* = 10^{-6}$ (у ~ 10^7 Гц), согласно табл. 1.

Полученные теоретические результаты нахолятся в удовлетворительном согласии с экспериментальными литературными данными. Ход температурной и концентрационной зависимостей вычисленных значений коэффициента удельной электропроводности $\sigma(\omega, c, T)$ полностью соответствует экспериментальным результатам. Немного заниженные вычисленные значения $\sigma(\omega, c, T)$ на основе (15), видимо, связаны с принятым приближением о неполном учете взаимодействия в $\Phi_{ab}(\vec{r})$ и $g_{ab}(\vec{r})$, т.е. наряду, с ион-ионным взаимодействием, следует еще учитывать ион-дипольное и диполь-дипольные (межмолекулярные) взаимодействия.

СПИСОК ЛИТЕРАТУРЫ

- 1. Семенченко В.К. Физическая теория растворов. М.–Л.: Госиздат технико-теоретической литературы, 1941. 382 с.
- 2. Харнед Г., Оуэн Б. Физическая химия растворов электролитов. М.: Изд. иностр. литер., 1952. 628 с.
- 3. Эрдей-Груз Т. Явления переноса в водных растворах. М.: Мир, 1976. 595 с.
- Юхновский И.Р., Головко М.Ф. Статистическая теория классических равновесных систем. Киев: Наук. думка, 1980. 372 с.
- 5. Самойлов О.Я. Структура водных растворов электролитов и гидратация ионов. М.: Изд-во АН СССР, 1957. 182 с.
- 6. *Робинсон Р., Стокс Р.* Растворы электролитов. М.: Изд-во. иностр. литер., 1963. 646 с.
- 7. Шахпаронов М.И. Введение в современную теорию растворов. М.: Высш. школа, 1976. 296 с.
- 8. *Смирнова Н.А.* Молекулярные теории растворов. Л.: Химия, 1987. 336 с.
- 9. Максимова Н.И., Пак Ч.С., Правдин Н.Н. Свойства электролитов. М.: Металлургия, 1987. 128 с.

- 10. *Пригожин И.Р.* Молекулярная теория растворов. М.: Металлургия, 1990. 360 с.
- 11. Ebeling W., Feistel R., Kelbg G, Sanding R. // J. Non-Equilibr. Thermodyn. 1978. V. 3. № 1. P. 11.
- Sanding R. // Z. Phys. Chem. (DDR). 1984. V. 265. № 4. P. 663.
- Lessner G. // Physica. 1982. V. 116A. № 1–2. P. 272; 1983. 122A. № 3. P. 441.
- Барон Н.М., Щерба М.У. // Журн. прикл. химии. 1971. Т. 44. № 9. С. 2118.
- Darja Rudan-Tasic, Cveto Klofular, Marija Bester-Rogac // Acta Chim. Slov. 2006. V. 53. P. 324.
- Демидов М.В., Понамарева Т.Н., Барботина Н.Н. // Успехи в химии и химической технологии. 2007. № 3 (71). С. 54.
- 17. Понамарева Т.Н., Барботина Н.Н. // Там же. 2008. № 3 (83). С. 108.
- Wang P., Anderko A., Yung R.D. // Ind. Eng. Chem. Res. 2004. V. 43. P. 8083.
- 19. Wahab A., Mahiuddin S., Hefter G., Kunz W. // J. Chem. Ing. Data. 2006. V. 51. P. 1609.
- 20. Gilliam R.J., Graydon J.W., Kirk D.W., Thorpe S.J. // Int. J. Hydrogen Energy. 2007. V. 32. P. 359.
- 21. Bester-Rogac M. // J. Chem. Eng. Data. 2008. V. 53. P. 1355.
- Щербаков В.В., Артемкина Ю.М. // Бюллетень Российского химического общества им. Д.И. Менделеева Химия в России. Май–август 2009. С. 7.
- 23. *Shilajyav H.A.* // Proceedings of the Yerevan State University: Chemistry and Biology. 2013. № 1. P. 3.
- Maria Ashfag // European Journal of Chemistry. 2015. № 6 (1). P. 37.
- 25. *Odinaev S., Ojimamadov I.* // Modern Physics Letters B. 2001. V. 15. № 9–10. P. 285.
- 26. Odinaev S., Ojimamadov I. // Condensed Matter Physics. 2004. V. 7. № 4. P. 735.
- Одинаев С. Обобщенная гидродинамика и вязкоупругие свойства ионных жидкостей. Препринт. Ин-т теоретической физики АН УССР, 91-13 Р (ИТФ, Киев). 16 с.

2019

- Одинаев С., Адхамов А.А. Молекулярная теория структурной релаксации и явлений переноса в жидкостях. Душанбе: Дониш, 1998. 230 с.
- 29. Одинаев С., Идибег Х. // Докл. Академии наук Республики Таджикистан. 2017. Т. 60. № 7-8. С. 320.
- 30. Nossal R. // Phys. Rev. 1968. V. 166. № 1. P. 81.
- Физика простых жидкостей / Под ред. Темперли Г., Роулинсона Дж., Рашбрука Дж. М.: Мир, часть I, 1971. 308 с.
- 32. Musharaf A.Sk., Alok S., Swapan G.K. // J. Chem. Phys. 2001. V. 114. № 23. P. 10419.
- Одинаев С., Акдодов Д.М. // Журн. физ. химии. 2013. Т. 87. № 7. С. 1154.
- 34. Одинаев С., Акдодов Д.М., Шарифов Н. и др. // Там же. 2010. Т. 84. № 6. С. 1063.

- 35. *Richard J., Fries P.H., Krienke H.* // J. Chem. Phys. 1998. V. 108. № 10. P. 4079.
- Krienke H., Barthel J. // Equations of State for Fluids and Fluids Mixtures. Ch. 16: Jonic Fluids / Ed. by J.V. Sengers et al. Amsterdam: Elsevier, 2000. P. 751.
- Добош Д. Электрохимические константы. Справочник для электрохимиков. М.: Мир. 1980. 365 с.
- Кузнецов Н.М., Загоскин Ю.Д., Артемкина Ю.М., Щербаков В.В. // Успехи в химии и химической технологии. 2015. Т. 29. № 1. С. 55.
- Lobo V.M.M., Quaresma J.L. Handbook of electrolyte solutions. Amsterdam: Elsevier, 1989. Pt. A. 1268 p., Pt. B. 1169 p.