ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ

УДК 541.572.128

ВЛИЯНИЕ АЗОТСОДЕРЖАЩЕГО ОСНОВАНИЯ НА КИНЕТИКУ ОБРАЗОВАНИЯ КОМПЛЕКСА ЦИНКА С ОКТА(*м*-ТРИФТОРМЕТИЛФЕНИЛ)ПОРФИРАЗИНОМ В БЕНЗОЛЕ

© 2019 г. О. А. Петров^{*a*,*}, Г. В. Осипова^{*a*}, П. С. Харламова^{*a*}

^а Ивановский государственный химико-технологический университет, Иваново, Россия

* *e-mail: poa@isuct.ru* Поступила в редакцию 17.09.2018 г. После доработки 15.10.2018 г. Принята к публикации 15.10.2018 г.

Изучено влияние добавок *н*-бутиламина, *трет*-бутиламина, пиперидина и морфолина на кинетику реакции комплексообразования ацетата цинка с окта(*м*-трифторметилфенил)порфиразином в бензоле. Предложена возможная схема реакции комплексообразования. Установлено, что с разветвлением углеводородной цепи в амине скорость реакции уменьшается, а с увеличением р*K*_a азотсодержащего основания – возрастает.

Ключевые слова: порфиразины, азотсодержащие основания, ацетат цинка, комплексообразование, кинетика

DOI: 10.1134/S0044453719060244

Порфиразины, являясь ароматическими макроциклическими соединениями, благодаря необычному электронному и геометрическому строению, находят все более широкое применение в качестве катализаторов, жидкокристаллических материалов и фотосенсибилизаторов. Они проявляют полупроводниковые свойства и рассматриваются в качестве перспективных материалов в сенсорных устройствах [1]. Расширить спектр практического применения этих макроциклов позволяет всестороннее изучение их физико-химических свойств.

К числу наиболее важных свойств порфиразинов относится их способность вступать в реакции молекулярного комплексообразования с солями металлов, среди которых важное место занимает цинк. Его эссенциальные свойства проявляются в регулировании ряда жизненноважных процессов [2, 3].

На реакцию комплексообразования порфиразинов с солями металлов достаточно сильное влияние оказывают свойства среды. В случае порфиразинов влияние протоноакцепторного характера среды подробно изучено на примере образования комплекса магния [4–7]. Напротив, влияние азотсодержащего основания на кинетику и механизм введения иона цинка в порфиразиновый макроцикл еще далеко от полной ясности.

В связи с этим в данной работе показано влияние добавок азотсодержащих оснований (В) – *н*- бутиламина (BuNH₂), *трет*-бутиламина (Bu^tNH₂), пиперидина (Pip) и морфолина (Mor) на реакцию комплексообразования окта(*м*-трифторметилфенил)порфиразина (H₂Pa(C₆H₄CF₃)₈

с ацетатом цинка ($Zn(OAc)_2$) в бензоле.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Окта(*м*-трифторметилфенил)порфиразин синтезировали по методике [8]. Ацетат цинка, азотсодержащие основания и бензол подвергали очистке согласно [9, 10]. Для проведения кинетических исследований в термостатируемую кювету спектрофотометра SHIMADZU-UV-1800 помещали свежеприготовленный раствор H₂Pa(C₆H₄CF₃)₈ в бензоле с постоянной концентрацией и добавля-

Рис. 1. Изменение электронного спектра поглощения $H_2Pa(C_6H_4CF_3)_8$ в присутствии $Zn(OAc)_2$ в системе *н*-бутиламин–бензол в течение 17 мин при 298 К и $C_{BuNH_2}^{\circ} = 0.10$ моль/л.

ли ацетат цинка, растворенный в системе бензол—азотсодержащее основание с переменной концентрацией последнего. Скорость реакции комплексообразования определяли по уменьшению оптической плотности на длине $\lambda =$ = 660 нм, так как максимум первой полосы поглощения H₂Pa(C₆H₄CF₃)₈ совпадает с минимумом в электронном спектре поглощения прореагировавшей смеси. Различие в максимумах полос поглощения H₂Pa(C₆H₄CF₃)₈ и его цинкового комплекса позволило определить текущую и конечную концентрации ZnPa(C₆H₄CF₃)₈ по формуле:

$$C = C^{\circ}(A_{\infty} - A_{\tau})/(A_{\infty} - A_{0}).$$
(1)

Здесь A_0, A_τ, A_∞ – оптические плотности растворов в начальный момент времени, в момент времени τ и после завершения реакции (τ_∞); C° и C – начальная и текущая концентрации H₂Pa(C₆H₄CF₃)₈. Все измерения проводили в условиях реакции псевдопервого порядка, поэтому эффективную (наблюдаемую) константу скорости реакции образования ZnPa(C₆H₄CF₃)₈ рассчитывали по формуле:

$$k_{2} = (1/\tau) \ln(C^{\circ}/C).$$
 (2)

Погрешность в кинетических параметрах определяли по методу Стьюдента.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Предварительно установлено, что в среде бензола комплексообразования $H_2Pa(C_6H_4CF_3)_8$ с Zn(OAc)₂ не наблюдается в виду ограниченной растворимости соли металла. При $C_{BuNH_2}^{\circ} < 0.10$ и $C_{Bu'NH_2}^{\circ} < 0.11$ моль/л в бензоле спектрально-фик-

Рис. 2. Изменение энергий ВЗМО и НСМО в процессе кислотной ионизации порфиразинового макроцикла.

сируемого взаимодействия H₂Pa(C₆H₄CF₃)₈ и Zn(OAc)₂ также не происходит. Характер исходного электронного спектра поглощения (ЭСП) $H_2Pa(C_6H_4CF_3)_8$ ($\lambda_I = 660, \lambda_{II} = 595$ нм) остается без изменений в течение ~95 ч при 318 К. Однако в интервале концентраций $C_{\text{BuNH}_2}^{\circ} = 0.10 - 0.58$ и $C_{\text{Bu'}NH_2}^{\circ} = 0.11-6.77$ моль/л в бензоле в ЭСП H_2 Ра $(C_6H_4CF_3)_8$ независимо от природы основания с течением времени регистрируются увеличение интенсивности полосы поглощения с λ = = 630 нм и одновременное уменьшение интенсивности полос поглощения λ_I , и λ_{II} (рис. 1). Спектральные изменения, сопровождающие реакцию комплексообразования (рис. 1), идентичны таковым в процессе кислотно-основного взаимодействия порфиразинов [11], в ходе которых происходит повышение энергии низшей свободной молекулярной орбитали (HCMO) π_1^* и высшей заполненной молекулярной орбитали (B3MO) π_1 , в то время как энергии B3MO π_2 и HCMO π_2^* не претерпевают существенных изменений. Уменьшение энергетической разности между ВЗМО π_1 и π_2 , а также вырождение двух НСМО $\pi_{1,2}^*$ (рис. 2) приводит к повышению симметрии π хромофора молекулы от D_{2h} до D_{4h} . Это свидетельствует о депротонировании порфирази-

Рис. 3. Зависимости $\ln(C^{\circ}/C)$ от времени реакции образования ZnPa(C₆H₄CF₃)₈ в системе *н*-бутиламин (*трет*-бутиламин) – бензол при 298 К и концентрациях $C_{\text{BuNH}_2}^{\circ} = 0.10$ (*1*) и 1.13 моль/л (*2*).

нового макроцикла в ходе комплексообразования и указывает на вхождение Zn^{2+} в координационный центр $H_2Pa(C_6H_4CF_3)_8$ с образованием Zn- $Pa(C_6H_4CF_3)_8$.

Кинетические исследования показали, что реакция:

$$H_{2}Pa(C_{6}H_{4}CF_{3})_{8} + Zn(OAc)_{2} + B \xrightarrow{k_{3}} \rightarrow ZnPa(C_{6}H_{4}CF_{3})_{8} + 2HOAc + B$$
(3)

имеет порядок, равный единице по $H_2Pa(C_6H_4CF_3)_8$ (рис. 3) и близкий к единице по $Zn(OAc)_2$ (рис. 4).

Как видно из данных табл. 1, введению Zn^{2+} в координационный центр $H_2Pa(C_6H_4CF_3)_8$ благо-приятствует увеличение в бензоле концентрации

Рис. 4. Зависимости $\lg k_3$ от $\lg C_{Zn(OAc)_2}$ для реакции образования ZnPa(C₆H₄CF₃)₈ в системе *н*-бутиламин (*трет*-бутиламин) – бензол при 298 (*1*) и 318 K (*2*) и концентрациях $C_{BuNH_2}^{\circ} = 0.20$ (*1*) и 0.11 моль/л (*2*).

н-бутиламина и *трет*-бутиламина, а также температуры реакции. Каталитическое влияние добавок этих оснований на реакцию (3) иллюстрируют прямолинейные зависимости $\lg k_{\Im} = f(\lg C_B)$ (рис. 5) с тангенсом угла наклона, близким к единице. Следовательно,

$$k_{\mathfrak{I}} = k C_{\mathrm{Zn(OAc)}_2} C_{\mathrm{B}},\tag{4}$$

$$-dC_{\rm H_2Pa(C_6H_4CF_3)_8}/d\tau = kC_{\rm H_2Pa(C_6H_4CF_3)_8}C_{\rm Zn(OAc)_2}C_{\rm B},$$
(5)

где k — константа скорости реакции третьего порядка образования ZnPa(C₆H₄CF₃)₈.

На основании полученных данных возможная схема реакции (3) может иметь следующий вид:

ВЛИЯНИЕ АЗОТСОДЕРЖАЩЕГО ОСНОВАНИЯ

1121 0	1(06114013)8	/ / Eli(O/R	- <u>/2</u>	1)			
$C_{\rm B}^{\circ}$, моль/л	<i>Т</i> , К	$k_{\rm s} \times 10^3, {\rm c}^{-1}$	<i>k</i> , л ² /(моль ² с)	$E_{ m a}$, кДж/моль	$-\Delta S^{≠}$, Дж/(моль К)		
	·	н-Бут	тиламин				
0.10	298	1.80	10.80	15	255		
	308	2.15	12.90				
	318	2.60	15.50				
0.20	298	2.50	7.50	17	246		
	308	3.10	9.30				
	318	3.90	11.70				
0.33	298	4.60	8.35	15	250		
	308	5.50	9.90				
	318	6.85	12.60				
0.58	298	8.40	8.70	17	236		
	308	10.50	10.80				
	318	12.90	13.20				
		mpem-B	утиламин				
0.11	298	0.03	2.60	74	91		
	308	0.07	6.40				
	318	0.20	16.30				
0.52	298	0.16	2.90	72	84		
	308	0.40	7.20				
	318	1.00	18.05				
1.13	298	0.30	2.50	72	78		
	308	0.75	6.20				
	318	1.85	15.20				
3.38	298	1.00	2.74	71	72		
	308	2.50	6.85				
	318	6.10	16.70				
6.77	298	2.05	2.80	70	69		
	308	4.90	6.70				
	318	12.15	16.60				

Таблица 1. Кинетические параметры реакции образования ZnPa($C_6H_4CF_3$)₈ в системе азотсодержащее основание-бензол ($C_{H_5Pa(C_7H_5C_7F_3)}^\circ = 1.03 \times 10^{-5}$ моль/л, $C_{Zn(OAC)_2}^\circ = 1.08 \times 10^{-4}$ моль/л)

Примечание. Погрешность в определении k_3 не превышает 5%, E_a и $\Delta S^{\neq} - 10\%$.

Согласно [12], в порфиразиных макроциклах внутрициклические NH-связи обладают более высокой NH-кислотностью по сравнению с порфириновыми, вследствие чего являются делокализованными, т.е. связанными с двумя атомами азота посредством двухцентровых водородных связей. По этой причине порфиразины достаточно легко вступают в кинетически контролируемые кислотно-основные взаимодействия с азотсодержащими основаниями в среде инертных малополярных растворителей (бензола, хлорбензола) [13]. Этот факт дает основание полагать, что на первой стадии комплексообразования молекула основания вступает во взаимодействие с одним из двух протонов NH-групп $H_2Pa(C_6H_4CF_3)_8$, судя по кинетическому уравнению (5), с образованием Нкомплекса, в котором атом водорода, связанный с молекулой основания и двумя внутрициклическими атомами азота через водородные связи, должен располагаться над плоскостью макроцикла. При этом полная передача NH-протона, приводящая к образованию ионной структуры, представляется маловероятной [13].

На завершающей стадии процесса осуществляется вхождение Zn²⁺ в координационный центр кислотно-основного Н-комплекса, которое требует меньших энергетических затрат на разрыв NH-связей в отличие от молекулярной формы H_2 Ра(C₆H₄CF₃)₈. Предполагается, что $k_1 \gg k_{-1}$, а $k_1 < k_2$, поскольку помежуточный Н-комплекс спектрально не регистрируется. Следует отметить, что аналогичная схема реакции образования $ZnPa(C_6H_4CF_3)_8$, судя по данным [14], реализуется и при введении в бензол циклических азотсодержащих оснований _ пиперидина И морфолина.

Рис. 5. Зависимости lg k_9 от lg C_B для реакции образования ZnPa($C_6H_4CF_3$)₈ в системе *н*-бутиламин (*трет*-бутиламин) – бензол при 298 К и $C_{Zn(OAc)_2}^\circ = 1.08 \times 10^{-4}$ моль/л.

Результаты эксперимента (табл. 1) показывают, что замена *н*-бутиламина (р $K_a = 10.60$ [15]) на близкий по основности *трет*-бутиламин (р $K_a =$ = 10.68 [15]) приводит к уменьшению скорости комплексообразования, судя по величинам k^{298} , в ~5 раз. При этом E_a и ΔS^{\neq} процесса не претерпевают существенных изменений. Этот факт не является неожиданным, если принять во внимание, что разветвление углеводородной цепи в амине препятствует оптимальной пространственной ориентации молекул-партнеров на стадии кислотно-основного взаимодействия (схема), т.е. образованию H-комплекса между $H_2Pa(C_6H_4CF_3)_8$ и Bu^tNH₂. Среди циклических оснований максимальная скорость реакции (3) наблюдается в бензоле с добавками пиперидина (табл. 2). Введение в четвертое положение пиридинового цикла дополнительного гетероатома кислорода не влияет на пространственное строение амина [16], однако приводит к понижению рK_a на ~2.5 единицы. В результате этого при переходе от пиперидина

Таблица 2. Кинетические параметры реакции образования ZnPa(C₆H₄CF₃)₈ в системе азотсодержащее основание–бензол ($C^{\circ}_{H_2Pa(C_6H_4CF_3)_8} = 0.5 \times 10^{-5}$ моль/л, $C^{\circ}_{Zn(OAc)_2} = 1.08 \times 10^{-4}$ моль/л [14])

В	$C_{\rm B}^{\circ},$ моль/л	<i>k</i> ²⁹⁸ , л ² /(моль ² с)	<i>Е</i> _а , кДж/моль	-∆ <i>S</i> ≠, Дж/(моль К)
Морфолин	2.96	0.09	37	215
Пиперидин	2.63	2.05	26	228

(р K_a = 11.23 [15]) к менее протоноакцепторному морфолину (р K_a = 8.50 [15]) величина k^{298} уменьшается в ~23 раза на фоне незначительного роста величин E_a и ΔS^{\neq} . Представляется вполне вероятным, что в присутствии пиперидина образование Н-комплекса H₂Pa(C₆H₄CF₃)₈ (схема) происходит значительно быстрее, и как следствие, легче происходит вхождение Zn²⁺ в координационный центр макроцикла.

СПИСОК ЛИТЕРАТУРЫ

- The Porphyrins Handbook. Applications: Past, Present and Future / Ed. by K.M. Kadish, M.K. Smith, R. Guilard. V.G. S. Diego, S. Francisco. N.Y., Boston, London, Sydney, Tokio: Acad. Press, 2000. 346 p.
- Березов Т.Т., Коровкин Б.Ф. Биологическая химия. М.: Медицина, 1998. 704 с.
- 3. *Кальман Я., Рем К.-Г.* Наглядная биохимия. М.: Бином, 2011. 469 с.
- 4. *Петров О.А., Березин Б.Д.* // Журн. физ. химии. 1999. Т. 73. № 12. С. 2148.
- 5. *Петров О.А.* // Коорд. химия. 2000. Т. 26. № 9. С. 652.
- 6. Петров О.А., Березин Б.Д., Чижова Н.В., Семейкин А.С. // Там же. 1999. Т. 25. № 9. С. 675.
- 7. Петров О.А., Лысова С.А., Березин Б.Д., Чижова Н.В. // Там же. 2003. Т. 29. № 3. С. 187.
- Vagin S.I., Hanack M. // Eur. J. Org. Chem. 2002. P. 2859.
- 9. *Карякин Ю.В., Ангелов И.И.* Чистые химические реактивы. М.: Химия, 1974. 407 с.
- 10. *Титце Л., Айхер Г.* Препаративная органическая химия. М.: Мир, 1999. 704 с.
- Stuzhin P., Khelevina O., Berezin B. // Phthalocyanines: Properties and Applications. New York: VCH Publ., 1996. V. 4. P. 23.
- Stuzhin P., Khelevina O. // Coord. Chem. Rev. 1996.
 V. 147. P. 41.
- Петров О.А. // Журн. общ. химии. 2013. Т. 83. № 4. С. 681.
- Петров О.А., Осипова Г.В. // Там же. 2016. Т. 86. № 8. С. 1376.
- 15. The Handbook of Chemistry and Physics / Ed. by William and M. Haynes. Taylor and Francis, 2013. 2668 p.
- Blackburne I.D., Katritzky A.R., Takeuchi Y. // Accounts. Chem. Res. 1975. V. 8. № 9. P. 300.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 6 2019