_ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА _ И ТЕРМОХИМИЯ

УДК 544.31

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ТРИХЛОРИДА ИТТРИЯ В КОНДЕНСИРОВАННОМ СОСТОЯНИИ

© 2019 г. Н. М. Аристова^{*a*}, Г. В. Белов^{*a,b,**}

^а Российская академия наук, Объединенный институт высоких температур, Москва, Россия ^b Московский государственный университет им. М.В. Ломоносова, Химический факультет, Москва, Россия

> * *e-mail: gbelov@yandex.ru* Поступила в редакцию 27.09.2018 г. После доработки 03.12.2018 г. Принята к публикации 04.12.2018 г.

На основании имеющихся в литературе экспериментальных данных рассчитаны термодинамические функции: энтропия, инкременты энтальпии и приведенная энергия Гиббса трихлорида иттрия YCl₃ в кристаллическом и жидком состояниях в температурном интервале 100–2000 К. Полученные данные занесены в базу данных программного комплекса ИВТАНТЕРМО.

Ключевые слова: трихлорид иттрия YCl₃, низкотемпературная теплоемкость, изменение высокотемпературной энтальпии, термодинамические свойства

DOI: 10.1134/S0044453719070033

Настоящая статья является продолжением работ [1-3], посвященных термодинамическим характеристикам тригалогенидов скандия. Несмотря на многочисленные исследования теплофизических и термодинамических свойств галогенидов редкоземельных элементов (скандий, иттрий и лантаниды от лантана до лютеция включительно), имеет место большой разброс среди значений отдельных теплофизических характеристик. Существенные расхождения в значениях температур и энтальпий фазовых переходов, теплоемкостей жидких галогенидов, данных по давлению паров, а также стандартных значений энтальпий образования обнаруживаются при сравнении результатов систематизации экспериментальных и оцененных величин в обзорных и справочных работах [4-10]. Между тем для решения ряда научных и технических задач с участием галогенидов редкоземельных элементов необходимы надежные термодинамические функции этих соединений. С этой целью выполнен критический анализ и обработка всей совокупности экспериментальных данных для кристаллического и жидкого трихлорида иттрия. На основании литературных экспериментальных данных получено уравнение, аппроксимирующее температурную зависимость теплоемкости в интервале 298.15 — $T_{\rm m}$ (K). С помощью полученного уравнения $C_p^{\circ}(T)$ для твердого состояния и данных для

ния $C_p^{\circ}(I)$ для твердого состояния и данных для жидкой фазы рассчитаны термодинамические функции YCl₃ (кр., ж) в стандартном состоянии

при температурах 100–2000 К, представленные в табл. 1. Число приводимых знаков, как правило, превышает точность табулированных величин. Оно обусловлено необходимостью обеспечения гладкости изменения табулированных и интерполируемых величин как функции температуры, а также строгостью согласования значений, вычисляемых по различным термодинамическим циклам. Таблица 2 содержит коэффициенты полиномов, аппроксимирующих температурную зависимость приведенной энергии Гиббса $\Phi^{\circ}(T)$ кристаллического и жидкого YCl₃.

Термодинамические характеристики кристаллического YCl₃

В интервале температур 0–994 К за стандартное состояние YCl₃ (кр.) принята моноклинная модификация (структурный тип AlCl₃).

При $T \le 298.15$ К термодинамические функции YCl₃ вычислены по результатам измерений теплоемкости, полученным в работе [11] в интервале температур 11–312 К. Измерения выполнены с помощью вакуумного адиабатического микрокалориметра с криостатом анероидного типа, конструкция которого описана в работе [12]. Образец трихлорида иттрия получен хлорированием оксида иттрия Y₂O₃ тетрахлоридом углерода. Содержание основного вещества в исходном оксиде иттрия составляло 99.88%. Полученный образец имел следующий состав: Y – 45.53 ± 0.07 мас. %

	$C_p^{\circ}(T),$	$\Phi^{\circ}(T),$	$S^{\circ}(T),$	$H^{\circ}(T)$ –
<i>Т</i> , К	Дж моль ⁻¹	Дж моль ⁻¹	Дж моль ⁻¹	$-H^{\circ}(0),$
	K^{-1}	K^{-1}	K^{-1}	кДж моль ^{–1}
100	64.310	26.270	59.700	3.343
200	89.670	57.275	113.700	11.285
298.15	98.400	82.408	151.400	20.570
300	98.406	82.835	152.009	20.752
400	99.199	103.844	180.409	30.626
500	100.456	121.461	202.675	40.607
600	101.896	136.577	221.116	50.723
700	103.423	149.810	236.937	60.989
800	104.995	161.588	250.849	71.409
900	106.594	172.210	263.308	81.989
994	108.113	181.336	273.971	92.080
994	135.700	181.336	305.661	123.580
1000	135.700	182.084	306.478	124.394
1100	135.700	193.990	319.412	137.964
1200	135.700	204.941	331.219	151.534
1300	135.700	215.078	342.081	165.104
1400	135.700	224.513	352.137	178.674
1500	135.700	233.337	361.500	192.244
1600	135.700	241.624	370.258	205.814
1700	135.700	249.435	378.484	219.384
1800	135.700	256.822	386.241	232.954
1900	135.700	263.828	393.578	246.524
2000	135.700	270.491	400.538	260.094

Таблица 1. Термодинамические функции YCl₃ (кр., ж)

Примечание. Значения приведенной энергии Гиббса $\Phi^{\circ}(T)$ вычислены по формуле $\Phi^{\circ}(T) = S^{\circ}(T) - [H^{\circ}(T) - H^{\circ}(0)]/T$.

Таблица 2. Коэффициенты уравнений, аппроксимирующих температурную зависимость приведенной энергии Гиббса $\Phi^{\circ}(T) = f_1 + f_2 \ln X + f_3/X^2 + f_4/X + f_5X$ (Дж моль⁻¹ K⁻¹; $X = T/10^4$) кристаллического и жидкого YCl₃

T _{min} , K	298.15	994
$T_{\rm max}$, K	994	2000
f_1	377.269	483.239
f_2	91.458	135.700
f_3	889×10^{-6}	0
f_4	683.852×10^{-3}	113.061×10^{-2}
f_5	82.870	—

(теор. 45.53 мас. %), Cl – 54.55 \pm 0.14 мас. % (теор. 54.47 мас. %). Сглаженные экспериментальные данные получены авторами [11] методом аппроксимирующего сплайна, описанным в работе [13]. Экстраполяция теплоемкости к 0 K, выполненная по закону Дебая, приводит к значению $S^{\circ}(11 \text{ K}) = 1.129 \text{ Дж моль}^{-1} \text{ K}^{-1}$.

Стандартные значения термодинамических величин при 298.15 К, принятые по данным [11], составляют:

$$C_p^{\circ}(298.15 \text{ K}) = 98.4 \pm 0.1 \text{ Дж моль}^{-1} \text{ K}^{-1},$$

 $S^{\circ}(298.15 \text{ K}) = 151.4 \pm 0.3 \text{ Дж моль}^{-1} \text{ K}^{-1},$
 $H^{\circ}(298.15 \text{ K}) - H^{\circ}(0) =$
 $= 20.57 \pm 0.03 \text{ кДж моль}^{-1}.$

Измерения низкотемпературной теплоемкости YCl₃, равным образом, как и любого другого вещества, необходимы для определения стандартных термодинамических функций, которые являются ключевыми величинами. К сожалению, в ряде справочных изданий, таких как [14-16], опубликованных уже после появления экспериментальных данных [11], для YCl₃ (кр.) приведены стандартные значения S°(298.15 K) = 136.817 Дж К⁻¹ моль⁻¹ [14, 15] и *S*°(298.15 К) = 138 Дж К⁻¹ моль⁻¹ [16]. существенно отличающиеся от экспериментального значения. Эти величины были заимствованы из более ранних справочников [17-20], в которых ввиду отсутствия экспериментальных данных на тот момент времени использовались оцененные значения стандартной энтропии.

Уравнение для теплоемкости YCl_3 в интервале температур 298.15—994 К получено путем совместной обработки низкотемпературных данных по теплоемкости [11] и высокотемпературных измерений инкрементов энтальпии в работе [21] (Дж моль⁻¹ K⁻¹):

$$C_{p}^{\circ}(T) = 91.458 + 16.574 \times 10^{-3}T -$$
(1)
- 1.778 \times 10^{5}T^{-2}.

Результаты [11] включены в виде четырех значений инкрементов энтальпии при 280-310 К для лучшего согласования с данными [21]; погрешность данных [11] оценивалась в 0.3%. Измерения [21] выполнены в интервале температур 424.3-976.2 К методом смешения на калориметрической установке, описанной в ранней работе тех же авторов [22]. Образец YCl₃ был получен взаимодействием Y₂O₃ с большим избытком NH₄Cl. Спектральный анализ показал, что образец содержал менее 0.5% других ионов редкоземельных металлов и не содержал металлов других групп. Погрешность измерений оценивается авторами в ±0.5%. Величина инкремента энтальпии при 976.2 К представляется завышенной, что, по мнению авторов [21], обусловлено эффектом предплавления и потому это измерение не учитывалось.

Температура плавления (994 \pm 2 K) принята по результатам работ [21] (994 \pm 2 K), [23] (994 \pm 2 K),

[24] (994 K), [25] (994 ± 1 K), выполненным на хорошо аттестованных образцах. Менее точные значения $T_{\rm m}$, полученные в работах [26] (973 ± ± 5 K), [27] (897 K), [28] (982 K), [29] (973 K), [30] (983 ± 1 K), [31] (987 K), [32] (987 K), не учитывались.

Такой большой разброс в значениях температуры плавления можно объяснить несколькими причинами: чистотой образцов YCl₃, их повышенной гигроскопичностью и склонностью YCl₃ к разложению вблизи температуры плавления, а также уровнем подготовки и проведения эксперимента. В исследовании [33], посвященном определению энтальпии образования YCl₃, было показано, что даже после процедуры тщательной очистки в образце оставалось около 0.1 мол. % воды, что могло привести к частичному гидролизу и тем самым существенно исказить конечный результат. В лучших работах по определению температур и энтальпий фазовых переходов трихлоридов редкоземельных элементов для предотвращения разложения в ампулы с образцами помещали кварцевые капилляры с тетрахлоридом углерода. При температуре выше 500°С ССІ₄ разлагался с выделением хлора. Таким образом, фазовые переходы осуществлялись в атмосфере, которая, по мнению авторов. обеспечивала конгрузнтное плавление изучаемых образцов.

Энтальпия плавления (31.5 ± 0.9 кДж моль⁻¹) принята по данным [21] и представляет собой разность энтальпий жидкой и кристаллической фаз YCl₃ в точке плавления. В работе [34] для энтальпии плавления YCl₃ ошибочно приведено значение 67.4 кДж моль⁻¹. По данным [21] эта величина относится к энтальпии плавления трихлорида скандия.

Стандартная энтальпия образования кристаллического трихлорида иттрия $\Delta_f H^\circ$ (YCl₃, кр., 298.15 K) = $-(1018.4 \pm 2.6)$ кДж моль⁻¹ принята по результатам работы [35] с учетом рекомендации [8].

Авторы [8] выполнили экспертный анализ и систематизацию всех имеющихся в литературе экспериментальных значений энтальпий образования трихлоридов редкоземельных элементов, на основании которых был сделан выбор наиболее надежных значений этой величины и даны соответствующие рекомендации. В случае YCl₃ предпочтение, отданное результатам исследования [35], можно объяснить несколькими причинами: высокая чистота исходных материалов, тщательная очистка и анализ полученных образцов, а также соблюдение мер предосторожности на всех этапах эксперимента.

Полученная в [35] величина основана на энтальпиях растворения очень чистых металлического иттрия и трихлорида иттрия в соляной кислоте. Для синтеза YCl₃ был использован Y_2O_3 чистотой 99.999 мас. %. На рентгенограммах полученных образцов присутствовали только линии моноклинной структуры типа AlCl₃ без каких-либо посторонних линий. Для каждого из трех использованных образцов YCl₃ содержание хлора было определено потенциометрическим титрованием и составило 54.71, 54.51 и 54.54 мас. % соответственно при теоретическом содержании – 54.47 мас. % хлора.

Тщательная очистка образцов и предпринятые меры предосторожности позволили исключить присутствие в YCl_3 кислорода, оксигалогенидов и воды, которые могут существенно повлиять на результаты определения значения энтальпии образования. Таким образом, совершенствование препаративных методов дает возможность получать все более чистые вещества и, тем самым, существенно повышать степень достоверности и надежности определяемых термодинамических характеристик.

Погрешности приведенных в табл. 1 значений $\Phi^{\circ}(T)$ при 298.15, 500, 1000, 1500 и 2000 К оцениваются в 0.2, 1, 2, 12 и 27 Дж К⁻¹·моль⁻¹ соответственно.

Термодинамические характеристики жидкого YCl₃

Для теплоемкости жидкого YCl_3 принято постоянное значение 135.7 ± 3.0 Дж моль⁻¹ K⁻¹, полученное авторами [21] на основании четырех измерений инкрементов энтальпии в интервале температур 1004.5–1062.4 К.

Исследованию процесса плавления YCl₃ посвящен целый ряд работ. Из сопоставления спектров Рамана [36] жидких и твердых образцов трихлорида иттрия был сделан вывод о существовании в расплаве устойчивых структурных единиц октаэдров (YCl₆)³⁻. Последующие исследования структуры жидкого YCl3 методом нейтронной дифракции [37, 38] показали, что число атомов иттрия в первой координационной сфере YCl₃ (ж) остается близким к шести, как и в твердом YCl₃. Этот факт, а также изменения свойств при плавлении YCl₃ послужили основанием для вывода о сохранении октаэдрической сетки в жидком YCl₃. Предложенный механизм является альтернативой механизму плавления. основанному на представлении о разрушении кристаллической структуры в ионную или молекулярную жидкость.

С результатами нейтронографического исследования согласуются расчеты [39—43], выполненные в рамках ионной модели расплава YCl₃. Анализ имеющихся в литературе данных о термодинамических и кинетических свойствах жидких хлоридов трехвалентных металлов позволил авторам сформулировать три основных типа механиз-

ма плавления для трех различных структур. При плавлении ионных кристаллов, таких как YCl₃, образуются ионные жидкости, в которых сохраняется промежуточный порядок. Кристаллы со слоистой ионной структурой, подобной AlCl₃, превращаются в жидкость, состоящую из молекулярных димеров. При плавлении кристаллов молекулярного типа, таких как SbCl₃, образуется молекулярная жидкость с достаточной корреляцией в расположении соседних молекул. На основе анализа изменений энтропии, мольного объема, проводимости и вязкости расплавов была установлена связь между поведением при плавлении и характером химической связи и кристаллической структурой хлоридов трехвалентных металлов.

Следует отметить работу [44], в которой исследование термодинамических свойств расплавов трихлоридов редкоземельных элементов выполнено методом молекулярной динамики (МД). В дополнение к методу МД наряду с полностью ионной моделью была использована частично ионная модель, рассматривающая ковалентность в ионных парах катион — анион хлора. Авторы сравнили результаты своих расчетов (структура расплавов, изменение вязкости и энтальпий плавления YCl₃ и LaCl₃) с экспериментальными величинами и пришли к выводу, что частично ионная модель может лучше представлять экспериментальные данные, чем полностью ионная модель, использованная в работах [39–43].

СПИСОК ЛИТЕРАТУРЫ

- 1. *Аристова Н.М., Белов Г.В.* // Журн. физ. химии. 2015. Т. 89. № 6. С. 921.
- 2. Аристова Н.М., Белов Г.В. // Там же. 2015. Т. 89. № 7. С. 1053.
- 3. Аристова Н.М., Белов Г.В. // Там же. 2016. Т. 90. № 3. С. 473.
- Браун Д. // Галогениды лантаноидов и актиноидов / Под ред. Тананаева И.В. М.: Атомиздат, 1972.
- Myers C.E., Graves D.T. // J. Chem. Eng. Data. 1977. V. 22. № 4. P. 440.
- Gmelin. Handbook of Inorganic Chemistry. 8th Edition, Sc, Y, La–Lu Rare Earth Elements. Part C4a, Chlorides. Berlin-Heidelberg-New York Springer-Verlag, 1982.
- Wagman D.D., Evans W.H., Parker V.B. et al. // The NBS Tables of Chemical Thermodynamic Properties. National Bureau of Standards (U.S). Washington, 1982 // J. Phys. Chem. Ref. Data. 1982. V. 11. Suppl. № 2.
- Cordfunke E.H.P., Konings R.J.M. // Thermochim. Acta. 2001. V. 375. P. 17.
- Kovacs A., Konings R.J.M. // Thermodynamic Properties of the Lanthanide(III) Halides. Handbook on Physics and Chemistry of Rare Earths. Vol. 33. Ed. by Gschneider K.A., Jr., Bunzli J.-C.G., Pecharsky V.K. NewYork: Elsevier, 2003. P. 147–247.

10. *Червонный А.Д., Червонная Н.А.* // Журн. физ. химии. 2007. Т. 81. № 11. С. 1956.

- 11. Толмач П.И., Горбунов В.Е., Гавричев К.С., Горюшкин В.Ф. // Там же. 1990. Т. 64. № 4. С. 1088.
- 12. Горбунов В.Е., Гуревич В.М., Гавричев К.С. // Там же. 1982. Т. 56. № 1 С. 235.
- Иориш В.С., Толмач П.И. // Там же. 1986. Т. 60. № 10. С. 2583.
- Barin I. // Thermochemical data of pure substances. Weinheim, New York, Basel, Cambridge, Tokyo. Third Edition, 1995.
- Thermodynamic Properties of Inorganic Materials. Landolt-Börnstein Group IV (Physical Chemistry), volume 19 Publisher: Springer Berlin/Heidelberg 1999. ISBN: 3540653279. Editor: Lehrstuhl für Werkstoffchemie, Rheinisch-Westfälische Technische Hochschule Aachen (on behalf of SGTE). Authors: Scientific Group Thermodata Europe (SGTE).
- Лидин Р.А., Андреева Л.А., Молочко В.А. // Константы неорганических веществ. Справочник, 2-е изд. М.: Дрофа, 2006.
- 17. *Wicks C.E., Block F.E. //* Thermodynamic Properties of 65 Elements: Their Oxides, Halides, Carbides and Nitrides. U. S. Bureau of Mines. 1963. Bulletin 605.
- Kubaschewski O., Evans E.L., Alcock C.B. // Metallurgical Thermochemistry. London: Pergamon Press, 1967. Japanese ed. 1968.
- Barin I., Knacke O., Kubaschewski O. // Thermochemical properties of inorganic substances. Springer-Verlag Berlin Heidelberg New York Verlag Stahleisen m. b. H. Düsseldorf. 1977.
- Pankratz L.B. // Thermodynamic Properties of Halides. U. S. Bureau of Mines. 1984. Bulletin 674.
- Dworkin A.C., Bredig M.A. // High Temp. Sci. 1971.
 V. 3. P. 81.
- 22. Dworkin A.C., Bredig M.A. // J. Phys. Chem. 1960. V. 64. P. 269.
- Jantsch G., Jawurek H., Skalla N., Gawalowski H. // Z. Anorg. Allgem. Chem. 1932. V. 207. S. 353.
- 24. Поляченок О.Т., Новиков Т.И. // Журн. неорган. химии. 1963. Т. 8. № 12. С. 2818.
- Corbett J.D., Pollard D.L., Mee J.E. // Inorgan. Chem. 1966. V. 5. № 5. P. 761.
- Klemm W., Biltz W. // Z. Anorg. Allgem. Chem. 1926. V. 152. S. 225.
- 27. Kleinheksel J.H., Kremers H.C. // J. Amer. Chem. Soc. 1928. V. 50. P. 959.
- Spedding F.H., Daane A H. // Metallurg. Rev. 1960.
 V. 5. P. 297.
- Пашинкин А.С., Дробот Д.В., Шевцова З.Н., Коршунов Б.Т. // Журн. неорган. химии. 1962. Т. 7. № 12. С. 2811.
- Пустильник А.И., Сахаров Б.А., Седых Т.С., Дубчак Р.В. // Журн. физ. химии. 1970. Т. 44. № 11. С. 2947.
- Mochinaga J., Irisawa K. // Bull. Hem. Soc. Japan. 1974. V. 47. № 2. P. 364.
- Igaraschi K., Mochinaga J. // Z. Naturforsch. 1987. V. A42. S. 777.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 7 2019

- 33. *Montgomery R.L., Huber T.D.* // U.S. Bur. Mines Rep. Inv. no. 5659. 1960.
- 34. *Konings R.J.M., Malmbeck R., Serp J.* // J. Nucl. Science and Technology. 2002. Supplement 3. P. 906.
- Wang X.-Y., Jin T.Z., Goudiakas J. // J. Chem. Thermodynamics. 1988. V. 20. P. 1195.
- Papatheodorou G.N. // J. Chem. Phys. 1977. V. 66. P. 2893.
- 37. Saboungi M.-L., Price D.L., Scamehorn C. // Int. Cent. Theor. Phys. [Prepr.]. 1990. № 41. P. 1.
- 38. *Saboungi M.-L., Price D. L., Scamehorn C., Tosi M.P.* // Europhys. Lett. 1991. V. 15. № 3. P. 283.

- 39. *Tosi M.P., Pastore G., Saboungi M.-L., Price D.L.* // Int. Cent. Theor. Phys. [Prepr.]. 1991. № 55. P. 1.
- 40. Tosi M.P., Pastore G., Saboungi M.L., Price D.L. // Physica Scripta. 1991. V. 39. P. 367.
- 41. *Pastore G., Akdeniz Z., Tosi M.P.* // Int. Cent. Theor. Phys. [Prepr.]. 1991. № 123. P. 1.
- 42. *Pastore G., Akdeniz Z., Tosi M.P.* // J. Phys. Condens. Mater. 1991. V. 3. № 42. P. 8297.
- 43. Akdeniz Z., Tosi M.P. // Proc. Roy. Soc. London. A. 1992. V. 437. P. 85.
- 44. Okamoto Y., Hayashi H., Ogawa T. // J. Nucl. Mater. 1997. V. 247. P. 86.