СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 548.18; 544.147; 54.165

ОЦЕНКА СТАБИЛЬНОСТИ СТРУКТУРЫ МАХ-ФАЗ СОСТАВА Ті₃AlC_{2 – x}B_x НА ОСНОВЕ КВАНТОВО-ХИМИЧЕСКИХ РАСЧЕТОВ

© 2019 г. С. В. Коновалихин^{а,*}, А. И. Мингазов^а, С. А. Гуда^b, Д. Ю. Ковалев^а

^а Российская академии наук, Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова, 142432, Московская область, Черноголовка, Россия

^b Южный федеральный университет, 344090, Ростов-на Дону, Россия

*e-mail: ksv17@ism.ac.ru Поступила в редакцию 03.07.2018 г. После доработки 15.11.2018 г. Принята к публикации 20.11.2018 г.

Для оценки возможности получения MAX-фазы состава $Ti_3AlC_{2-x}B_x$ (0.5 $\le x \le 2$) проведены квантово-химические расчеты (КХР) по программе VASP. Показано, что изоморфное замещение атомов С атомами В дестабилизирует систему, но не разрушает ее. По данным КХР рассчитаны теоретические рентгенограммы. Выявлены различия рентгенограмм кристаллов Ti_3AlC_2 и $Ti_3AlC_{2-x}B_x$ (0.5 $\le x \le 2$), по которым можно будет доказать замещение атомов С атомами В.

Ключевые слова: MAX-фазы $Ti_3AlC_{2-x}B_x$, стабильность новых фаз, квантово-химические расчеты **DOI:** 10.1134/S0044453719070112

В настоящее время известно около 70 соединений, относящихся к МАХ-фазам – тройным соединениям, описываемым формулой M_{n + 1}AX_n с гексагональной плотной упаковкой, где М – переходный металл, А – элемент А-подгруппы таблицы Менделеева, Х – углерод или азот [1]. Подобные соединения имеют слоистую кристаллическую структуру, в которой карбидные или нитридные блоки [M_{n + 1}X_n] разделены монослоями атомов элементов IIIА и IVА групп. Слоистость на уровне кристаллической структуры приводит к выраженному ламинатному строению зерна МАХ-фазы с толшиной слоев до нескольких десятков нанометров. Благодаря структуре материалы на основе МАХ-фаз сочетают свойства металлов и керамики [2]. Подобно керамике, они имеют низкую плотность, обладают высокими модулями упругости, жаростойкостью и жаропрочностью [3-5]. В то же время, они электро- и теплопроводны, обрабатываются резанием, имеют высокую термостойкость и трещиностойкость. Известно, что МАХ-фазы могут образовывать твердые растворы с частичным замещением атомов М и А атомами близких по периодической таблице элементов [6-10]. Изоморфное замещение одного элемента другим приводит к изменению механических и теплофизических свойств материала и представляет интерес с точки зрения создания функциональных материалов на основе четверных и более соединений со слоистой структурой. Вопрос о возможности частичного замещения атомов X (углерода или азота) в карбидных или нитридных слоях $[M_{n+1}X_n]$ атомами бора представляется важным. Соединений со структурой MAX-фаз, где атомы бора находятся в блоках $[M_{n+1}B_n]$ неизвестно. Попытки получить MAXфазу, в которой часть атомов углерода замещена атомами бора, оказались неудачными – синтезированные материалы представляли собой композит MAX-фаза – диборид [11]. Борирование поверхности MAX-фазы Ti₂AlC, приводило к образованию слоя, содержащего фазы TiB₂ и TiC [12]. Попытка создать MAX-фазу, содержащую бор Ti-Ge-B также оказалась неудачной [13]. Вместе с тем близость атомных радиусов бора, азота и углерода свидетельствует о потенциальной возможности существования подобных фаз.

Цель настоящей работы — проведение квантово-химических расчетов (КХР) модельных кристаллов Ti_3AlC_2 с изоморфным замещением атомов С на атомы В, определение их энергетической стабильности и параметров элементарной ячейки.

МЕТОД РАСЧЕТА

КХР проводили в программе VASP версия 5.2 на кластере "Блохин" Южного федерального университета (г. Ростов-на-Дону) [14, 15]. Расчеты, основанные на теории функционала плотности (DFT), проводили методом обобщенного градиента (GGA) с использованием обменно-корреля-

Рис. 1. Проекция кристаллической структуры Ti₃AlC₂ на плоскость 0*ас* ячейки.

ционного функционала PBE (Perdew–Burke– Егиzerhof) [16]. Для оценки энергии структуры применяли метод расширенных плоских волн РАШ. В ходе расчетов оптимизировали параметры элементарной ячейки, учитывали спиновую поляризацию. Для оценки наиболее эффективной матрицы *k*-point проводили расчеты структуры Ti_3AIC_2 в приближениях 2 × 2 × 2 (общая энергия $\varepsilon_{total} = -99.721$ эВ/моль), 3 × 3 × 3 ($\varepsilon_{total} =$ -100.093 эВ/моль), 4 × 4 × 4 ($\varepsilon_{total} = -99.864$ эВ/моль) и 6 × 6 × 6 ($\varepsilon_{total} = -99.793$ эВ/моль). Наиболее стабильна структура с *k*-point 3 × 3 × 3. Похожий результат был получен ранее [17, 18] при расчетах МАХ-фаз состава 312. Расчеты теоретических рентгенограмм и рисунки структур выполнены в программе Mercury 3.2 [19].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Кристаллы Ti_3AlC_2 относятся к гексагональной сингонии, пространственная группа $P6_3/mmc$. По данным рентгеноструктурных исследований (РСИ) кристаллы имеют слоистую структуру (рис. 1) [20, 21], в которой слои из атомов Al чередуются с титан-углеродными слоями вдоль оси *с* элементарной ячейки. В ячейке расположены четыре атома углерода, обозначенных на рисунке цифрами 1-4. В расчетах указанные атомы последовательно замещали атомами B.

Выявлено хорошее совпадение параметров ячейки кристаллов Ti_3AlC_2 с результатами РСИ [20, 21] (табл. 1). Последнее дает основание пред-полагать, что структуры борозамещенных анало-

гов будут предсказаны с высокой степенью достоверности.

Расчет общей энергии системы показал, что замещение С на В не разрушает структуру, т.е. она может существовать. Замещение 25% атомов С на В повышает энергию кристалла на 3.888 эВ/моль (табл. 1), что обусловлено уменьшением числа валентных электронов и появлением более слабых связей Ті-В. Более низкая энергия связей Ті-В. по сравнению с Ті-С следует из более низкой теплоты образования моноборида титана (1.66 эВ/моль) по сравнению с монокарбидом титана (1.920 эВ/моль) [22]. Увеличение числа атомов бора в структуре вызывает рост общей энергии системы. Тем не менее, структура остается термодинамически устойчивой, а общая энергия Е отрицательна, вплоть до полного замещения атомов углерода на атомы бора. Зависимость энергии решетки от количества атомов бора в ней линейна.

Установлена возможность легирования МАХфаз близкими по периодической таблице элементами. Синтезирован ряд МАХ-фаз с частичным замещением атомов М и А атомами с близким атомным радиусом [6–10]. Изоморфное замещение одного элемента другим ведет к изменению механических и теплофизических свойств материала и представляет интерес с точки зрения создания функциональных материалов на основе четверных и более соединений со структурой МАХ-фазы.

Известно, что МАХ-фазы образуют твердые растворы, и для них выполняется правило Вегарда о линейной зависимости параметров ячейки от концентрации элементов, входящих в состав вещества. Расчеты показали, что параметры а и с ячейки зависят от количества атомов бора не линейным образом (рис. 2а). Такие небольшие отклонения часто наблюдаются у многокомпонентных твердых растворов [23]. Необходимо отметить, что зависимость объема ячейки (V) от содержания бора в ячейке является линейной (рис. 2в). По-видимому, отклонения периода а в большую сторону от прямой линии компенсируются отклонениями периода с в меньшую сторону (рис. 2а). В итоге можно считать, что правило Вегарда выполняется лля соединений

Таблица 1. Результаты расчетов (E – общая энергия, $\Delta E = E(\text{Ti}_3\text{AlC}_{2-x}\text{B}_x) - E(\text{Ti}_3\text{AlC}_2)$, эB/моль)

Параметр	Ti ₃ AlC ₂ [19]	Ti_3AlC_2 [20]	Ti ₃ AlC ₂	$Ti_{3}AlC_{1.5}B_{0.5}$	Ti ₃ AlCB	Ti ₃ AlC _{0.5} B _{1.5}	Ti ₃ AlB ₂
<i>a</i> , Å	3.075(2)	3.072(3)	3.086	3.091	3.098	3.112	3.132
c, Å	18.578(9)	18.73(15)	18.52	18.821	19.114	19.302	19.452
V, Å ³	152.1(4)	153.1(7)	152.8	155.8	158.8	161.9	165.3
E	—	—	-100.093	-96.205	-92.319	-88.260	-84.773
ΔE	_	—	0.0	3.888	7.774	11.833	15.320

Рис. 2. Зависимости параметров (а) и объема ячейки (б) от количества атомов бора в ячейке (х) по данным КХР.

 $Ti_{3}AlC_{2-x}B_{x}$ ($0 \le x \le 2$). Следовательно, линейную зависимость объема ячейки от числа атомов В можно использовать для определения содержания В в реальных кристаллах.

По данным параметрам элементарной ячейки при условии изоморфного замещения позиций атомов углерода бором были рассчитаны теоретические рентгенограммы кристаллов составов Ti_3AlC_2 , $Ti_3AlC_{1.5}B_{0.5}$, Ti_3AlCB , $Ti_3AlC_{0.5}B_{1.5}$ и Ti_3AlB . Сопоставление теоретических и экспериментальных рентгенограмм позволяет выявить особенности рентгенограмм, обусловленные внедрением атома бора в структуру.

Выделено шесть наиболее значимых различий рентгенограмм Ti_3AlC_2 и $Ti_3AlC_2 - {}_xB_x$ (рис. 3, 4).

1. Смещение всех отражений структуры в сторону меньших углов, связанное с увеличением параметров элементарной ячейки при замещении атомов C на B.

2. Расщепление отражения 008 ($2\theta \approx 38.8^{\circ}$) в кристаллах Ti_3AlC_2 на два отражения в кристаллах $Ti_3AlC_{2-x}B_x$ 104 и 008 (рис. 3). С увеличением числа атомов бора в ячейке расщепление становится заметнее.

3. В кристаллах $Ti_3AlC_{2-x}B_x$ появляется отражение 006 ($2\theta \approx 28.8^{\circ}$) (рис. 3), отсутствующее в кристаллах Ti_3AlC_2 . Экспериментально это отражение в кристаллах Ti_3AlC_2 не обнаружено [24– 26].

4. Уменьшение интенсивности отражения 002 $(2\theta \approx 9.5^{\circ})$. По данным РСИ, в кристаллах Ti₃AlC₂ это второе по интенсивности отражение. Его относительная интенсивность (I_{002}) составляет ~45%. По данным моделирования, в кристаллах Ti₃AlB₂ величина $I_{002} \approx 5\%$.

5. Выравнивание интенсивности отражений 102 ($2\theta \approx 33.8^{\circ}$) и 103 ($2\theta \approx 36.8^{\circ}$) в кристаллах Ti₃AlB₂. По экспериментальным данным, в кристаллах Ti₃AlC₂ интенсивность отражения 102 во много раз меньше интенсивности отражения

103 [17, 24, 25]. В некоторых экспериментах это отражение не обнаружено [26].

6. Появление отражения 118 ($2\theta \approx 73.2^{\circ}$) у кристаллов Ti₃AlB₂. В результате отражение 204 ($2\theta \approx 73.5^{\circ}$) кристалла Ti₃AlC₂ расщепляется на два

Рис. 3. Теоретические рентгенограммы кристаллов Ti_3AIB_2 (а) и Ti_3AIC_2 (б) в диапазоне углов $2\theta = 8^\circ - 44^\circ$.

Рис. 4. Теоретические рентгенограммы кристаллов Ti_3AlB_2 (а) и Ti_3AlC_2 (б) в диапазоне углов $2\theta = 65^\circ - 80^\circ$.

(рис. 4). По мере увеличения числа атомов бора в ячейке расщепление становится более заметным. Экспериментальные данные об интенсивности и форме отражения 204 кристаллов отсутствуют Ti_3AlC_2 .

Таким образом, проведенные квантово-химические расчеты показывают возможность изоморфного замещения атомов С атомами В в МАХфазе Ti₃AlC₂. Общая энергия системы остается отрицательной, увеличиваясь на 15.3 эВ/моль при полном замещении атомов углерода на атомы бора. Повышение общей энергии системы кристалла обусловлено уменьшением числа валентных электронов и появлением более слабых связей Ti–B. Показано, что с увеличением содержания бора происходит увеличение параметров ячейки, а зависимость объема ячейки от содержания бора носит линейный характер. Расчеты теоретических рентгенограмм кристаллов, содержащих атомы бора, позволили определить изменения рентгенограмм, происходящие при внедрении атомов бора в структуру.

СПИСОК ЛИТЕРАТУРЫ

- Barsoum M.W. MAX phases. Properties of Machinable Ternary Carbides and Nitrides. Wiley, VCH, 2013. 437 p.
- 2. *Radovic M., Barsoum M.W.* // Amer. Ceramic Soc. Bull. 2014. V. 92. № 3. P. 20.
- 3. *Barsoum M.W., El-Raghy T. //* American Scientist. 2001. V. 89. P. 334.
- 4. *Poon B., Ponson L., Zhao J., Ravichandran G.* // J. Mechanics and Physics of Solids. 2011. V. 59. P. 2238.
- 5. *Md. Atikur Rahman, Md. Zahidur Rahaman //* Amer. J. Modern Physics. 2015. V. 4. № 2. P. 75.
- 6. *Zhimou Liu, Liya Zheng, Luchao Sun et al.* // J. Am. Ceram. Soc. 2014. V. 97. № 1. P. 67.
- Levashov E.A., Pogozhev Y.S., Shtansky D.V., Petrzhik M.I. // Russ. J. Non-Ferrous Metals. 2009. V. 50. P. 151.
- Mockute A., Dahlqvist M., Emmerlich J. et al. // Phys. Rev. V. B87. P. 094113.
- Yang H., Manoun B., Downs R. T. et al. // J. Phys. Chem. Solids. 2006. V. 67. P. 2512.
- Cabioch T., Eklund P., Mauchampa V. et al. // J. Europ. Ceramic Soc. 2013. V. 33. P. 897.
- 11. Chao Li, Meishuan Li, Yanchun Zhou et al. // J. Am. Ceram. Soc. 2007. V. 90. № 11. P. 3615.
- 12. *Haddad A., Chiker N., Abdi M. et al.* // Ceramics Intern. 2016. V. 42. № 14. P. 16325.
- Kephart J.S., Carim A.H. // J. Electrochem. Soc. 1998. V. 145. P. 3253.
- Kresse G., Furtmuller J. // Comput. Mat. Sci. 1996. V. 6. P. 15.
- 15. *Kresse G., Furthmuller J.* // Phys. Rev. 1996. V. 54. P. 11169.
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
- 17. Magnuson M., Palmquist J.-P., Mattesini M. et al. // Phys. Rev. 2005. V. B72. P. 245101.
- Shi Ch., Beidaghi M., Naguib M. et al. // Phys. Rev. Lett. 2014. V. 112. P. 125501.
- 19. *Macrae C.F., Bruno I.J., Chisholm J.A. et al.* // J. Appl. Crystallogr. 2008. V. 41. P. 466.
- Etzkorn J., Ade M., Kotzott D., Kleczek M., Hillebrecht H. // J. Solid State Chem. 2009. V. 182. P. 995.
- 21. Wu Erdong, Wang Jingyang, Zhang Haibin et al. // Materials Letters. 2005. V. 59. P. 2715.
- 22. Лучинский Г.П. Химия титана. М.: Химия, 1971. 471 с.
- 23. *Урусов В.С., Таусон В.Л., Акимов В.В.* Геохимия твердого тела. М.: ГЕОС, 1997. 500 с.
- 24. Bei G.P., Gauthier-Brunet V., Tromas C., Dubois S. // J. Am. Ceram. Soc. 2012. V. 95. № 1. P. 102.
- Xiaohui Wang, Yanchun Zhou // J. Mater. Chem. 2002. V. 12. P. 455.
- 26. *Liang B., Wang M., Han X. et al.* // Bull. Mater. Sci. 2010. V. 33. № 4. P. 401.