ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2019, том 93, № 7, с. 1111–1117

## ФОТОХИМИЯ И МАГНЕТОХИМИЯ

УДК (535.21+541.14 + 541.61):556.33

# МЕХАНИЗМЫ ФОТОДИССОЦИАЦИИ РИДИМЕРОВ АМИНОАЗОБЕНЗОЛА НА МОНОМЕРЫ ПО ДАННЫМ ЛАЗЕРНОГО УЛЬТРАВЫСОКОСКОРОСТНОГО ЗОНДИРОВАНИЯ

© 2019 г. Ю. А. Михеев<sup>*a*,\*</sup>, Ю. А. Ершов<sup>*b*</sup>

<sup>а</sup> Российская академия наук, Институт биохимической физики им. Н.М. Эмануэля, Москва, Россия <sup>b</sup> Московский государственный технический университет им. Н.Э. Баумана, Москва, Россия

\* *e-mail: mik@sky.chph.ras.ru* Поступила в редакцию 28.11.2018 г. После доработки 28.11.2018 г. Принята к публикации 03.12.2018 г.

Проведен анализ данных по лазерному ультравысокоскоростному зондированию фотовозбужденных состояний *транс*-аминоазобензола (*t*-AAB) методами ультрабыстрых транзитных линз (UTL) и транзитной абсорбционной спектроскопии (TAS). В основу анализа положено ранее разработанное представление о ридимерном строении азокрасителей. Показано, что опубликованные в литературе UTL- и TAS-сигналы аминоазобензола (растворы в этаноле и гептаноле), имеющие одинаковые кинетические законы затухания (в случае UTL это – снижение фотоиндуцированного показателя преломления растворителей, а в случае TAS это – транзитные фотовозбужденные VIS-состояния красителя) в действительности отражают действие механизма диссоциации ридимеров на две пары мономеров. При этом одна пара (из нейтральных мономеров) релаксирует с восстановлением исходного ридимера *t*-AAB<sub>2</sub> по двум экспоненциальным кинетическим кривым с константами (характеристическими временами) 0.7 и 2 пс (UTL), 0.6 и 1.9 пс (TAS). Другая пара включает в себя мономер *t*-AAB и мономер, обладающий двумя катионами фениламинильного типа и Vis-поглощением в интервале длин волн 500–750 нм; мономер претерпевает *транс—цис*-изомеризацию по моноэкспоненциальной кинетике с константой 0.3 пс (UTL) и 0.2 пс (TAS).

*Ключевые слова:* аминоазобензол, ридимеры, катионы фениламинильного типа, фоторасщепление ридимеров, *транс–цис*-изомеризация, импульсная лазерная UTL- и VIS-спектроскопия **DOI:** 10.1134/S0044453719070185

В работах [1–7] установлено, что простые красители на основе аминоазобензола в своем основном состоянии являются ридберговскими димерами (ридимерами). Межмономерная связь в ридимерах — ковалентная связь нового типа образуется в результате спаривания электронов, промотированных с  $sp^2$ -орбиталей атомов N азогрупп на ридберговские 3*s*-орбитали азогрупп. При этом характерная для азокрасителей цветность связана не с их хиноидными мономерами, как полагали более 100 лет, а с принадлежащими ридимерам катионами фениламинильного типа (CPhAT).

Результаты работ [1–7] позволяют корректировать достижения предшествующего длительного этапа накопления экспериментальных данных, полученных для аминоазобензольных красителей. Например, в [6] дан анализ спектров резонансной рамановской спектроскопии аминоазобензола, с точки зрения его ридимеров (*t*-AAB<sub>2</sub>). В работе [7] впервые объяснена природа транзитных состояний *t*-AAB<sub>2</sub>, установленных методом ультравысокоскоростной лазерной транзитной абсорбционной спектроскопии (TAS) в [8], и раскрыт механизм транс  $\rightarrow$  цис (*t*  $\rightarrow$  *c*)-фотоизомеризации.

В настоящей работе новые сведения о ридимерном строении аминоазобензольных красителей [1–7] используются при анализе сходства и различия ультравысокоскоростных UTL-сигналов и TAS-спектров, полученных в [8, 9] и традиционно относимых к мономерам *t*-AAB, имеющим следующее строение:

### АНАЛИЗ ДАННЫХ [8, 9]

Авторы [9] опробировали новую ультравысокоскоростную методику UTL исследования фотопроцессов, используя в качестве объекта исследования аминоазобензол и опираясь на традици-

онные и, казалось, прочные представления о мономерном строении аминоазобензольных красителей. Опыты проводили с растворами *t*-AAB (реально t-AAB<sub>2</sub>) в этаноле и гептаноле на установке, позволяющей зондировать изменение показателя преломления среды в зоне фокусировки пучка лазерного излучения. В [9], по аналогии с выводом [8], постулируется, что UTL-сигналы, как и TAS-сигналы, отображают динамику молекулы *t*-AAB. Анализируя кинетику спада UTLсигналов, авторы [9] установили, что она практически полностью повторяет кинетику затухания транзитных Vis-спектров. Вместе с тем, обнаружилось, что исходная амплитуда субпикосекундного UTL-сигнала (с константой  $\tau_1 = 0.3$  пс) у этанольных растворов мнимых молекул *t*-AAB выше, чем у гептановых растворов. Такое влияние растворителя авторы [9] связывают с различием низкоэнергетических либрационных и межмолекулярных колебательных движений в спиртовых слоях, окружающих молекулы *t*-AAB.

Настоящее сообщение преследует цель перевести идеологию работ [8, 9] из плоскости традиционного молекулярного описания свойств *t*-AAB в рамки ридимерной концепции красителя *t*-AAB<sub>2</sub>.

#### Метод ультрабыстрых транзитных линз (UTL)

Спектральный метод UTL служит для регистрации динамики молекул растворенного соединения и растворителя по фотоиндуцированному транзитному изменению показателя преломления (n) среды в условиях его неоднородного распределения по зоне возбуждения. Такое транзитное изменение n относительно исходного  $n_0$  возникает в условиях фотовозбуждения растворенных молекул фокусированным пучком света в результате безызлучательной конверсии энергии возбуждения в тепловое движение молекул среды или вследствие изменения молекулярной конфигурации возбуждаемых молекул.

В работе [9] использовали лазерную установку, генерирующую импульсы возбуждения (ритр) и зондирования (ргове) с одинаковой поляризацией электрического вектора. При этом импульсы зондирования, имеющие  $\lambda_p = 800$  нм и частоту повторения 76 МГц, направляли через линию оптической задержки коллинеарно с импульсами возбуждения ( $\lambda_{ex} = 400$  нм, частота повторения 1.1 МГц, мощность менее 200 пДж/импульс) и фокусировали оба пучка излучения выпуклой линзой с f = 50 мм на ячейке с образцом. Определяли изменение интенсивности излучения в центральной площадке зондового луча. Для выделения центральной площадки зондовый луч пропускали через расположенный на удалении от

образца фильтр, снабженный "булавочным отверстием" (pinhole).

С целью верификации результатов UTL, полученных в [9], были проведены более детальные исследования транзитных состояний мнимых молекул *t*-AAB с помощью метода TAS в кинетическом (time-resolved) варианте в работе [8].

#### Метод ультрабыстрой транзитной абсорбционной спектроскопии (TAS)

Для регистрации TAS-спектров t-AAB<sub>2</sub> использовали импульсную лазерную установку [8, 9], генерирующую излучение с длиной волны  $\lambda =$ = 800 нм и частотой повторения импульсов 1000 Гц. Это излучение расшепляли на лва пучка. Олин из пучков после преобразования с удвоением частоты в видимый (Vis) свет ( $\lambda_{ex} = 400$  нм) использовали в качестве пучка фотовозбуждения (ритр beam) ридимеров (мощность этого пучка составляла менее 200 мкДж). Другой пучок после преобразования в континиум белого света использовали в качестве зондового (probe) пучка, ориентированного под малым углом к пучку возбуждения и фокусированного в ту же точку в кювете с образцом, что и пучок возбуждения. Импульсы зондового пучка генерировали через определенное время задержки, причем малую его часть отделяли в канал сравнения. Облучаемые растворы t-ААВ<sub>2</sub> имели концентрацию 0.3 ммоль/л (в расчете на молекулы).

### Транзитные UTL- и TAS-сигналы ридимеров ААВ<sub>2</sub>

Ридимеры *t*-AAB<sub>2</sub>, растворенные в этаноле и гептаноле, облучали импульсами Vis-света с  $\lambda_{ex} = 400$  нм, полагая, что имеют дело с возбуждением индивидуальных молекул *t*-AAB на *S*<sub>2</sub>-уровень [8, 9].

#### Сигналы UTL

Установлено, что импульсное возбуждение  $(\lambda_{ex} = 400 \text{ нм}) \text{ AAB}_2$  [9] вызывает мгновенный рост интенсивности излучения (*I*) в зондовом пучке вследствие мгновенного роста показателя преломления (*n*), связанного с оптическим эффектом Керра (ОКЕ,  $n_{OKE} - n_0 > 0$ ). Этот эффект проявляется и в чистых растворителях вследствие мгновенного отклика их электронов на световое воздействие, ведущего к появлению транзитных линз с положительным фокусом (рис. 1, кривая *I*). Спад интенсивности ОКЕ-сигнала наступает практически при нулевом времени задержки зондового пучка.

На рис. 1 сплошная кривая 2 соответствует суммарному UTL-сигналу, в котором на спадающую ветвь OKE-сигнала налагается индуциро-



**Рис. 1.** UTL-сигналы этанола (*1*) и этанольного раствора *t*-AAB<sub>2</sub> (*2*), а также UTL-сигнал, полученный путем расчета (*3*). Данные [9]. (Пояснения в тексте).

ванное фотовозбуждением снижение интенсивности зондовых импульсов за счет появления дефокусирующей транзитной UTL-линзы с отрицательным фокусом. Появление такой линзы связывают с безызлучательной передачей энергии возбуждения молекулам среды, вызывающей снижение показателя преломления  $(n_0 - n > 0)$ .

Расчетная обработка кривой *1* на рис. 1, проведенная с разделением сигналов ОКЕ и UTL [9], показала, что наблюдаемый вслед за ОКЕ спад сигнала UTL соответствует сумме трех экспоненциальных кривых (табл. 1 в [9]). Одна из них имеет характеристическое время  $\tau_1 = 0.3$  пс, вторая –  $\tau_2 = 0.7$  пс и третья –  $\tau_3 = 2$  пс.

Следует отметить, что в ходе своей релаксации UTL-сигнал предполагаемых свободных молекул *t*-AAB снижается в область отрицательных значений (рис. 1, кривая 2), после чего растет очень медленно, практически до постоянной отрицательной величины, не достигающей нуля. Указанные выше константы (0.3, 0.7 и 2 пс) были вычислены с учетом этой отрицательной величины сигнала UTL, а наличие данного эффекта было приписано образованию *цис*-формы молекул (*c*-AAB) в предположении, что у них показатель преломления ниже, чем у *транс*-формы. Теоретическая расчетная кривая, представленная точками на рис. 1 (кривая 3), практически совпадает с экспериментальной кривой 2.

Еще была отмечена интересная особенность [9]: UTL-сигнал с самым коротким характеристическим временем 0.3 пс, одинаковый у растворов t-AAB<sub>2</sub> в этаноле и гептаноле, имеет значительно меньшую амплитуду (— 1.4) в случае гептанола, чем в случае этанола (— 2.0) (табл. 1 в [9]). В то же время это различие отсутствовало у других UTL-сигналов, а также у субпикосекундного сигнала ( $\tau$ 



**Рис. 2.** Спектры TAS-состояний *t*-AAB<sub>2</sub> в этаноле при импульсном облучении светом с  $\lambda_{ex} = 400$  нм и различных временах задержки зондирующих импульсов: 1 - 0.1, 2 - 0.5, 3 - 1.0, 4 - 5 пс. Данные [8].

= 0.2 пс) в TAS-спектрах, полученных в целях сопоставления [8, 9]. Данную особенность авторы [9] объяснили высокой чувствительностью исключительно UTL-метода к динамике сольватного окружения при молекулах *t*-AAB, отражающего различия энергии либрационных или межмолекулярных колебаний у молекул этанола и гептанола.

### Сигналы ТАЅ

Что касается TAS-сигналов *t*-AAB<sub>2</sub> в работах [8, 9], то они практически одинаковы для обоих спиртов. На рис. 2 приведены транзитные TASспектры 1-4 для растворов в этаноле, полученные (относительно референтных импульсов канала сравнения) в работе [8] при временах задержки импульсов зондирующих лучей 0.1, 0.5, 1.0 и 5.0 пс соответственно. Здесь спектр 1 имеет широкую полосу TAS в области 410-750 нм и относительно долгоживущую полосу отбеливания (bleachihg) в области поглощения t-AAB<sub>2</sub> при 370-410 нм (ее возвратная эволюция соответствует моноэкспоненциальной функции с характеристическим временем  $\tau = 15$  пс). Спад интенсивности возбужденных TAS-состояний в интервале  $\lambda = 600 - 725$  нм описывается [8] тремя экспоненциальными функциями. Наиболее быстрая компонента TAS с  $\lambda_{max} = 650$  нм и  $\tau_1 = 0.2$  пс фактически соответствует компоненте UTL с  $\tau_1 = 0.3$  пс [9], причем ее наличие в области 500-600 нм практически не определяется.

Две другие TAS-компоненты охватывают одну и ту же спектральную область 410-750 нм и имеют один общий максимум 550 нм (рис. 2). Они спадают медленнее, с характеристическими временами  $\tau_2 = 0.6$  пс и  $\tau_3 = 1.9$  пс и, несмотря на их почти



Схема 1.

трехкратное различие, соответствующие им спектры TAS имеют одинаковую форму, не меняющуюся в ходе их исчезновения.

В конце эволюции наблюдается спектр, соответствующий раствору, обедненному исходным *t*-ААВ<sub>2</sub> и обогащенному цис-формой (с-ААВ). Согласно [8, рис. 3], доля восстановления *t*-AAB соответствует  $\sim 75\%$ , тогда как  $\sim 25\%$  превращается в с-ААВ. Авторы [8] обсуждают ТАЅ-сигналы t-ААВ<sub>2</sub>, учитывая UTL-результаты [9]. При этом они приписывают быструю транзитную компоненту (0.2 пс, область 600-750 нм) процессу конверсии энергии возбуждения молекул с S<sub>2</sub>-уровня  $(\pi, \pi^*$ -состояние) на  $S_1$ -уровень (" $n, \pi^*$ -состояние"). Наличие двух компонент спада в спектральной области 410–750 нм с  $\tau_2 = 0.6$  пс и  $\tau_3 =$ = 1.9 пс, имеющих одинаковую форму спектров, они связывают, не объясняя причины, с существованием двух разных путей спада " $n.\pi^*$ -состояния" в основное  $S_0$ -состояние молекул *t*-AAB.

Следует подчеркнуть несостоятельность использованной в [8] трактовки природы  $\pi \to \pi^*$ - и  $n \to \pi^*$ -полос у *t*-AAB<sub>2</sub>. Так, согласно [4], действительное положение  $n \to \pi^*$ -полос у *t*-AAB<sub>2</sub> локализовано в UV-области спектра, а полоса *t*-AAB<sub>2</sub> с  $\lambda_{\max}$  при 390 нм соответствует  $\pi \to \pi^*$ -переходу  $S_0 \to S_1$  в катионах фениламинильного типа (CPhAT). Следует также отметить, что был оставлен без объяснения и тот, отмеченный в [8] факт, что в области 410–470 нм, где имеется перекрывание транзитного поглощения с транзитной полосой отбеливания исходного красителя *t*-AAB, оптическая плотность (*D*) сначала увеличивается (рис. 2, кривая *2*), а затем снижается в область с отрицательными значениями *D*.

### Механизм фотопревращения ридимеров t-AAB<sub>2</sub>

Процессу фотоизомеризации *t*-AAB предшествует диссоциация ридимеров *t*-AAB<sub>2</sub> на мономеры [7]. Брутто-механизм фотоизомеризации подробно рассмотрен в [7].

### Механизм образования возбужденных франккондоновских состояний t-AAB<sub>2</sub>

В основном состоянии *t*-AAB<sub>2</sub> наиболее значимыми электронными (*e*) конфигурациями для фотопревращения являются равновесные *e*-конфигурации [7]:

В схеме 1 точки под атомами N обозначают электроны на sp<sup>2</sup>-орбиталях, а точки над N – электроны на *p*<sub>7</sub>-орбиталях. Между азогруппами мономеров показаны ридберговские ковалентные связи из двух электронов, промотированных с *sp*<sup>2</sup>-орбиталей азогрупп на *R*<sub>3s</sub>-орбитали. В каждом мономере *sp*<sup>2</sup>-орбиталь, потерявшая электрон, наделяет свой атом N положительным зарядом. На  $p_{2}$ -орбиталь этого атома N стягивается электрон с  $p_{\tau}$ -орбитали соседнего атома N (имеющего неподеленную электронную пару на  $sp^2$ -орбитали). Данная ситуация имеет место в каждом мономере ридимера. Потерявшие  $sp^2$ -электроны атомы N мономеров индуцируют положительные заряды на  $p_z$ -орбиталях соседних атомов N, и последние поляризуют электронные p<sub>z</sub>-системы в сопряженных кольцах с образованием катионов фениламинильного типа.

Ридимеры (1b) в схеме 1 образуются вследствие того, что атомы азота аминных групп в ридимерах (1a) подают по электрону в соседние фениленовые кольца, которые становятся донорами электронов для катионов CPhAT (Ph<sup>+</sup>N<sup>+</sup>) в противолежащих мономерах. В результате этого между мономерами в ридимере появляются еще две одноэлектронные связи и возникают наиболее устойчивые *e*-таутомеры (1b). В них между противолежащими катионами обоих мономеров действуют одноэлектронные связи по типу связей, существующих в катионе  $H_2^+$  [3–7]. Эти связи фиксируют четыре катиона фениламинильного типа, обладающие интенсивными полосами Visпоглощения в области 310–470 нм ( $\lambda_{max} \sim 382$  нм,

Из изложенного выше следует, что использованное в [8, 9] импульсное лазерное излучение с  $\lambda_{ex} = 400$  нм должно поглощаться преимуще-

растворитель *t*-ААВ<sub>2</sub> ацетонитрил [6]).



Схема 2.

ственно *е*-таутомером (1b), играющим роль главного абсорбера в Vis-области 310–470 нм.

Согласно схеме 1, *е*-таутомер (1b) должен иметь две налагающиеся друг на друга полосы поглощения света от двух разных по строению хромогенов CPhAT:  $R_2N^{\bullet+}P\hbar^+N^{\bullet\bullet}$  и Ph<sup>+</sup>N<sup>+</sup>. Анализ трансформаций *е*-конфигураций, образующихся при фотовозбуждении этих катионов, показал наличие процесса расщепления ридимеров на мономеры вследствие того, что поглощение катионами  $R_2N^{\bullet+}P\hbar^+N^{\bullet\bullet}$  и Ph<sup>+</sup>N<sup>+</sup> света с  $\lambda_{ex}$  вызывает в них чередование электронных *е*-конформаций с разрывом межмономерной ридберговской связи  $R_{3s}$ - $R_{3s}$ . Цепочки *е*-конфигурационных трансформаций у обоих катионов приводят к одинако-

вому результату [7] с образованием приводят к одинаковому результату [7] с образованием приведенных ниже франк-кондоновских состояний: В схеме 2 отображен тот факт, что в обоих слу-

чаях создаются две неодинаковые франк-кондоновские пары мономеров (2с) и (2d) примерно в равных количествах. Пара (2c) состоит из мономеров *t*-AAB, а пара (2d) – из мономера *t*-AAB и поляризованного мономера с двумя катионами фениламинильного типа и с сильно ослабленной связью  $N_{++}^{++} = N_{++}^{++}$  в азогруппе. Электрические заряды поляризованного мономера уравновешиваются двумя отрицательными зарядами электронов, промотированных на ридберговскую орбиталь  $R_{3s}^{++}$ .

#### Механизм изомеризации

Вступать в процесс *t*—*c*-изомеризации способны только поляризованные мономеры из пары (2d). Дело в том, что неполяризованные мономеры *t*-AAB (в парах (2c) и (2d)) имеют нормальную двойную связь N=N, сильно затрудняющую  $t \rightarrow c$ -изомеризацию. Наоборот, изомеризация поляризованных мономеров, содержащих группу  $N_{\bullet+}^{\bullet+} = N_{\bullet+}^{\bullet+}$ , облегчается наличием в них ослабленной азосвязи в сочетании с сильным кулоновским отталкиванием положительно заряженных атомов азота. Именно изомеризация поляризованных мономеров с группой  $N_{\bullet+}^{\bullet+} = N_{\bullet+}^{\bullet+}$  объясняет тот факт [7],

что доля образующихся молекул *цис*-изомеров (*с*-AAB) составляет всего около четверти от числа всех мономеров [8], входящих в *t*-AAB<sub>2</sub>.

То, что именно мономер с группой  $N_{\bullet+}^{\bullet\bullet} = N_{\bullet+}^{\bullet+}$  претерпевает *t*-*c*-изомеризацию, однозначно идентифицируется по наличию транзитной длинноволновой полосы Vis-поглощения в области 600–750 нм с  $\lambda_{max} = 650$  нм (рис. 2, кривая *I*). Такие же Vis-полосы имеют соединения с двумя катионами CPhAT, сочлененными сходным образом, в дипротонированном азобензоле Ph<sup>+</sup>HN<sup>+</sup>-N<sup>+</sup>HPh<sup>+</sup> [10], дикатионе Ph<sup>+</sup>N<sup>+</sup>-N<sup>+</sup>Ph<sup>+</sup> возбужденного азобензола [11] и трипротонированном диметиламиноазобензоле (CH<sub>3</sub>)<sub>2</sub>H<sup>+</sup>Nph<sup>+</sup>HN<sup>+</sup>-N<sup>+</sup>HPh<sup>+</sup> [1].

Во всех этих случаях полосы Vis-поглощения отдельных катионов CPhAT заменяются длинноволновыми полосами Vis-поглощения в соответствии с действием квантово-волнового механизма [1-7, 10, 11], описанного Симпсоном на примере азобензола (АВ) [12]. Согласно [12], два фенильных кольца АВ, лежащие в одной плоскости, не имеют  $\pi$ -сопряжения друг с другом и рассматриваются как квантово-волновые резонаторы. Взятые в отдельности, эти резонаторы имеют одинаковые энергетические (вырожденные)  $\pi^*$ -состояния (UV-полоса отдельного резонатора (PhN=) находится при 40 000 см<sup>-1</sup> (250 нм [12])). В условиях образования бинарных резонаторов в молекуле АВ вырождение снимается вследствие делокализации энергии возбуждения между ними. Связанное с этим расщепление их π\*-уровней приводит к появлению характеристической для АВ полосы с  $\lambda_{max} = 320$  нм. Реализация аналогичной ситуации в случае *t*-AAB<sub>2</sub> соответствует переходу единичных CPhAT-хромогенов в бинарные хромогены.

Изложенное выше позволяет заключить, что наиболее быстрая компонента сигнала TAS с константой  $\tau_1 = 0.2$  пс и с полосой поглощения света в области 600–750 нм ( $\lambda_{max} = 650$  нм) [8] и наиболее быстрая компонента UTL (с  $\tau_1 = 0.3$  пс [9]), характеризуют изомеризацию мономера с группой  $N_{\bullet+}^{\bullet+} = N_{\bullet+}^{\bullet+}$ . Последний образуется в паре (2d) вследствие расщепления *t*-AAB<sub>2</sub>. Становится бо-



Схема 3

лее понятным отмеченный в [8], но оставленный без объяснения, тот факт, что исчезновение VISполосы 600—750 нм на рис. 2, кривая *1* в начале эволюции сочетается с сопутствующим ростом поглощения в области 410—470 нм [8] (рис. 2, кривая *2*). Это можно объяснить нарушением плоского *транс*-строения поляризованных мономе-

ров с группой  $N_{\bullet+}^{\bullet\bullet} = N_{\bullet+}^{\bullet+}$  ((2d) в схеме 2) при изомеризации и исчезновением бинарных хромогенов с VIS-полосой при  $\lambda_{max} = 650$  нм. В начальной фазе изомеризации появляются транзитные индивидуальные катионы CPhAT (Ph<sup>+</sup>N<sup>+</sup>•R<sub>2</sub> и Ph<sup>+</sup>N<sup>+</sup>), которые поглощают свет в области 410–470 нм. Они исчезают в ходе изомеризации в результате рекомбинации их положительных зарядов с электронами ридберговских

орбиталей  $R_{3s}^{\bullet\bullet}$ .

С учетом изложенного становится более понятной и физическая сущность наблюдавшегося в [9] разделения сигнала высокоскоростной компоненты UTL с  $\tau_1 = 0.3$  пс по амплитуде: в среде этанола она более высока, чем в среде гептанола. Можно полагать, что перемещение заряженных фенильных колец в ходе *t*-*c*-изомеризации и связанная с этим рекомбинация зарядов оказывают определенное возмущение на либрационные (межмолекулярные) движения спиртовых молекул в сольватных оболочках при ААВ<sub>2</sub>. Такие возмущения в случае более легких молекул этанола проявляются сильнее, и это отражается в виде более сильного изменения транзитного показателя преломления и соответственно более сильного изменения амплитуды UTL.

### Механизм релаксации электронейтральных мономеров

Мономеры *t*-AAB имеют нормальную двойную связь N=N, сильно затрудняющую  $t \rightarrow c$ -изомеризацию, по сравнению с ослабленной связью в группе N<sup>+•</sup><sub>•+</sub> — N<sup>•+</sup><sub>•+</sub>. По этой причине для электронейтральных мономеров остается только путь возвращения к ридимерам *t*-AAB<sub>2</sub>. Естественно ожидать, что процесс возвращения к ридимерам будет идти значительно легче из франк-кондо-

новских мономерных пар (2с), чем из одиночных *t*-AAB, образующихся в гетеропарах (2d). Вступая в ридимеризацию, каждый мономер *t*-AAB отдает на создание межмономерной связи по электрону, промотированному на ридберговскую орбиталь, как показано на схеме 3:

Согласно схеме 3. образующиеся ридимеры несут на себе бинарные резонаторы из катионов  $Ph^+N^+$  (3а) и  $R_2N^{\bullet\bullet}P\hbar^+N_{\bullet\bullet}^+$  (3b). В каждой паре таких резонаторов происходит расшепление  $\pi^*$ уровней одиночных резонаторов (механизм Симпсона), что приводит к появлению суммарной широкой полосы VIS-поглощения в области 500—750 нм с  $\lambda_{max} \sim 550$  нм [1, 4]. В момент образования взаимно обратимые ридимеры  $(3a) \leftrightarrow (3b)$ получают некоторый избыток колебательной энергии. Сначала этот избыток достаточно высок ("горячее колебательное состояние"), и стадию с константой  $\tau_2 = 0.6$  пс исчезновения TAS-сигнала "горячих" структур (3a)  $\leftrightarrow$  (3b) можно связать с их переходом в термически неравновесное состояние ((1а), (3а)). Снижение степени колебательного возбуждения структур  $(3a) \leftrightarrow (3b)$  приводит к более медленной стадии (с  $\tau_3 = 1.9$  пс) их перехода в термически неравновесное состояние ((1a), (3a)). Затем релаксация структур ((1a), (3a)) в состояние равновесия ведет к восстановлению исходных ридимеров (1a)  $\rightarrow$  (1b).

По мнению авторов [8], созданная фотовозбуждением ридимеров t-AAB<sub>2</sub> TAS-полоса "отбеливания" исчезает в ходе релаксации колебательной энергии "молекул t-AAB", достигших основхарактеристической ного е-состояния, с константой  $\tau = 15$  пс. Теперь это можно связать с релаксацией термически неравновесных ридимеров (1а), (3а) в их наиболее устойчивую равновесную форму ((1b), (2b)). Следует отметить, что в UTL-спектрах сигнал с  $\tau = 15$  пс не наблюдался [9]. Вероятно, это связано с недостаточной чувствительностью методики UTL к локальным зонам с низкой степенью нагрева, остающимся после быстрых UTL-сигналов. Однако такая невысокая степень нагрева влияет на сигналы TAS в соответствии со схемой 1: (1a)  $\rightarrow$  (1b).

Что касается одиночных мономеров *t*-AAB, образующихся в парах (2d), то их превращение в

исходные ридимеры ((1b), (2b)) требует реализации более или менее длительной сталии самодиффузии для встречи и образования пар, соответствующих (2c). Мономеры *t*-ААВ должны иметь очень слабое VIS-поглощение, как у молекул *t*-AB и *c*-AB, по сравнению с исходными ридимерами (2b). Вместе с тем, если учесть, что превращение таких медленно спаривающихся мономеров *t*-AAB в ридимеры тоже должно сопровождаться выделением определенного количества теплоты. велушей к появлению оптических линз, то не исключено, что именно с этим, а не с накопленным с-ААВ, связаны маскировка сигнала UTL с  $\tau = 15$  пс и наличие длительного этапа асимптотического приближения сигнала UTL в отрицательной области к нулевому значению (рис. 1, кривая 2).

Таким образом, концепция ридимерного строения аминоазобензольных красителей и, в частности ридимеров *t*-ААВ<sub>2</sub>, является адекватной для описания не только спектроскопии их основного состояния [1–5], резонансной рамановской спектроскопии [6] и ультравысокоскоростной транзитной VIS-спектроскопии [7], но также и его UTL-сигналов. И, как показано в настоящем сообщении, результаты кинетического анализа TAS-сигналов ридимеров *t*-AAB<sub>2</sub> [7, 8] могут служить в качестве референтных данных для кинетической идентификации ультрабыстрых компонент сигнала UTL. Соответственно вместо неверной "молекулярной" модели *t*-AAB, которая использовалась при расшифровке транзитных сигналов в [8, 9], необходимо иметь в виду, что реально имеет место фотовозбуждение t-AAB<sub>2</sub> и оно создает транзитные интермедиаты, каждый

из которых обладает собственной электронной конфигурацией. Следовательно, направление, давно обозначенное акад. А.Н. Терениным как "Фотоника молекул красителей и родственных органических соединений" [13], должно включать в себя и фотонику ридимеров.

### СПИСОК ЛИТЕРАТУРЫ

- 1. *Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. //* Журн. физ. химии. 2017. Т. 91. № 4. С. 672.
- 2. *Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. //* Там же. 2017. Т. 91. № 10. С. 1683.
- 3. Михеев Ю.А., Ершов Ю.А. // Там же. 2018. Т. 92. № 2. С. 267.
- 4. *Михеев Ю.А., Ершов Ю.А. //* Там же. 2018. Т. 92. № 8. С. 1251.
- 5. Михеев Ю.А., Ершов Ю.А. // Там же. 2018. Т. 92. № 10. С. 1552.
- 6. *Михеев Ю.А., Ершов Ю.А. //* Там же. 2019. Т. 93. № 1. С. 148.
- 7. *Михеев Ю.А., Ершов Ю.А. //* Там же. 2019. Т. 93. № 6. С. 946.
- Hirose Ya., Yui H., Sawada Ts. // J. Phys. Chem. A. 2002. V. 106. № 13. P. 3067.
- 9. *Hirose Ya., Yui H., Fujinami M., Sawada Ts.* // Chem. Phys. Letters. 2001. № 341. № 1–2. P. 29.
- 10. *Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. //* Журн. физ. химии. 2015. Т. 89. № 2. С. 243.
- 11. *Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. //* Там же. 2015. Т. 89. № 11. С. 1773.
- Robin M.B., Simpson W.T. // J. Chem. Phys. // 1962.
  V. 36. № 3. P. 580.
- Теренин А.Н. Фотоника молекул красителей и родственных органических соединений. Л.: Наука, 1967. 616 с.