ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2019, том 93, № 8, с. 1224–1231

_ ФИЗИЧЕСКАЯ ХИМИЯ НАНОКЛАСТЕРОВ ____ И НАНОМАТЕРИАЛОВ ____

УДК 535.37

СПЕКТРАЛЬНАЯ И ТЕМПЕРАТУРНАЯ ДИНАМИКА ПРОЦЕССОВ В ВОДНОЙ КАПЛЕ, СОДЕРЖАЩЕЙ МОЛЕКУЛЫ ЭОЗИНА И НАНОЧАСТИЦЫ СЕРЕБРА, ПРИ ЛАЗЕРНОМ ВОЗБУЖДЕНИИ В ИК- И ВИДИМОМ ДИАПАЗОНЕ

© 2019 г. Н. А. Мыслицкая^{*a*,*}, Р. Ю. Боркунов^{*b*}, М. В. Царьков^{*b*}, В. А. Слежкин^{*a*}, И. Г. Самусев^{*b*}, В. В. Брюханов^{*b*}

^{*а*} Балтийский федеральный университет им. И. Канта, Калининград, Россия ^{*b*} Калининградский государственный технический университет, Калининград, Россия * *e-mail: myslitskaya@gmail.com* Поступила в редакцию 13.10.2018 г.

После доработки 11.01.2019 г. Принята к публикации 15.01.2019 г.

Изучены фотофизические и тепловые процессы в капле водного раствора эозина с абляционными наночастицами (HЧ) серебра при двойном лазерном возбуждении – стационарном ($\lambda = 532$ нм) и ИК-импульсном ($\lambda = 10.6$ мкм). Установлено, что после ИК-воздействия возникает долгоживущая люминесценция, обусловленная интеркомбинационными переходами в молекулах, интенсивность которой зависит от концентрации эозина и НЧ и координат области свечения люминесценции в микрообъеме капли. Проведено математическое моделирование процессов температуропроводности и теплопроводности после ИК-воздействия на каплю раствора. Выявлено влияние поверхностных плазмонов НЧ серебра на эффективность тушения термоактивированной люминесценции (ТЛ) капли, константа скорости которой равна диффузионной константе.

Ключевые слова: эозин, абляционные наночастицы серебра, ИК-импульс, двойное лазерное возбуждение, термолюминесценция, температуропроводность, теплопроводность

DOI: 10.1134/S004445371908020X

Исследование физико-химических процессов в капле жидкости имеет громадное практическое и фундаментальное научное значение. В научной литературе представлены результаты большого количества экспериментальных и теоретических исследований различных процессов в капле жидкости: диффузия в каплях с биологическими молекулами и металлическими наночастицами (НЧ) с образованием пиннинга при высыхании [1-4], динамика испарения и колебательные процессы в капле [5-7], перенос тепла и концентрационные особенности распределения молекул и НЧ в капле [8-10], взаимодействие лазерного излучения с каплей жидкости [11, 12] и др. Получили развитие простые и недорогие флуоресцентные и многофотонные фосфоресцентные микроскопические методы исследования капель биологических жидкостей [13, 14].

Таким образом, капля гомогенных и коллоидных растворов веществ — актуальный предмет исследования. В БФУ им. И. Канта создан лазерный комплекс [15] с двойным лазерным фотовозбуждением люминесценции молекул красителей в капле с НЧ металлов и биологических объектов в видимом и инфракрасном (Vis-IR) диапазоне частот. Это позволило получить новые данные по процессам деградации электронно-колебательной энергии и распределения тепловой энергии в различных объемах капли, изучить кинетику переноса тепла и плазмонной энергии между НЧ серебра в объеме и исследовать спектральные зависимости молекулярной люминесценции – ТЛ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследовали висячие на стальной игле капли раствора эозина ($C = 2 \times 10^{-4}$ M) с различными концентрациями НЧ серебра (средний радиус $r \sim 38$ нм), приготовленного на бидистиллированной воде. НЧ получали методом лазерной абляции пластины серебра в воде на фемтосекундном лазерном комплексе Avesta TETA-25 в режиме: $\tau = 60 \text{ фмс}, W = 120 \text{ нДж}$ (рис. 1). Диаметр капли (1.7–1.92 мм) оценивали с помощью микроскопа и видеокамеры. Спектральные и кинетические характеристики люминесценции (флуоресцен-

Рис. 1. Схема экспериментальной установки; $1 u 2 - фемтосекундный лазерный комплекс Avesta TETA-25 (<math>\tau = 60 \phi mc$, $W = 120 \mu J_{\rm X}$); 3-6 - импульсный Nd:YAG-лазер LQ929 с блоками преобразования излучения и параметрическим блоком; <math>7 - UK-лазер марки C-20A, работающий в стационарном или импульсном режиме ($\tau_{\rm UK} = 50-200 mc$) на $\lambda = 10.6 mkm$; $8 - полупроводниковый лазер ASG-1032 (<math>\lambda = 532 mm$, W = 1-50 mBT); 9 - висячая капля с блоком воздушного нагревателя и охладителя; <math>10 - монохроматор ML44; $11 - \Phi$ ЭУ, совмещенный со счетчиком фотонов Нататаtsu C8855-01, и фотоприемное устройство на основе ПЗС-линейки (изготовлено в ЛОМО) с временным разрешением $\approx 3.0 mc$; 12 - генератор двухканальный Γ -56; 13 - компьютер; 14 - скоростная видеокамера MotionPro X4 фирмы REDLAKE.

ции, замедленной флуоресценции, фосфоресценции) молекул красителя исследовали на приборе Fluorolog-3 фирмы Horiba (Франция). В состав лазерного комплекса (рис. 1) включены наносекундный параметрический лазер и фемтосекундный лазер с трактом регистрации люминесценции с помощью счетчика фотонов и скоростной MotionPro X4 (фирма REDLAKE). При двойном лазерном Vis-IR-фотовозбуждении сначала возбуждалась стационарная ФЛ капли полупроводниковым лазером ASG-1032 ($\lambda = 532$ нм, W = 1 - 50 мВт), после чего образец возбуждался одиночным импульсом ИК-лазера ($\lambda = 10.6$ мкм) длительностью $\tau_{\rm HK} = 50-250$ мс и фронтом $\Delta \tau_{\rm HK} \approx$ ≈ 1.0 мкс. Капля полностью освещалась Vis-IRизлучением лазеров. Следует отметить, что после $\Delta \tau_{\text{TII}} \approx 10$ с происходили фотохимические процессы деградации капли с красителем и последуюшее полное высыхание капли.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

При воздействии импульсного ИК-излучения на молекулярную систему происходит внутри- и межмолекулярная колебательная релаксация энергии возбуждения и частичное превращение ее в тепловую энергию. Первоначальное стационарное лазерное излучение возбуждает синглетные (S_1) и триплетные (T_1) состояния молекул эозина ($C = 2 \times 10^{-4}$ M) в капле, что позволяет наблюдать флуоресценцию (ФЛ) и замедленную флуоресценцию (ЗФ), а также фосфоресценцию (ФОС) [16]. На рис. 2 представлена диаграмма электронно-колебательных переходов в молекуле эозина ($C = 2 \times 10^{-4}$ М) при двойном лазерном (Vis-IR) фотовозбуждении капли с красителем с возбуждением лазером $\lambda = 532$ нм и ИК-лазером $\lambda = 10.6$ мкм. В подписи к рис. 2 представлены названия электронно-колебательных переходов.

Следует отметить, что для флуоресцеиновых красителей в спирто-водных растворах выполняется правило суммы квантовых выходов $\phi_T + \phi_{\Phi \Pi} =$ = 1, а вероятность внутренней колебательной конверсии (КР) незначительна. При этом 3Ф и ФОС молекул эозина в таких средах имеют квантовый выход свечения одного порядка ≈ 0.0039 [16], а квантовая эффективность 3Ф по нашим измерениям составляет ≈ 0.03. Начальное стационарное лазерное фотовозбуждение $\lambda = 532$ нм создает S_1 - и T_1 -состояния молекул красителя. После воздействия на каплю ИК-импульсом лазерного излучения происходит поглощение энергии молекулами красителя, находящимися одновременно в возбужденных электронных состояниях (S₁, T₁), что вызывает рост колебательной энергии системы и нагрев капли с красителем при энергии поглощения тепловой энергии Q_1, Q_2, Q_3 (см. диаграмму рис. 2).

Современные оценки скорости колебательной релаксации в конденсированных средах при ком-

Рис. 2. Диаграмма электронно-колебательных переходов в молекуле эозина ($C = 2 \times 10^{-4}$ М) при двойном лазерном (Vis-IR) фотовозбуждении капли с красителем: возбуждение лазером $\lambda = 532$ нм флуоресценция (ФЛ); внутренняя конверсия (ВК); инфракрасное возбуждение (ИК) ($\lambda = 10.6$ мкм); колебательная релаксация (КР); замедленная флуоресценция (ЗФ); фосфоресценция (ФОС). Электронные состояния молекулы красителя: S_0 , S_1 , S_2 , T_1 , T_i .

натной температуре дают значения констант $10^{11}-10^{13}$ с⁻¹. В нашем случае в течение действия ИК-импульса $\tau_{\rm UK}$ энергия колебаний молекул красителя в капле жидкости превращается почти мгновенно в тепловую энергию капли с НЧ или без них. Проанализируем каналы преобразования электронно-колебательной энергии в образце после ИК-воздействия.

Нами экспериментально установлено, что ИК-импульс не возбуждает свечения люминесценции молекул эозина в капле, находящихся в основном невозбужденном состоянии, однако при этом происходит нагрев капли с красителем и НЧ серебра энергией Q_1 в соответствии со спектром ИК-поглощения воды [17]. При этом визуально регистрируется оптическая деформация капли в результате теплового "удара" при рассмотрении видеофильма на скоростной видеокамере. При максимальной энергии ИК-импульса > 2 Дж и времени ИК-воздействия $\tau_{\rm UK} > 250$ мс капля с красителем испарялась. Следует заметить, что после ИК-воздействия на каплю без ингредиентов (красителя или НЧ серебра) никаких оптических процессов – рассеяния света, локальных колебаний оптической плотности воды в объеме капли после $\tau_{\rm HK} = 50-250$ мс не наблюда-

Рис. 3. Спектры "холодной" (1, $\lambda_{max} = 542$ нм) – до ИК-импульса и "горячей" люминесценции капли молекул эозина ($C = 2 \times 10^{-4}$ М) после ИК-импульса с длительностью $\tau_{\rm HK} = 100$ мс после регистрации через $\Delta \tau \approx 50$ мс (2, $\lambda_{max} = 544$ нм). Разложение спектра 2 на спектральные гауссовые функции: $3 - \lambda_{max} = 542$ нм, $4 - \lambda_{max} = 566$ нм.

лось. Это означает, что капля оставалась оптически однородной.

Лазерный ИК-импульс возбуждает колебательные уровни молекул эозина в электронном возбужденном состоянии (S_1 , T_1) с выделением энергии Q_2 и Q_3 . Можно предположить, что их значения близки, так как квантовый выход флуоресценции молекул эозина в капле $\phi_{\Phi\Pi} \approx 0.56$ и, следовательно, населенности уровней также примерно одинаковы. Тогда колебательное возбуждение T₁-состояний молекул красителя также составляет долю ≈ 0.5 от тепловой энергии Q_3 . Таэнергия лазерного ИКким образом, возбуждения распределяется по всем колебательным уровням молекул эозина полностью или частично, что приводит к нагреванию капли.

Рассмотрим изменение спектральных и энергетических характеристик свечения люминесценции водной капли с эозином после ИК-импульса. На рис. 3 представлены спектры "холодной", до ИК-импульса, (кривая *1*) и "горячей" люминесценции молекул эозина ($C = 2 \times 10^{-4}$ M) после ИК-импульса с длительностью $\tau_{\rm UK} = 100$ мс после регистрации свечения через $\Delta \tau \approx 50$ мс (кривая *2*). Как видно, наблюдаются спектральный сдвиг в красную область спектра с максимумом 560–580 нм и значительное уширение спектра ФЛ.

Выделение "горячего" спектра люминесценции (ТЛ) производили с помощью стандартного

Рис. 4. Видеокадр висячей капли водных растворов эозина 2×10^{-4} М. Квадратиками отмечены места исследования кинетики термолюминесценции. Справа представлены кривые и времена затухания $\tau_{T,I}$ ТЛ в нижней части капли: молекул эозина в воде (1), с НЧ серебра $c = 1.38 \times 10^{-8}$ М (2) и эозин в воде с 1 мас. % ПВС (3). Длительность ИК-импульса составляла 100 мс.

метода разложения спектра на гауссовые функции [18]:

$$I = I_0 + \frac{A}{w\sqrt{\pi/2}} e^{-\frac{(\lambda - \lambda_{\max})^2}{w^2}},$$
 (1)

где I_0 — фоновое значение интенсивности, λ_{\max} — длина волны люминесценции максимальной ин-

тенсивности, $\frac{A}{w\sqrt{\pi/2}}$ – максимальная высота пика. Из рис. 3 (кривые 3, 4) видно, что спектр ТЛ капли с красителем имеет два максимума – 542 и ~0 нм. Можно предположить, что длинноволновое уширение спектра люминесценции эозина в капле после ИК-воздействия может быть обусловлено тепловым "нагревом" колебательной системы триплетного состояния T_1 с колебательными модами …Н-О-Н…. Действительно, при ИК-воздействии происходит перенос колебательной энергии по всей колебательной системе с молекулами эозина в капле [19, 20], в результате чего усиливается ЗФ [16] молекул красителя. Известно, что увеличение интенсивности ЗФ связано с ростом скорости обратной интеркомбинационной конверсии (ИКК) $T_1 \rightarrow S_1$ [21], которая сильно зависит от интенсивности ИК-лазера. ИК-воздействие оказывает влияние на локальный нагрев колебательных мод деформационных -С-С-и -С-Н-колебаний ароматических колец эозина и мод "H–O–H", что усиливает процесс обратной ИКК, т.е. "заброс" из T_1 - в S_1 -состояние (см. диаграмму). Такой ИКК-переход запрещен по спину, но запрет частично снимается за счет эффекта внутреннего тяжелого атома эозина – Br или I.

Таким образом, после ИК-воздействия на каплю раствора эозина при стационарном излучении лазера $\lambda = 532$ нм наблюдается увеличение интенсивности свечения люминесценции (рис. 3, кривая 2). Было установлено, что после прямоугольного возбуждающего ИК-импульса ($\tau_{\rm UK} = 50-250$ мс) происходило увеличение интенсивности люминесценции капли воды с эозином практически по линейному закону за время $\Delta \tau_{\rm TЛ} \approx \approx 0.1-0.2$ с.

После "отключения" ИК-воздействия и при дальнейшем стационарном возбуждении капли с эозином ($\lambda = 532$ нм) происходило затухание ТЛ капли. Для понимания физических процессов в капле после ИК-воздействия исследована кинетика тушения ТЛ в различных объемах капли. С этой целью разработана программа обработки изображений для независимого анализа затухания ТЛ красителя после ИК-воздействия в нескольких областях (площадь выделенной поверхности $s = 8.29 \times 10^{-2}$ мм²) капли (рис. 4). Использован язык программирования руthon 3.6.5 с библиотекой компьютерного зрения орепсу 3.4.1 и пакетом визуализации данных matplotlib 2.2.2.

Проведены спектрально-кинетические измерения ТЛ в различных областях капли со следующими ингредиентами: эозином, НЧ серебра и поливиниловым спиртом (ПВС). Исследованные зависимости интенсивности свечения ТЛ оказались экспоненциальными функциями:

$$I_{\rm T\Pi} = A \exp(-t/\tau_{\rm T\Pi}), \qquad (2)$$

где $I_{TЛ}$ – интенсивность свечения ТЛ, усл. ед.; A – амплитуда; t – текущее время процесса; $\tau_{TЛ}$ – время затухания ТЛ.

Измерение кинетики и интенсивности свечения ТЛ прекращали через τ ≈ 10 с, в этот момент интенсивность свечения ТЛ достигала начального уровня. В дальнейшем наблюдали фотохимическую деградацию эозина и испарение капли в результате нагрева ИК-излучением. Результаты представлены на рис. 4.

Следует заметить, что спектральное затухание ТЛ регистрировали на длинах волн $\lambda = 540$ и 570 нм (рис. 2) со стандартной ошибкой от 1.06 до 0.979. Лучи лазеров $\lambda = 532$ нм и $\lambda = 10.6$ мкм освещали каплю полностью. При исследовании фотопроцессов в капле с Vis-IR-возбуждением без НЧ серебра установлено, что кинетика затухания ТЛ в различных частях капли различается в пределах 2-3% со стороны вхождения ИК-излучения в каплю и снизу капли. Следует заметить, что ТЛсвечение на задней поверхности капли более длительно, но меньшей интенсивности, что может быть связано с процессами поглощения излучения на длине капли. Таким образом, при данной системе регистрации свечения получаются различные данные об изменении кинетических процессов ТЛ в разных областях капли (рис. 4), которые можно проанализировать методами математического моделирования.

На рис. 5 представлены времена затухания свечения ТЛ капли после ИК-воздействия (*I*), уменьшение интенсивности быстрой флуоресценции $I_{\Phi \Pi}$ водных растворов (*2*) и времена затухания быстрой флуоресценции $\tau_{\Phi \Pi}$ молекул эозина ($C = 2 \times 10^{-4}$ М) в водном растворе (*3*) и в капле раствора от концентрации НЧ серебра. Затухание ТЛ измерено после ИК-воздействия на каплю раствора.

На основе полученных кинетических данных при Vis-IR-возбуждении молекул эозина ($C = 2 \times 10^{-4}$ M) в водной капле провели математическое моделирование тепловых процессов в капле с целью установления параметров деградации и переноса тепловой энергии. Дифференциальные тепловые процессы, возникающие в капле под действием поглощенного ИК-импульса, исследовали с помощью дифференциального уравнения теплопроводности в приближении сферической симметрии распределения температуры в капле с начальными и граничными условиями [22]:

$$\begin{cases} \frac{\partial T(r,t)}{\partial t} = \alpha \Delta T + \frac{W}{c\rho}, & 0 \le r < R, \quad t > 0, \\ T(r,0) = T_0, & 0 \le r < R, \\ \frac{\partial T(R,t)}{\partial r} = -\frac{k}{\chi}, & |T(r,t)| < \infty, \quad t > 0, \end{cases}$$
(3)

где T(r, t) – температура капли в момент времени *t* после ИК-импульса на расстоянии *r* от центра капли; *R* – радиус капли, $r \le R$; *c* – удельная теплоемкость капли; ρ – плотность капли; χ – коэф-

Рис. 5. Фотопроцессы в растворе эозина ($C = 2 \times 10^{-4}$ М): времена затухания τ_{TJ} свечения ТЛ в капле раствора после ИК-воздействия (1); ход интенсивности быстрой флуоресценции $I_{\Phi J}$ (2) и времена затухания флуоресценции $\tau_{\Phi J}$ в растворе (3) от концентрации НЧ серебра радиусом r = 38 нм.

фициент теплопроводности; $\alpha = \frac{\chi}{c\rho}$ – коэффициент температуропроводности; W – постоянная плотность тепловой мощности от точечных источников тепла, равномерно распределенных по объему капли, Bт/м³; k – поверхностная плотность мощности теплоотдачи с поверхности капли (Bт/м²), в рамках данного исследования принятая постоянной. Решением дифференциального уравнения является функция:

$$T(r,t) = -\frac{k}{2\chi R}r^{2} - \frac{3k\alpha}{\chi R}t + \left(T_{0} + \frac{3kR}{10\chi} + \frac{W}{c\rho}t\right) + \frac{2k}{\chi r R}\sum_{i=1}^{\infty}\frac{1}{\lambda_{i}\sqrt{\lambda_{i}}\cos(\sqrt{\lambda_{i}R})}e^{-\alpha\lambda_{i}t}\sin(\sqrt{\lambda_{i}}r),$$
(4)

где $\lambda_i > 0$ — корни уравнения $\sqrt{\lambda_i}R = \text{tg}(\sqrt{\lambda_i}R)$, $i \in N$. Для функции температуры на поверхности капли получаем при r = R = 0.96 мм:

$$T(R,t) = T_0 - \frac{2kR}{5\chi} + \left[\frac{W}{c\rho} - \frac{3k\alpha}{\chi R}\right]t + \frac{2k}{\chi R^2} \sum_{i=1}^{\infty} \frac{R}{\lambda_i} e^{-\alpha\lambda_i t}.$$
(5)

Ряд в выражении (5) — убывающий, в котором каждый следующий член примерно на два порядка меньше предыдущего, поэтому, ограничиваясь первым слагаемым ряда, запишем:

$$T(R,t) = T_0 - \frac{2kR}{5\chi} + \left[\frac{W}{c\rho} - \frac{3k\alpha}{\chi R}\right]t + \frac{2k}{\chi R\lambda_1}e^{-\alpha\lambda_1 t}.$$
 (6)

Если принять, что кинетика затухания ТЛ (I(t)) отражает изменение температуры на поверхности

<i>с</i> × 10 ⁹ , моль/л	А, К	<i>—В</i> , К/с	С, К	<i>t</i> *, c	$\alpha \times 10^8,$ m^2/c	$k \times 10^{-3},$ BT/M ²	<i>p</i> , 1/K	χ, Вт/(м К)
_	150.2	1.09	20.56	2.58	1.77	6.36	0.5377	0.01583
3.46	168	1.78	11.88	2.267	2.01	7.48	0.5384	0.03222
6.91	169.6	2.91	6.755	1.76	2.59	11.7	0.5141	0.0846
13.8	134.7	1.54	8.294	1.107	4.12	6.70	0.4247	0.03265

Таблица 1. Результаты моделирования тепловых процессов в капле с эозином ($C = 2 \times 10^{-4}$ M) и при различных концентрациях НЧ серебра (*c*) после ИК-воздействия

Обозначения: *А, В, С* и t^* – коэффициенты аппроксимации кривой затухания термолюминесценции; α – коэффициент температуропроводности, k – мощность теплоотдачи с поверхности капли, p – коэффициент пропорциональности, χ – расчетная теплопроводность капли.

капли, то мы можем аппроксимировать кривую затухания функцией вида:

$$I(t) = A + Bt + Ce^{-t/t^*},$$
 (7)

где коэффициенты аппроксимации *A*, *B*, *C* и *t** пропорциональны соответствующим коэффициентам уравнения (5):

$$A = p \left(T_0 - \frac{2kR}{5\chi} \right), \tag{8}$$

$$B = p \left[\frac{W}{c\rho} - \frac{3k\alpha}{\chi R} \right], \tag{9}$$

$$C = p \frac{2k}{\chi R \lambda_1},\tag{10}$$

$$t^* = \tau_{\mathrm{T}\mathrm{J}} = \frac{1}{\alpha\lambda_1},\tag{11}$$

где p — коэффициент пропорциональности. При решении системы (8)—(10) для капли с эозином ($C = 2 \times 10^{-4}$ М) и различных концентрациях НЧ с учетом кинетики затухания интенсивности на поверхности капли получаем значение коэффициента температуропроводности

$$\alpha = \frac{\chi}{c\rho} = \frac{1}{\tau_{\text{TJI}}\lambda_1} \tag{12}$$

и величины $A, B, C, t^*, \alpha, \chi, p, k$, которые представлены в табл. 1.

Для оценки величины плотности потока тепла от точечных тепловых источников W учтем, что мощность лазерного ИК-импульса составляет 20 Вт, а излучаемая энергия за 100 мс – $E_{имп} =$ = 2 Дж. Соотношение площадей поперечного сечения луча и капли равно 1.625, поэтому энергия поглощаемая каплей составляет $E_{погл} = 1.28$ Дж. Изменение температуры капли сразу после поглощения ИК-импульса, найденное из уравнения: $Q = E_{погл} = cm\Delta T (c - удельная теплоемкость,$ *m* $– масса капли), составило <math>\Delta T = 82.5$ К. Из кинетических кривых ТЛ (рис. 4) видно, что время релаксации $t_{\rm rel} = 14.3$ с, тогда средняя плотность потока энергии тепловых источников составляет

$$W = \frac{E_{\text{погл}}}{t_{\text{rel}}V_{\text{капли}}} = \frac{E_{\text{погл}}}{t_{\text{rel}}\frac{4}{3}\pi R^3} = 2.42 \times 10^7 \text{ BT/m}^3.$$
(13)

Проанализируем полученные результаты моделирования тепловых процессов в капле как без НЧ серебра, так и в их присутствии. Из табл. 1 видно, что экспериментальные коэффициенты температуропроводности α теплопроводности χ капли растворов и литературные значения для воды существенно отличаются друг от друга (α = = 1.457 × 10⁻⁷ см²/с, χ = 0.61 Вт/(м K)).

Можно предположить, что наличие в растворе молекул красителя ($C = 2 \times 10^{-4}$ М) будет приводить к увеличению коэффициентов температуропроводности и теплопроводности. Однако это различие лежит в пределах одного порядка величин, что для физической интерпретации исследуемых тепловых процессов не имеет значения и может повлиять лишь на величины некоторых коэффициентов. На наш взгляд, самое главное достоинство моделирования — линейное уменьшение времени затухания от концентрации абляционных НЧ серебра в капле.

Нами экспериментально обнаружена близкая к линейной зависимость уменьшения времени затухания эозина в капле воды с НЧ серебра после ИК-воздействия (см. рис. 5, кривая 1). Поскольку теплоемкость серебра (235 Дж кг⁻¹ К⁻¹) во много раз меньше теплоемкости воды (~4000 Дж кг⁻¹ К⁻¹), то каждая НЧ серебра представляет отдельный тепловой центр, температура в котором значительно выше температуры водной оболочки НЧ. Вместе с тем, после ИК-воздействия на каплю с НЧ и красителем, мгновенно (10⁻¹⁰-10⁻¹³ с) устанавливается тепловое равновесие между тепловыми центрами из НЧ серебра и молекулами воды в результате переноса колебательной энергии. При этом наблюдается рост теплопроводности и температуропроводности в капле с увеличением содержания НЧ серебра, которые находятся в объеме капли в виде малых и больших кластеров, с последующим охлаждением среды по экспоненциальной зависимости. Несмотря на различие величин t^* при моделировании и экспериментальных значений $\tau_{TЛ}$ (см. рис. 5, кривая I), тенденция изменения констант скорости затухания ТЛ остается одинаковой, что физически хорошо отражает правильность выбранной модели дезактивации тепловых процессов под влиянием НЧ серебра. Следует также отметить, что в каждой точке процесс затухания ТЛ в капле с НЧ и без них всегда происходил по экспоненциальному закону.

Таким образом, полученные данные по моделированию тепловых процессов после Vis-IRвозбуждения капли с эозином как с НЧ серебра, так и без них, свидетельствуют о том, что эти процессы подчиняются известным физическим законам переноса и передачи [23] тепловой энергии. Однако при добавлении в водную каплю с красителем НЧ серебра происходят значительные изменения оптических и энергетических характеристик ТЛ капли.

Кривая 1 на рис. 5 отражает зависимость времени затухания ТЛ от концентрации НЧ серебра в капле: сначала резкий рост до некоторого значения и затем квазилинейное уменьшение. Для анализа исследования механизма фотопроцессов с эозином и НЧ серебра в конденсированной среде (растворы, полимеры, адсорбенты) в работе [24] были изучены интенсивность быстрой флуоресценции (БФ) и время ее затухания с НЧ серебра. На рис. 5 представлены полученные ранее нами такие зависимости: ход интенсивности I_{ФЛ} (кривая 2) и т_{ФЛ} (кривая 3) молекул эозина с НЧ. Анализируя эти зависимости, можно заметить, что все они имеют примерно одинаковый угол наклона и одинаковый эффект усиления свечения флуоресценции и увеличение времени затухания БФ в диапазоне концентраций НЧ (0-0.025) × 10⁻⁸ М.

Таким образом, на основании изучения фотофизических процессов с участием НЧ серебра можно сделать предположение, что причиной усиления ФЛ и ТЛ молекул эозина в капле с НЧ после ИК-воздействия является резонансное плазмонное усиление электронно-колебательных переходов [25–27]. Вместе с тем, в диапазоне концентраций (0.025–0.425) × 10⁻⁸ М НЧ серебра в растворе или в капле, происходит уменьшение интенсивности свечения ФЛ и ТЛ молекул эозина после ИК-воздействия (см. рис. 5). Можно оценить константу скорости тушения ТЛ молекул эозина в капле раствора НЧ серебра по уравнению Штерна–Фольмера [16]:

$$\tau^{0}_{T\Pi}/\tau_{T\Pi} - 1 = \tau^{0}_{T\Pi}k_{q}[\Delta C_{Ag}],$$
 (14)

где $\tau_{T,T}^0 = 10 \text{ c}$ – начальное время ТЛ при минимальной концентрации НЧ и значение $\tau_{T,T} = 6 \text{ c}$

при максимальной концентрации НЧ в капле в диапазоне (0.085–0.3) × 10⁻¹⁰ М, полученные из рис. 5 (кривая *I*); ΔC_{Ag} – диапазон концентрации тушителей – НЧ; k_q – константа скорости тушения ТЛ. Вычисленная из экспериментальных данных константа скорости тушения $k_q \approx 3 \times 10^9 \text{ c}^{-1} \text{ M}^{-1}$ близка к литературным значениям коэффициента скорости диффузии молекул в водных растворах $k \approx 2 \times 10^{10} \text{ c}^{-1} \text{ M}^{-1}$ [28].

Получено полное совпадение литературных значений констант скорости диффузионных процессов взаимодействия молекул эозина с НЧ серебра в водной капле. Это означает, что механизм ТЛ молекул эозина с НЧ в водной капле после ИК-воздействия соответствует диффузионным процессам обмена нагретыми НЧ серебра.

ЗАКЛЮЧЕНИЕ

В данной работе предложена и апробирована методика двойного лазерного стационарного ($\lambda =$ = 532 нм) и импульсного ($\tau_{\rm UK}$ = 50–250 мс) ИКвозбуждения (λ = 10.6 мкм) капли водного раствора с эозином ($C = 2 \times 10^{-4}$ M) и абляшионными НЧ серебра радиусом r ~ 38 нм (с различными концентрациями). Установлено, что после воздействия ИК-импульса происходит усиление обратной ИКК $T_1 \rightarrow S_1$, скорость которой сильно зависит от интенсивности ИК-лазера. Локальный "нагрев" колебательных мод деформационных — С-С- и -С-Н-колебаний ароматических колец эозина и мод ···H-O-H··· приводит к "забросу" молекул эозина в капле из T_1 - в S_1 -состояние и усилению молекулярной люминесценции. Исследование кинетики люминесценции в капле показало, что наблюдается экспоненциально затухающая ТЛ, интенсивность свечения которой зависит от концентрации НЧ и местоположения выбранной микрообласти свечения люминесценции на поверхности капли. Проведено математическое моделирование процессов температуропроводности и теплопроводности после ИК-воздействия на каплю, в том числе с НЧ серебра, в результате которого определены время затухания термолюминесценции, коэффициенты температуропроводности и теплопроводности, являющиеся линейными функциями концентрации НЧ серебра. Обнаружены генерация поверхностных плазмонов абляционных НЧ серебра под влиянием внешнего электромагнитного поля и их влияние на процессы усиления интенсивности $\mathbf{D}\Phi$. молекулярной люминесценции и ТЛ после ИКвоздействия на каплю раствора эозина. Определена константа скорости диффузионных процессов молекул эозина с НЧ серебра в капле после ИК-воздействия, которая оказалась примерно равной константе скорости молекулярной диффузии в воде.

Работа была выполнена при поддержке Минобрнауки РФ (проект № 3.5022.2017/8.9 в рамках

СПЕКТРАЛЬНАЯ И ТЕМПЕРАТУРНАЯ ДИНАМИКА ПРОЦЕССОВ

Государственного задания Минобрнауки РФ).

СПИСОК ЛИТЕРАТУРЫ

- Popov Yu.O. // Phys. Rev. E. 2005. V. 71. P. 036313-1-17.
- 2. *Тарасевич Ю.Ю.* // Успехи физ. наук. 2004. Т. 174. № 7. С. 779.
- 3. Vafaei S., Purkayastha A., Jain A. et al. // Nanotechnology. 2009. V. 20. Is. 85702. P. 1.
- 4. Яхно Т.А., Яхно В.Г. // ЖТФ. 2017. Т. 87. № 3. С. 323.
- 5. *Журавлев М.В.* // Оптика и спектроскопия. 2009. Т. 106. № 4. С. 606.
- 6. *Морозов А.Н., Скрипкин А.В. //* Изв. вузов. Физика. 2010. № 11. С. 55.
- 7. Hu D., Wu H. // Int. J. Therm. Sc. 2015. V. 96. P. 149.
- Молчанов С.П., Лебедев-Степанов П.В., Алфимов М.В. // Российские нанотехнологии. 2010. Т. 5. № 7. С. 21.
- George O.A., Xiao J., Rodrigo C.S. et al. // Chem. 1 Eng. Sci. 2017. V. 165. Is. 29. P. 33.
- 10. Volkov R.S., Strizhak P.A. // Exp. Therm Fluid Sci. 2018. V. 97. P. 392.
- 11. Апексимов Д.В., Букин О.А., Быкова Е.Е. и др. // Прикладная физика. 2011. № 6. С. 13.
- 12. Волков К.Н., Булат П.В., Ильина Е.Е. // Научнотехнический вестник информационных технологий, механики и оптики. 2016. Т. 16. № 5. С. 764.
- 13. Xiang X., Luo M., Shi L. et al. // Anal. Chim. Acta. 2012. Is. 751. P. 155.
- Koshel E.I., Chelushkin P.S., Melnikov A.S. et al. // J. Photochem. Photobiol., A: Chemistry. 2017. Is. 322. P. 122.

- 15. Samusev I., Borkunov R., Tsarkov M. et al. // J. Phys.: Conf. Ser. 2018. V. 961. P. 012011.
- 16. *Паркер С.* Фотолюминесценция растворов. М.: Мир, 1972. 512 с.
- 17. *Купцов А.Х., Жижин Г.Н.* Фурье-КР- и фурье-ИКспектры полимеров. Справочник. М.: Физматлит, 2001. 656 с.
- Фок В.А. // Тр. ФИАН. Люминесценция и нелинейная оптика. 1972. Т. 59. С. 3.
- 19. *Макаров А.А., Малиновский А.Л., Рябов Е.А. //* Успехи физ. наук. 2012. Т. 182. № 10. С. 1047.
- Chen P.-H., Chen H.-H., Anbarasan R. et al. // IEEE Nanotechnology Materials and Devices Conference Oct 12–15, 2010, Monterey, California, USA. 2010. P. 325–327.
- Lakowicz J.R. Principles of Fluorescence Spectroscopy. Springer Science + Business Media, LLC. 2006. 954 p. ISBN-13: 978-0387-31278-1.
- 22. Джеффрис Г., Свирлс Б. Методы математической физики. М.: Мир, 1970. Вып. 3. 344 с.
- 23. Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967. 597 с.
- 24. Bryukhanov V.V., Minaev B.F., Tcibulnikova A.V. et al. // J. Opt. Technol. 2014. V. 81. Is. 11. C. 7.
- 25. Климов В.В. Наноплазмоника. М.: Физматлит, 2009. 480 с.
- Gaponenko S. Introduction to Nanophotonics. Cambridge, New York.: Cambridge University Press, 2010. 465 p.
- Майер С.А. Плазмоника: теория и приложения. М.-Ижевск: НИЦ "Регулярная и хаотическая динамика". 2011. 296 с.
- Энтелис С.Г., Тигер Р.П. Кинетика реакций в жидкой фазе. Количественный учет влияния среды. М.: Химия, 1973. 416 с.