_ ФИЗИЧЕСКАЯ ХИМИЯ НАНОКЛАСТЕРОВ _____ И НАНОМАТЕРИАЛОВ _____

УДК 544.777

ТРОЙНЫЕ КОМПЛЕКСЫ НАНОЧАСТИЦ ВИСМУТА С **β-ЦИКЛОДЕКСТРИНОМ И ПОЛИВИНИЛПИРРОЛИДОНОМ**

© 2019 г. И. В. Полякова^{*a*,*}, Л. Н. Боровикова^{*a*}, Е. М. Коротких^{*b*}, А. И. Киппер^{*a*}, О. А. Писарев^{*a*,*b*}

^а Российская академия наук, Институт высокомолекулярных соединений, Санкт-Петербург, Россия

^b Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия

* e-mail: pol_irina_val@list.ru

Поступила в редакцию 06.11.2018 г. После доработки 06.11.2018 г. Принята к публикации 20.11.2018 г.

Методами УФ- и видимой спектроскопии и динамического светорассеяния исследованы тройные комплексы наночастиц висмута с β -циклодекстрином и поливинилпирролидоном. Показано, что в зависимости от концентрационного соотношения β -циклодекстрина к поливинилпирролидону в синтетической среде стерическая стабилизация наночастиц висмута осуществлялась либо посредством распределения молекул поливинилпирролидона на поверхности комплекса наночастиц с β -циклодекстрином, либо посредством образования комплексов включения наночастиц в гидрофобные полости молекул β -циклодекстрина в результате "расталкивания" молекулами поливинипирролидона в тройных комплексов, которые агрегативно стабильны в течение 20 суток и характеризуются унимодальным распределением частиц по размеру.

Ключевые слова: синтез наночастиц, висмут, β-циклодекстрин, поливинилпирролидон, агрегативная стабильность

DOI: 10.1134/S0044453719080223

Актуальная задача современной биотехнологии — создание сорбирующих материалов для лечения ран, которые обладают собственной антибактериальной активностью [1—3]. Цель создания таких материалов состоит в преодолении антибиотикорезистентности микроорганизмов путем использования специфических свойств наночастиц, в том числе и наночастиц металлов [4, 5].

Показано [6], что висмут (Ві) и его соединения проявляют высокую антибактериальную активность. Кроме того, Ві относят к "зеленым" элементам, так как он значительно менее цитотоксичен в сравнении с другими металлами [7]. Отсутствие цитотоксичности наночастиц Ві (НЧ-Ві) также показано на эпителиальных клетках и клетках крови человека [8]. С целью сохранения функциональных свойств НЧ-Ві необходимо разрабатывать методы их стабилизации [9, 10]. Циклодекстрины широко используют в качестве стабилизаторов для наночастиц металлов, прежде всего, благодаря способности этих циклических олигосахаридов формировать комплексы включения по типу "гость—хозяин" [11]. Одновременно с этим наличие реакционноспособных гидроксильных групп на их поверхности позволяет прививать комплексы циклодекстринов с антибактериальными агентами к различным сорбционным поверхностям [12, 13].

Однако, в работе [14] было показано, что стабилизация НЧ-Ві молекулами β -циклодекстрина (β -ЦД) в водном растворе не осуществлялась. Формировались частицы микронных размеров, которые по стерическим причинам не были способны проникать в гидрофобные полости β -ЦД и соответственно образовывать комплексы включения. Основной причиной, препятствующей формированию комплексов включения НЧ-Ві с молекулами β -ЦД, была склонность молекул β -ЦД к образованию в воде димеров с "закрытыми" полостями [15] (рис. 1).

Улучшение стабилизирующей способности циклодекстринов может быть осуществлено модификацией их поверхности путем нековалентных взаимодействий гидрофильных молекул с ОН-группами олигосахаридов, в частности, при образовании водородных связей с молекулами поливинипирролидона (ПВП) [16].

Рис. 1. Структура β-ЦД.

В связи с этим цель данной работы — изучение влияния содержания ПВП в синтетической среде на образование и агрегативную стабильность тройных комплексов НЧ-Ві с β-ЦД и ПВП.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использовали пентагидрат нитрата висмута (Bi(NO₃)₃ · 5H₂O, "Реахим" Россия), боргидрид натрия (NaBH₄, "Вектон", Россия), ПВП ($M_w = 55000$, "Ferak", Berlin, Germany), β -ЦД – циклический олигомер из семи молекул D-глюкопиранозы, соединенных посредством альфа-1-4-гликозидной связи ($M_w = 1135$, "Жуньян Пиньчжоу", Китай). Синтез НЧ-Ві осуществляли при комнатной температуре путем окислительно-восстановительной реакции:

$$2Bi(NO_3)_3 + 6NaBH_4 + 18H_2O =$$

= 2Bi + 6NaNO_3 + 6B(OH)_3 + 21H_2^{(1)} (1)

Выбор NaBH₄ был обусловлен большим различием в редокс-потенциалах NaBH₄ (-1.24 В) и Ві (0.8 В) в щелочной среде [17]. Реакцию (1) проводили непосредственно в среде стабилизирующей смеси β -ЦД и ПВП. Концентрация стабилизатора (C_{β -ЦД-ПВП}) в реакционной смеси составляла 1%, а концентрационное соотношение β -ЦД/ПВП (мас. %/мас. %) изменялось в пределах от 10/90 до 90/10.

Методика синтеза была следующей: 0.0003 г Ві(NO₃)₃ · 5H₂O растворяли в 10 мл водного раствора смеси β -ЦД-ПВП с фиксированным содержанием компонентов при интенсивном перемешивании на магнитной мешалке в течение 30 мин до полного растворения соли. Далее в раствор добавляли восстановитель – 0.1 мл раствора NaBH₄ (0.8 мас. %). Для предотвращения окисления формирующихся НЧ-Ві реакцию проводили в токе аргона. Конечная концентрация HЧ-Ві $(C_{\rm Bi})$ в растворе составляла 0.008 мас. %. Эта концентрация оптимальна для синтеза стабильных комплексов Ві-ПВП [14].

Оптические спектры поглощения систем исследовали на спектрофотометре СФ-256 УВИ (ЛОМО, Фотоника, Россия) в диапазоне длин волн 220-900 нм в кварцевых кюветах объемом 1 см³. Средние гидродинамические радиусы наноструктур, R_h, определяли методом динамического светорассеяния (ДСР). Корреляционную функцию интенсивности рассеянного света получали с помощью коррелятора PhotoCor-FC с числом каналов 288 (ЗАО "Антекс", Россия). Анализ корреляционной функции осуществляли с помощью программы Dynals ("Гелиос", Россия). Из экспериментально полученных коэффициентов диффузии, D, рассчитывали гидродинамический радиус эквивалентной сферы по уравнению Эйнштейна-Стокса:

$$R_h = kT/6pD\eta_s$$

где $R_{\rm h}$ — гидродинамический радиус эквивалентной сферы, нм; k — константа Больцмана, $\eta_{\rm s}$ вязкость растворителя, T — температура.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На первом этапе исследовали влияние концентрационного соотношения β-ЦД/ПВП на свойства β-ЦД, модифицированного молекулами ПВП. С этой целью спектральные и размерные характеристики систем β-ЦД–ПВП сравнивали с характеристиками однокомпонентных растворов β-ЦД и ПВП.

Методом ДСР было установлено, что в водном растворе β -ЦД образует водорастворимые молекулярные ассоциаты, которые характеризуются эффективным размером с $R_h \sim 1030$ нм. В растворе ПВП формировались коллоидные частицы с

ские радиусы двойных комплексов β-ЦД–ПВП							
β- ЦД/ПВП	1-й пик		2-й пик				
	R_h , нм	S, %	<i>R_h</i> , нм	<i>S</i> , %			
0/100	6.3 ± 0.6	100	—	_			
10/90	6.2 ± 0.5	85	886.7 ± 70.9	15			
20/80	7.4 ± 0.7	88	2970.9 ± 29.7	12			
30/70	6.0 ± 0.4	55	1394.7 ± 13.9	45			
40/60	7.1 ± 0.7	81	761.7 ± 76.1	19			
50/50	6.2 ± 0.5	82	416.6 ± 33.3	18			
60/40	5.7 ± 0.4	15	167.5 ± 16.7	85			
70/30	9.2 ± 0.8	14	416.5 ± 37.4	86			
80/20	9.2 ± 0.8	8	168.9 ± 16.8	92			
90/10	13.4 ± 0.9	3	307.3 ± 27.6	87			
100/0	_	_	1030.2 ± 82.4	100			

Таблица 1. Влияние концентрационного соотноше-

ния В-ЦД/ПВП (мас. %/мас. %) на гидродинамиче-

Таблица 2. Влияние концентрационного соотношения β -ЦД/ПВП (мас. %/мас. %) на гидродинамические радиусы тройных комплексов Ві- β -ЦД-ПВП ($C_{\text{Bi}} = 0.008$ мас. %, C_{β -ЦД-ПВП = 1.0 мас. %)

β-ЦД/ПВП	<i>R_h</i> , нм
10/90	174.2 ± 17.4
20/80	184.4 ± 14.7
30/70	257.5 ± 23.1
40/60	247.6 ± 19.7
50/50	90.5 ± 8.1
60/40	107.6 ± 9.6
70/30	134.5 ± 13.4
80/20	110.4 ± 8.8
90/10	90.2 ± 7.2

 $R_h \sim 6$ нм. В отличие от однокомпонентных растворов, комплексы β -ЦД-ПВП в зависимости от концентрационного соотношения β -ЦД/ПВП характеризовались двумя пиками с различным распределением частиц по размерам (в наноразмерном и микроразмерном диапазонах) (табл. 1).

Данные оптического поглощения показали, что раствор ПВП характеризуется максимумом поглощения в диапазоне длин волн 220–230 нм, тогда как у β -ЦД характеристический максимум поглощения отсутствовал (рис. 2). Комплексы β -ЦД–ПВП, как и раствор β -ЦД, характеризовались оптическими спектрами без максимумов, кроме смеси при соотношении β -ЦД/ПВП = = 10/90. Абсолютные значения оптических плотностей растворов монотонно возрастали по мере увеличения концентрации ПВП в смесях.

Стабилизацию НЧ-Ві комплексом β-ЦД– ПВП исследовали при варьировании соотношения β-ЦД/ПВП. Тройные системы Ві-β-ЦД– ПВП характеризовались унимодальным распределением по размеру (табл. 2). При этом максимальным временем сохранения агрегативной стабильности (в течение 20 суток) обладали системы, полученные при соотношениях β-ЦД/ПВП = = 10/90 и 90/10.

Для интерпретации механизмов стабилизации тройные системы $Bi-\beta-UД-\Pi B\Pi$ сравнивали с двойными системами $Bi-\beta-UД$ и $Bi-\Pi B\Pi$. Как было показано ранее, HЧ-Bi в присутствии $\beta-UД$ образовывали частицы микронных размеров с R_h в диапазоне от 4 до 9 мкм. Эти частицы были не способны проникать в конусообразную структуру $\beta-UД$ [14]. Полученная система была агрегативно неустойчива, и наночастицы выпадали в осадок уже через ~24 ч. Максимум оптического поглощения этой системы при $\lambda = 253$ нм соответствовал максимуму поглощения свободных НЧ-Ві [18]. Это также свидетельствовало о том, что комплексы Ві- β -ЦД не образуются. В среде ПВП образовывались коллоидные частицы с бимодальным распределением в нано- ($R_h = 122$ нм) и микроразмерном ($R_h = 1-3$ мкм) диапазонах, стабильные в течение двух недель. Характеристический максимум ПВП в оптическом спектре поглощения системы Ві-ПВП сдвигался в диапазон длин волн 270–290 нм (батохромный сдвиг), что свиде-

Рис. 2. Оптические спектры поглощения комплексов β -ЦД-ПВП при различных концентрационных соотношениях β -ЦД/ПВП: 1 - 100/0, 2 - 90/10, 3 - 80/20, 4 - 70/30, 5 - 60/40, 6 - 50/50, 7 - 40/60, 8 - 30/70, 9 - 20/80, 10 - 10/90, 11 - 0/100.

1235

Таблица 3. Агрегативная стабильность тройных комплексов Ві-β-ЦД-ПВП (*t* – время агрегативной стабильности, сутки)

С _{Ві} , мас.%	β-ЩД/ПВП = 10/90		β-ЩД/ПВП = 90/10	
	<i>R_h</i> , нм	t	<i>R_h</i> , нм	t
0.008	174.0	20	90.0	2
0.04	240.5	14	264.1	1
0.1	522.6	2	483.7	

тельствовало об образовании комплексов Bi-ПВП.

В отличие от двойных систем Ві $-\beta$ -ЦД и Ві-ПВП, в оптических спектрах поглощения тройных систем Ві $-\beta$ -ЦД $-\Pi$ ВП вместо характеристических максимумов формировались плато. Спектральные кривые тройных комплексов пересекались в изобестических точках (рис. 3). Это подтверждало образование тройных комплексов с НЧ-Ві [19]. В зависимости от соотношения β -ЦД/ПВП изобестические точки смещались в диапазоне волн ~ 280–330 нм. Особенно четко указанный эффект проявлялся для наиболее стабильных тройных комплексов, синтезированных при β -ЦД/ПВП = 90/10 и 10/90.

Исследование влияния концентрации HЧ-Ві на агрегативную стабильность комплексов Ві $-\beta$ -ЦД–ПВП при этих соотношениях β -ЦД/ПВП показало, что с ростом C_{Bi} эффективный размер

Рис. 3. Оптические спектры поглощения тройных комплексов Ві- β -ЦД-ПВП при различных концентрационных соотношениях β -ЦД/ПВП: 1 - 90/10, 2 - 80/20, 3 - 70/30, 4 - 60/40, 5 - 50/50, 6 - 40/60, 7 - 30/70, <math>8 - 20/80, 9 - 10/90; $C_{\text{Bi}} = 0.008$ мас. %, C_{β -ЦД-ПВП = = 1 мас. %.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 8 2019

комплексов увеличивался, а их агрегативная стабильность ухудшалась и зависела от механизма стабилизации (табл. 3).

Обнаруженные различия в размерных и спектральных характеристиках тройных комплексов HЧ-Bi $-\beta$ -ЦД $-\Pi$ ВП свидетельствовали о различных механизмах стабилизации липофильных HЧ-Bi в зависимости от концентрационного соотношения β -ЦД/ПВП. При избытке молекул ПВП в комплексе (β -ЦД/ПВП = 10/90) стерическая стабилизация НЧ-Bi, по всей видимости, осуществлялась преимущественно посредством связывания молекул ПВП с поверхностью нано-

Рис. 4. Механизмы формирования тройных комплексов Ві $-\beta$ -ЦД $-\Pi$ ВП при стерической стабилизации НЧ-Ві посредством связывания молекул ПВП с поверхностью НЧ-Ві (а) и посредством формирования комплексов включения НЧ-Ві в гидрофобные полости β -ЦД (б).

частиц (рис. 4а). При избытке молекул β -ЦД в комплексе (β -ЦД/ПВП = 90/10) молекул ПВП становилось недостаточно для поверхностной стерической стабилизации НЧ-Ві. Поэтому осуществлялась модификация поверхности β -ЦД молекулами ПВП и "расталкивание" молекул β -ЦД (рис. 4б). Это способствовало формированию комплексов включения.

Таким образом, определены оптимальные условия формирования агрегативно устойчивых комплексов Ві-β-ЦД-ПВП. В дальнейшем с целью создания сорбционных материалов для лечения раневых инфекций эти комплексы будут использованы в качестве лиганда с групповой специфичностью, содержащего антибактериальный агент.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (код проекта № 18-03-00835).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Tsiouris C.G., Tsiouri M.G.* // Wound Med. 2017. V. 19. № 1. P. 33.
- Chen H., Cheng J., Ran L. et al. // Carbohydr. Polym. 2018. V. 201. № 2. P. 522.
- Anbazhagan S., Thangavelu K.P. // J. Adv. Res. 2018. V. 14. № 1. P. 67.
- Hsu C.-L., Li Yu-J., Jian H.-J. et al. // Nanoscale. 2018. V. 10. № 11. P. 11808.
- 5. Jin F., Xiang Q., Chen X. et al. // J. Biomater. Sci., Polym. Ed. 2016. V. 27. №. 14. P. 1447.

- 6. *Wang R., Zhang B., Liang Z. et al.* // Appl. Catal. B: Environmental. 2019. V. 241. № 1. P. 167.
- Badireddy A.R., Hernandez-Delgadillo R., Sánchez-Nájera R.I. et al. // J. Nanopart. Res. 2014. V. 16. № 10. P. 2456.
- Hernandez-Delgadillo R., Badireddy A.R., Martínez-Sanmiguel J.J. et al. // J. Nanosci. Nanotechnol. 2016. V. 16. № 1. P. 203.
- Velasco-Arias D., Zumeta-Dubé I., Díaz D. et al. // J. Phys. Chem. C. 2012. V. 116. № 10. P. 14717.
- Brown A.L., Goforth A.M. // Chem. Mater. 2012. V. 24. № 9. P. 1599.
- 11. Sancey B., Trunfio G., Charles J. et al. // J. Incl. Phenom. Macrocyc. Chem. 2011. V. 70. № 1. P. 316.
- 12. *Besson J.C.F., Hernandes L., Campos J.M. et al.* // Int. J. Care Injured. 2017. V. 48. № 8. P. 2417.
- Mendes C., Meirelles G.C., Barp C.G. et al. // Carbohydr. Polym. 2018 V. 195. № 3. P. 586.
- Боровикова Л.Н., Полякова И.В., Коротких Е.М. et al. // ЖФХ. 2018. Т. 92. № 11. С. 1760.
- *Zhang H., Tan T., Feng W., Spoel D.* // J. Phys. Chem. B. 2012. V. 116. № 8. 12684.
- Sikdera T., Rahmand M., Jakariya et al. // Chem. Eng. J. 2019. V. 355. № 3. P. 920.
- 17. Помогайло А.Д., Джардималиева Г.И. Металлополимерные гибридные нанокомпозиты. М.: Наука, 2015. 489 с.
- Dadashi S., Poursalehi R., Delavari H.H. // Mater. Res. Bul. 2018. V. 97. № 2. P. 421.
- Chaudhari U.E. // Orien. J. of Chem. 2011. V. 27. № 1. P. 297.