_____ ХИМИЧЕСКАЯ КИНЕТИКА ____ И КАТАЛИЗ

УДК 542.943-92 : 547.854.4

КИНЕТИКА ОКИСЛЕНИЯ УРАЦИЛА И ЕГО ПРОИЗВОДНЫХ ОЗОНОМ В ВОДНЫХ РАСТВОРАХ

© 2019 г. А. А. Максютова^{*a*}, Ю. С. Зимин^{*a*,*}, А. Р. Гимадиева^{*b*}, А. Г. Мустафин^{*a*,*b*}

^а Башкирский государственный университет, Уфа, Россия ^b Российская академия наук, Уфимский федеральный исследовательский центр, Уфимский институт химии, Уфа, Россия *e-mail: ZiminYuS@mail.ru Поступила в редакцию 28.12.2018 г.

После доработки 22.02.2019 г. Принята к публикации 12.03.2019 г.

Спектрофотометрическим методом изучена кинетика окисления урацила и его производных (тимина, 6-метилурацила, 5-бром-6-метилурацила, 5-нитро-6-метилурацила, 1,3-диметилтимина и 5-гидрокси-1,3,6-триметилурацила) озоном в водных растворах. Показано, что реакции протекают по кинетическому закону второго порядка. В интервале 285–309 К исследована температурная зависимость констант скоростей реакций второго порядка и определены активационные параметры реакций.

Ключевые слова: урацил, производные урацила, озон, кинетика, окисление, активационные параметры

DOI: 10.1134/S0044453719090139

Пиримидиновые основания характеризуются широким распространением в живой природе. Они играют важную роль в построении цепей рибонуклеиновых (РНК) и дезоксирибонуклеиновых (ДНК) кислот. Разрушение структур пиримидиновых колец и исчезновение карбонильных и аминогрупп приводят к тяжелым последствиям для организма. Несмотря на то, что существуют механизмы защиты и восстановления нуклеиновых кислот, окислительные процессы пиримидиновых оснований способны приводить к необратимым разрушениям мономерных звеньев цепей РНК и ДНК и, как следствие, к серьезным генетическим заболеваниям.

В настоящее время исследователи разных областей науки всерьез заинтересованы изучением процессов окисления РНК и ДНК. При этом исследования проводятся на модельных системах, среди которых чаще всего используются урацил и его производные (ПУ). К настоящему времени в литературе имеются данные по окислению ПУ молекулярным кислородом (в присутствии солей меди), перманганатом калия, пероксидом водорода, пероксильным, гидроксильным и гидропероксильным радикалами (см., например, работы [1–4] и цитируемую там литературу). При этом в качестве продуктов окисления были обнаружены различные химические соединения. Так, основным продуктом взаимодействия 5-гидрокси-6метилурацила с молекулярным кислородом в присутствии хлорида меди (II) оказался 5,5,6тригидрокси-6-метилпиримидин-2,4-дион [1]. Окисление 5-аминоурацила в таких же условиях приводит к образованию 5,5,6-тригидроксипиримидин-2,4(1H,3H)-диона [2]. При окислении урацила и тимина перманганатом калия в водной среде в качестве основных продуктов обнаружены соответствующие гликоли и производные барбитуровой кислоты [5]. Окисление урацилов пероксидными соединениями приводит к разрушению урацильного кольца и образованию мочевины и низших карбоновых кислот [6].

В то же время, среди используемых окислителей практически не представлен такой окислитель как озон, который в последние годы находит широкое применение в разных сферах деятельности человека: обеззараживание воды, очистка сточных вод, косметология, медицина и т.д. И если как окислитель "зеленой химии" озон укрепил свои позиции, то его целесообразное применение в общей терапии научно не было доказано или опровергнуто.

В связи с этим целью настоящей работы явилось изучение кинетики реакции озона с урацилом и рядом его производных в водных растворах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для исследований были использованы урацил и шесть его производных (тимин, 6-метилурацил, 5-бром-6-метилурацил, 5-нитро-6-метилурацил, 1,3-диметилтимин и 5-гидрокси-1,3,6-триметилурацил). Урацил, тимин и 6-метилурацил были произведены фирмой "Фармакон" (г. Санкт-Петербург). Остальные производные урацила синтезированы по методикам, описанным ранее [7–9]. Озон-кислородная смесь была получена с помощью озонатора, конструкция которого описана в работе [10]. Растворитель — свежеперегнанная бидистиллированная вода.

Кинетику реакции изучали спектрофотометрическим методом на приборе UV-2600 фирмы "Shimadzu" при равенстве начальных концентраций реагентов ($[\Pi Y]_0 = [O_3]_0$), которое достигалось следующим образом. Вначале определяли концентрацию озона в воде, которую создавал озонатор в день проведения эксперимента. Для этого в пробирку помещали 4 мл бидистиллированной волы и подавали в нее озон-кислородную смесь до насыщения. Дополнительными опытами было установлено, что максимальная концентрация озона в 4 мл воды достигалась за 2 мин барботажа О₃-О₂-смеси. Далее спектрофотометрически по закону Бугера-Ламберта-Бера определяли эту концентрацию O_3 в воде (ϵ_{O_2} = = 2700 л моль⁻¹ см⁻¹ при = 270 нм [11]). Затем готовили 4 мл водного раствора ПУ такой же концентрации (из заранее приготовленного раствора большей концентрации).

Перед началом кинетического эксперимента вновь насыщали 4 мл бидистиллированной воды озон-кислородной смесью. Далее, после смешения 2 мл озонового раствора с 2 мл водного раствора ПУ, наблюдали за изменением оптической плотности полученной реакционной смеси. Поскольку оба реагента поглощают в ультрафиолетовой области, кинетику озонированного окисления урацила и его производных исследовали на длинах волн (λ_{max}), равных максимумам поглоще-ния сопряжения —С=С-С=О урацильного кольца¹. При этом оптическая плотность в каждый отдельный момент времени представляла собой сумму двух оптических плотностей:

$$A = A_{\Pi \mathbf{y}} + A_{\mathbf{O}_3} = \varepsilon_{\Pi \mathbf{y}} [\Pi \mathbf{y}] l + \varepsilon_{\mathbf{O}_3} [\mathbf{O}_3] l,$$

где $A_{\Pi Y}$ и A_{O_3} – оптические плотности, обусловленные поглощением ПУ и O₃, соответственно; $\epsilon_{\Pi Y}$ и ϵ_{O_3} – коэффициенты экстинкции ПУ и O₃, соответственно, на длине волны λ_{max} урацила или

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 9 2019

его производного, л моль⁻¹ см⁻¹; l – толщина кюветы, см. Учитывая, что [ПУ] = [O₃] = C, получаем следующее выражение

$$C = \frac{A}{(\varepsilon_{\Pi Y} + \varepsilon_{O_3})l},$$

которое позволяет от оптической плотности A перейти к текущей концентрации C реагирующих веществ (ПУ или O₃). Толщина кюветы (l) во всех опытах составляла 1 см.

Стехиометрические соотношения реагентов (ПУ и O_3) определяли с помощью барботажной установки [11, 12], продувая озон-кислородную смесь через водные растворы урацилов и следя за изменением [O_3] в газовой фазе на выходе из реактора. Методика проведения данных экспериментов подробно описана в работе [13].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Согласно [14—16], урацил и его производные в водных растворах при рH < 7.0 существуют преимущественно в дикето-форме. Исследования показали, что рН водных растворов изученных урацилов в диапазоне используемых нами концентраций не превышает 5.8. На основании данного факта можно утверждать, что в условиях наших экспериментов урацилы представлены главным образом дикето-формой.

На первом этапе исследований были определены коэффициенты экстинкции урацила и его производных в водных растворах (по закону Бугера—Ламберта—Бера), которые в дальнейшем будут использованы для расчетов остаточных концентраций ПУ. Было установлено, что линейная зависимость между оптическими плотностями изученных урацилов и их концентрациями в водных растворах четко выполняется до [ПУ] = 2×10^{-4} моль/л. По тангенсам углов наклона зависимостей A = f([ПУ]) были определены коэффициенты экстинкции урацилов, значения которых представлены в табл. 1.

На следующем этапе была изучена кинетика реакции озона с урацилами. Как отмечено в экспериментальной части, реакцию проводили при равенстве начальных концентраций реагентов: $[\Pi Y]_0 = [O_3]_0 = C_0$. Анализ кинетических кривых изменения концентрации *С* показал, что они достаточно хорошо линеаризуются в координатах уравнения реакции второго порядка (рис. 1):

$$1/C = 1/C_0 + kt$$
 ($r \ge 0.995$), (1)

где k — константа скорости реакции озона с ПУ, r — коэффициент корреляции. По тангенсам углов наклона прямых (рис. 1) были рассчитаны

¹ Специальными опытами было установлено, что продукты озонированного окисления изученных урацилов не поглощают в области указанных длин волн.

константы скоростей k реакции озона со всеми исследованными урацилами.

Далее с помощью барботажной установки, описанной в работах [11, 12], была изучена кинетика поглощения озона водными растворами урацилов. Опыты проводили при комнатной температуре (295 K). На рис. 2 в качестве примера приведены кривые изменения оптической плотности озона для воды (верхняя кривая) и водного раствора 6-метилурацила (6-МУ) (нижняя кривая).

Количество озона, поглощенное реакционной смесью, пропорционально площади, заключенной между кривыми оптического поглощения S (рис. 2). Зная количество озона, приходящееся на единицу площади рисунка, можно рассчитать количество поглощенного озона. Для этого сначала определяли количество О₃, соответствующее площади оценочного прямоугольника S_{np} [11, 12]:

$$[O_3]_{np} = \frac{W_{ras}}{V} \frac{\Delta A_{np} \Delta t_{np}}{\varepsilon / 3600}, \qquad (2)$$

где $W_{\rm ras}$ – скорость газового потока ($W_{\rm ras} = 6 \ {\rm n/v}$), V – объем реакционного раствора ($V = 0.05 \ {\rm n}$), $\Delta A_{\rm np}$, $\Delta t_{\rm np}$ – размеры прямоугольника в координатах A - t (с), ε – коэффициент экстинкции озона при $\lambda = 300$ нм ($\varepsilon = 95 \ {\rm n/(моль \cdot cm)} [11]$), l – длина кюветы ($l = 5 \ {\rm cm}$). Количество озона [O₃]_p, погло-

Урацилы	$\epsilon_{\Pi Y} \times 10^{-3},$ л моль ⁻¹ см ⁻¹	λ_{max} , нм
Урацил	8.4 ± 0.2	257
Тимин	6.8 ± 0.1	264
6-Метилурацил	9.0 ± 0.1	260
5-Бром-6-метилурацил	7.8 ± 0.1	275
5-Нитро-6-метилурацил	9.4 ± 0.1	260
1,3-Диметилтимин	10.0 ± 0.1	267
5-Гидрокси-1,3,6-триме- тилурацил	7.9 ± 0.1	283

щенного реакционной смесью (моль/л), рассчитывали по формуле [11, 12]:

$$[O_3]_p = [O_3]_{np} \frac{S}{S_{np}}, \text{ моль /л.}$$
 (3)

Количество 6-метилурацила, израсходованного к данному моменту времени, находили по формуле:

$$[6-MY]_p = [6-MY]_0 - [6-MY]_t,$$
(4)

где [6-МУ]₀ – начальная концентрация 6-метилурацила, [6-МУ]₁ –концентрация 6-метилураци-

Рис. 1. Линеаризация кинетических кривых изменения концентрации C в координатах уравнения (1); 305 К, 1 - 6-метилурацил, 2 - 5-нитро-6-метилурацил, 3 - тимин.

Рис. 2. Кривые изменения оптической плотности озона для воды (верхняя кривая) и водного раствора 6-метилурацила (нижняя кривая); 295 K, $[6-MY]_0 = 1 \times 10^{-3}$ моль/л, $W_{ra3} = 6$ л/ч.

1325

Таблица 2. Зависимость количеств поглощенного озона и израсходованного 6-метилурацила от времени подачи озон-кислородной смеси через водный раствор субстрата; 295 К, $[6-MY]_0 = 1 \times 10^{-3}$ моль/л, $W_{ras} = 6$ л/ч

<i>t</i> , c	[O ₃] _p × 10 ³ , моль/л	[6-МУ] _р × 10 ³ , моль/л	[O ₃] _p :[6-MУ] _p
60	0.5	0.5	1.0
120	1.0	1.0	1.0
180	1.4	1.0	1.4
240	1.9	1.0	1.9
300	2.3	1.0	2.3
360	2.8	1.0	2.8

ла, оставшаяся к моменту времени *t*. Остаточную концентрацию 6-МУ определяли методом УФспектроскопии после охлаждения отбираемых проб (с помощью снега) и выдувки озона (с помощью аргона).

В табл. 2 приведены данные по зависимости количеств поглощенного озона $[O_3]_p$ и израсходованного урацила $[6-MY]_p$ от времени подачи озон-кислородной смеси через водный раствор субстрата. Из приведенных данных следует, что в начальные моменты времени (вплоть до 2 мин) исходные вещества — озон и 6-метилурацил — реагируют в соотношении 1 : 1. Отметим, что для начальных стадий окисления остальных изученных урацилов озоном имело место аналогичное соотношение (1 : 1). Отсюда становится понятным второй порядок озонированного окисления урацилов по данным спектральных исследова-

ний. Очевидно, изучаемая реакция имеет первый порядок по ПУ и первый порядок по озону:

L

$$V = -dC/dt = k[\Pi Y][O_3].$$
⁽⁵⁾

Обращает на себя внимание тот факт, что на более глубоких стадиях соотношение $[O_3]_p$: [6-МУ]_p превышает единицу (табл. 2). Повышенный расход озона, очевидно, связан с дальнейшим окислением образующихся продуктов.

В настоящей работе для урацила и шести его производных в интервале 285-309 К была изучена температурная зависимость k, значения которых суммированы в табл. 3. Согласно данным этой таблицы наблюдается следующий порядок реакционной способности урацилов по отношению к озону (285 К): 1,3-диметилтимин > 5-бром-6-метилурацил > урацил, 6-метилурацил > 5-нитро-6-метилурацил > 5-гидрокси-1,3,6-триметилурацил > тимин. Из приведенного ряда следует, что тимин обладает наиболее выраженными антиокислительными свойствами. Отсюда становится понятным, почему именно тимин входит в состав ДНК.

Обработка данных табл. 3 в координатах уравнения Аррениуса позволила определить активационные параметры изучаемых реакций (табл. 4). В качестве примера на рис. 3 приведены результаты линеаризации в координатах $\lg k = f(1/T)$ температурных зависимостей констант скоростей реакции озона с тремя урацилами (6-метилурацилом, 5-нитро-6-метилурацилом и тимином).

На основании анализа данных табл. 4 было установлено, что между энергиями активации E и логарифмами предэкспоненциальных множителей lg A удовлетворительно (рис. 4, r = 0.988) выполняется линейная зависимость — компенсационный эффект [17]. Данный факт может свидетельствовать о едином механизме лимитирующей

<i>Т</i> , К	Урацил	Тимин	6-Метил- урацил	5-Бром-6- метилурацил	5-Нитро-6- метилурацил	1,3-Диме- тилтимин	5-Гидрокси- 1,3,6-триме- тилурацил
	$k imes 10^{-1},$ л моль $^{-1}$ с $^{-1}$						
285	4.5 ± 0.3	0.67 ± 0.01	4.50 ± 0.04	6.2 ± 0.2	3.10 ± 0.05	6.64 ± 0.4	0.74 ± 0.06
289	5.7 ± 0.4	0.85 ± 0.01	5.3 ± 0.1	7.4 ± 0.2	4.4 ± 0.1	8.7 ± 0.5	0.86 ± 0.05
293	6.6 ± 0.4	0.89 ± 0.01	7.0 ± 0.2	8.1 ± 0.3	6.1 ± 0.1	9.35 ± 0.6	1.19 ± 0.04
297	7.8 ± 0.5	1.10 ± 0.02	8.6 ± 0.4	10.2 ± 0.3	7.6 ± 0.1	13.5 ± 0.8	1.70 ± 0.04
301	8.5 ± 0.6	1.20 ± 0.02	11.5 ± 0.3	11.2 ± 0.5	9.7 ± 0.1	16.9 ± 1.0	2.4 ± 0.1
305	11.4 ± 0.5	1.29 ± 0.02	13.9 ± 0.4	12.4 ± 0.6	11.9 ± 0.2	18.3 ± 1.5	3.0 ± 0.1
309	12.1 ± 0.8	1.46 ± 0.03	17.2 ± 0.5	15.3 ± 0.5	15.0 ± 0.3	24.8 ± 1.1	4.7 ± 0.1

Таблица 3. Температурная зависимость констант скоростей реакции озона с урацилами

Рис. 3. Температурные зависимости констант скоростей k реакции озона с 6-метилурацилом (1), 5-нитро-6-метилурацилом (2) и тимином (3) в координатах уравнения Аррениуса.

стадии окисления изученных урацилов озоном. Уменьшение сигнала, относящегося к поглоще-| | | нию сопряжения — C=C-C=O урацильного кольца, свидетельствует об участии этой группы в реакции с O₃. С учетом данного факта, а также кинетического уравнения (5), можно ожидать, что окисление ПУ лимитирует стадия присоединения | | озона по — C=C— связи урацильного кольца.

Таким образом, в настоящей работе изучена кинетика озонированного окисления урацила и шести его производных в водных растворах. Показано, что исследуемые реакции протекают по кинетическим уравнениям второго порядка (пер-

Урацилы	lg <i>A</i> , л моль ⁻¹ с ⁻¹	<i>Е</i> , кДж/моль
Урацил	7.4 ± 0.7	30.3 ± 4.2
Тимин	5.1 ± 0.5	23.2 ± 2.8
6-Метилурацил	9.4 ± 0.5	42.4 ± 2.9
5-Бром-6-метилурацил	6.6 ± 0.6	26.3 ± 3.2
5-Нитро-6-метилурацил	10.2 ± 0.8	47.4 ± 4.4
1,3-Диметилтимин	9.0 ± 1.1	39.5 ± 3.7
5-Гидрокси-1,3,6-три- метилурацил	12.9 ± 1.3	66.4 ± 7.1

Таблица 4. Активационные параметры реакции озона с урацилами

Рис. 4. Компенсационный эффект в реакции озона с урацилами.

вого — по урацилу и первого — по озону). В интервале 285—309 К исследована температурная зависимость констант скоростей второго порядка и определены активационные параметры реакций. Для ряда изученных урацилов в водной среде установлена корреляционная зависимость между значениями энергий активации и логарифмами предэкспоненциальных множителей.

СПИСОК ЛИТЕРАТУРЫ

- Нугуманов Т.Р. Окислительные превращения 5гидрокси-6-метилурацила под действием молекулярного кислорода в присутствии хлорида меди (II), гидроксильных и пероксильных радикалов: Дис. ... канд. хим. наук. Уфа: Институт органической химии УНЦ РАН, 2009. 98 с.
- 2. Закирьянова О.В. Взаимодействие 5-аминоурацила с молекулярным кислородом в водных растворах в присутствии хлорида меди (II): Дис. ... канд. хим. наук. Уфа: Институт органической химии УНЦ РАН, 2011. 98 с.
- 3. Ахатова Г.Р. Антиокислительная эффективность производных урацила: Дис. ... канд. хим. наук. Уфа: Башкирский государственный университет, 2012. 115 с.
- Зимин Ю.С., Хайруллина Л.Р., Кутлугильдина Г.Г., Мустафин А.Г. // Журн. физ. химии. 2015. Т. 89. № 12. С. 1864.
- Bui C.T., Cotton R.G.H. // Bioinorg. Chem. 2002. V. 30. P. 133.
- Subbaraman L.R., Subbaraman J., Behrman E.J. // J. Org. Chem. 1971. T. 36. № 9. C. 1256.

- 7. Фаттахов А.Х., Лобов А.Н., Гимадиева А.Р. и др. // Вестн. Башк. ун-та. 2012. Т. 17. № 4. С. 1710.
- 8. *Кривоногов В.П., Толстиков Г.А., Муринов Ю.И. и др.* 6-Метилурацил-5-аммонийсульфат в качестве исходного соединения для синтеза оксипроизводных 6-метилурацила: Пат. № 2000298 РФ // Б.И. 1993. № 33-36.
- Адамович А.И., Витенберг А.Г. Способ получения 5-амино-4-метилурацила: А.с. 130044 СССР // Б.И. 1960. № 14.
- Вендилло В.П., Емельянов Ю.М., Филиппов Ю.В. // Заводск. лаборатория. 1959. Т. 25. № 11. С. 1401.
- Шафиков Н.Я. Кинетика, продукты и механизм окисления этанола озоном: Дисс. ... канд. хим. наук. Уфа: Институт химии БФАН СССР, 1985. 166 с.

- 12. Зимин Ю.С. Кинетика и механизм озонированного окисления спиртов, эфиров, кетонов и олефинов в водной среде: Дисс. ... докт. хим. наук. Уфа: Институт органической химии УНЦ РАН, 2006. 302 с.
- 13. *Зимин Ю.С., Комиссаров В.Д.* // Вестн. Башк. ун-та. 2004. № 4. С. 31.
- Iza N., Gil M., Marcillo J. // J. Mol. Struct. 1988. V. 175. № 1. P. 31.
- Yekeler H., Ozback D. // J. Mol. Model. 2001. V. 7. № 4. P. 103.
- 16. Иванов С.П. Изучение кето-енольного равновесия некоторых производных урацила в водных растворах: Дис. ... канд. хим. наук. Уфа: Институт органической химии УНЦ РАН, 2003. 143 с.
- 17. Денисов Е.Т., Саркисов О.М., Лихтенштейн Г.И. Химическая кинетика. М.: Химия, 2000. 568 с.