____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА _ И ТЕРМОХИМИЯ

УДК 541.11+537.226:546.244

ТЕРМОДИНАМИЧЕСКИЕ И ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА La₂SrNiTeO₇

© 2019 г. К. Т. Рустембеков^{а,*}, Б. К. Касенов^b, А. Ж. Бектурганова^a, М. С. Касымова^a

^а Карагандинский государственный университет им. Е.А. Букетова, Караганда, Казахстан ^b Химико-металлургический институт им. Ж. Абишева, Караганда, Казахстан

> * e-mail: rustembekov_kt@mail.ru Поступила в редакцию 28.11.2018 г. После доработки 24.02.2019 г. Принята к публикации 12.03.2019 г.

Калориметрическим методом в интервале температур 298.15–673 К исследована изобарная теплоемкость никелито-теллурита La₂SrNiTeO₇. Для изучаемого соединения в указанном диапазоне температур выявлены λ -образные эффекты, относящиеся к фазовому переходу II рода. С учетом температур фазовых переходов выведены уравнения температурной зависимости теплоемкости соединения. На основе опытных значений теплоемкости и расчетных данных по стандартной энтропии никелито-теллурита вычислены температурные зависимости теплоемкости, энтропии, энтальпии и приведенного термодинамического потенциала. В интервале 293–483 К исследованы температурные зависимости диэлектрической проницаемости и электрического сопротивления никелито-теллурита. На кривых зависимостях lg $\varepsilon = f(T)$ и lg R = f(T) имеются максимумы и минимумы, которые подтверждают λ -образные эффекты на кривой зависимости $C_p^\circ = f(T)$ у указанного соединения, отнесенные к фазовому переходу II рода.

Ключевые слова: никелито-теллурит, теплоемкость, термодинамические функции, диэлектрическая проницаемость, электросопротивление

DOI: 10.1134/S0044453719090218

Среди важнейших классов неорганических соединений, с изучением которых связано создание целого ряда уникальных практически ценных вешеств, особое место занимают соединения селена и теллура. Производные селена и теллура характеризуются высокой химической активностью, что определяет перспективность синтетических трансформаций, направленных на получение новых полупроводниковых, сегнетоэлектрических и радиолюминесцентных материалов широкого спектра применения. Особенно это касается малоизученных сложных оксосоединений, в частности, двойных и тройных теллуритов d- и f-элементов, которые представляют собой определенный теоретический и практический интерес для неорганического материаловедения в качестве материалов, обладающих ценными физико-химическими свойствами [1, 2]. В последнее время внимание ученых особо привлекают соединения на основе оксидов редкоземельных, щелочноземельных и переходных металлов в связи с их перспективными свойствами в микроэлектронике [3-5].

Учитывая вышеуказанное можно заключить, что определенный интерес вызывает сочетание

оксидов редкоземельных элементов, переходных металлов и теллура в одном соединении. В связи с вышеизложенными в данной работе приводятся результаты исследования термодинамических и электрофизических свойств никелито-теллурита лантана La₂SrNiTeO₇.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Методом керамической технологии из оксидов La₂O₃ ("ос. ч."), NiO ("ос. ч."), TeO₂ ("ч. д. а.") и карбоната SrCO₃ ("ч. д. а.") в интервале 800– 1200°С синтезирована новая фаза – никелитотеллурит La₂SrNiTeO₇. В предыдущей работе [6] описаны методика синтеза и рентгенографические свойства этого соединения. Методами рентгенографии установлено, что синтезированный никелито-теллурит La₂SrNiTeO₇ кристаллизуется в кубической сингонии. Предполагаемая структура синтезированного никелито-теллурита является перовскитной с пространственной группы $P_m 3_m$.

На калориметре ИТ-С-400 в интервале температур 298.15—673 К были измерены удельные, а затем по ним рассчитаны мольные теплоемкости

<i>Т</i> , К	$C_p \pm \overline{\delta},$ Дж/(г К)	$C_{p}^{\circ} \pm \mathring{\Delta},$ Дж/(моль К)	<i>Т</i> , К	$C_p \pm \overline{\delta},$ Дж/(г К)	$C_p^{\circ} \pm \mathring{\Delta},$ Дж/(моль К)
298.15	0.6841 ± 0.0099	281 ± 11	498	0.3821 ± 0.0102	157 ± 12
323	0.7513 ± 0.0099	309 ± 11	523	0.3378 ± 0.0114	139 ± 13
348	0.3513 ± 0.0059	144 ± 7	548	0.3730 ± 0.0064	153 ± 7
373	0.4706 ± 0.0115	193 ± 13	573	0.4075 ± 0.0089	168 ± 10
398	0.5452 ± 0.0083	224 ± 10	598	0.4470 ± 0.0076	184 ± 9
423	0.5795 ± 0.0123	238 ± 14	623	0.4642 ± 0.0054	191 ± 6
448	0.6029 ± 0.0114	248 ± 13	648	0.4935 ± 0.0100	203 ± 11
473	0.4613 ± 0.0081	190 ± 9	673	0.5207 ± 0.0087	214 ± 10

Таблица 1. Экспериментальные значения теплоемкостей никелито-теллурита La₂SrNiTeO₇

La₂SrNiTeO₇. Принцип работы прибора, его градуировка и методика обработки полученных результатов подробно описаны в [2, 7-10].

Как правило, в керамических сегнетоэлектриках наблюдается температурная зависимость электрофизических свойств. С этой целью нами исследованы температурные зависимости диэлектрической проницаемости и электросопротивления теллурита La₂SrNiTeO₇ в диапазоне 293–483 К по методикам [11, 12].

Исследование электрофизических свойств (диэлектрической проницаемости и электрического сопротивления) проводилось путем изме-

Рис. 1. Зависимость теплоемкости $La_2SrNiTeO_7$ от температуры.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 9 2019

рения электроемкости на приборе LCR-800 (Taiwan) при рабочей частоте 1 кГц непрерывно в сухом воздухе в термостатном режиме со временем выдержки при каждой фиксированной температуре.

Диэлектрическая проницаемость определялась из электроемкости образца при известных значениях толщины образца и площади поверхности электродов. Для получения зависимости между электрической индукцией (*D*) и напряженностью электрического поля (*E*) использована схема Сойера—Тауэра. Величина диэлектрической проницаемости при каждой температуре определялась по формуле:

$$\varepsilon = C/C_0,\tag{1}$$

где $C_0 = \varepsilon_0 S/d$ — емкость конденсатора без исследуемого вещества (воздушного).

Поскольку керамические материалы обладают определенной инерционностью, изменение электрофизических свойств, данные по интегральному электрическому сопротивлению и электроемкости определялись только после предварительной выдержки в течение ~0.5 ч при фиксированной температуре. Это особенно важно в области аномальных изменений указанных выше характеристик. Для сравнения данных по электропроводности проводятся также измерения методом непосредственного отклонения с помощью термоомметра E6-13A.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В табл. 1 и на рис. 1 приведены результаты калориметрического исследования теплоемкости соединения.

Из данных табл. 1 и рис. 1 видно, что на кривой зависимости $C_p^{\circ}(T)$ при 323 и 448 К у La₂SrNiTeO₇ наблюдаются λ -образные эффекты, по-видимому, относящиеся к фазовым переходам II рода.

а	$b \times 10^3$	$c \times 10^{-5}$	ΔT , K
150 ± 8	440.0 ± 23.45	—	298-323
2203 ± 117	$-(5916.0 \pm 315.25)$	—	323-348
1598 ± 85	$-(1988.2 \pm 105.95)$	$-(922.76 \pm 49.17)$	348-448
-(1810 ± 96)	2259.5 ± 120.40	2098.81 ± 111.84	448-523
122 ± 6	229.6 ± 12.24	-(281.17 ± 14.98)	523-673

Таблица 2. Коэффициенты уравнения $C_p^{\circ} = a + bT + cT^{-2}$ температурной зависимости теплоемкости никелитотеллурита La₂SrNiTeO₇ (Дж/(моль K))

Таблица 3. Термодинамические функции La₂SrNiTeO₇

<i>Т</i> , К	$C_{p}^{\circ} \pm \mathring{\Delta},$ Дж/(моль К)	<i>S</i> °(<i>T</i>) ± Å, Дж/(моль К)	$H^{\circ}(T) - H^{\circ}(298.15) \pm \mathring{\Delta},$ Дж/моль	$\Phi^{xx}(T) \pm \mathring{\Delta},$ Дж/(моль К)
298.15	262 ± 14	277 ± 8	_	277 ± 8
300	282 ± 15	279 ± 23	560 ± 30	277 ± 23
325	293 ± 16	302 ± 25	7760 ± 410	278 ± 23
350	133 ± 7	318 ± 27	12920 ± 690	281 ± 24
375	197 ± 11	330 ± 28	17280 ± 920	284 ± 24
400	226 ± 12	344 ± 29	22600 ± 1200	288 ± 24
425	242 ± 13	358 ± 30	28480 ± 1520	291 ± 24
450	248 ± 13	373 ± 31	34630 ± 1850	295 ± 25
475	193 ± 10	384 ± 32	40050 ± 2130	300 ± 25
500	159 ± 9	393 ± 33	44420 ± 2400	304 ± 25
525	138 ± 7	400 ± 33	48100 ± 2560	309 ± 26
550	155 ± 8	407 ± 34	51790 ± 2760	313 ± 26
575	169 ± 9	414 ± 35	55840 ± 2980	317 ± 26
600	181 ± 10	422 ± 35	60210 ± 3210	321 ± 27
625	193 ± 10	429 ± 36	64890 ± 3460	326 ± 27
650	204 ± 11	437 ± 36	69860 ± 3720	330 ± 28
675	215 ± 12	445 ± 37	75100 ± 4000	334 ± 28

Эти переходы могут быть связаны с катионными перераспределениями, с изменениями коэффициентов термического расширения, магнитных моментов, диэлектрической проницаемости, электросопротивления синтезированного никелито-теллурита и др.

Математической обработкой данных экспериментов с учетом температур фазовых переходов выведены уравнения температурной зависимости теплоемкости никелито-теллурита La₂SrNiTeO₇. Согласно данным табл. 1 и рис. 1 у никелито-теллурита наблюдаются фазовые переходы, поэтому зависимость $C_p^{\circ}(T)$ соединения описывалась несколькими уравнениями, коэффициенты которых приведены в табл. 2.

Технические характеристики калориметра ИТ-С-400 не позволяют вычислить значения стандартной энтропии соединения из опытных данных по теплоемкости. Поэтому она была оценена с использованием системы ионных энтропийных инкрементов [13]. Далее по известным соотношениям [14] в интервале 298.15—673 К аналогично [2] были рассчитаны температурные зависимости $C_p^{\circ}(T)$ и энтропии $S^{\circ}(T)$, энтальпии $H^{\circ}(T) - H^{\circ}(298.15)$ и приведенного термодинамического потенциала $\Phi^{xx}(T)$, результаты которых представлены в табл. 3. При оценке погрешно-

(R) никелито-теллурита La ₂ SrNiTeO ₇ от температуры					
<i>Т</i> , К	С, мкФ	3	lgε	<i>R</i> , кОм	lg R
303	8.21	41	1.62	429.3	5.63
313	7.45	38	1.57	742.1	5.87
323	8.01	40	1.61	1640	6.21
333	8.88	45	1.65	3271	6.51
343	11.58	58	1.77	5849	6.77
353	17.65	89	1.95	6511	6.81
363	36.49	184	2.26	5452	6.74
373	92.86	468	2.67	3472	6.54
383	209.64	1056	3.02	2201	6.34
393	421.18	2122	3.33	1460	6.16
403	60.47	305	2.48	4190	6.62
413	13.91	70	1.85	4815	6.68
423	9.17	46	1.66	2184	6.34
433	8.57	43	1.64	1478	6.17
443	8.40	42	1.63	1295	6.11
453	8.97	45	1.66	1484	6.17
463	9.10	46	1.66	1603	6.20
473	9.24	47	1.67	1783	6.25
483	9.37	47	1.67	1946	6.29

Таблица 4. Зависимость электроемкости (C), диэлектрической проницаемости (ε) и электросопротивления (R) никелито-теллурита La₂SrNiTeO₇ от температуры

стей функций $S^{\circ}(T)$ и $\Phi^{xx}(T)$ учитывались погрешности оценки $S^{\circ}(298.15)$ (±3%).

Экспериментальные данные по исследованию электрофизических свойств никелито-теллурита $La_2SrNiTeO_7$ приведены в табл. 4 и на рис. 2, 3.

Рис. 2. Температурная зависимость диэлектрической проницаемости La₂SrNiTeO₇.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 9 2019

Анализ данных табл. 4 и рис. 2 и 3 показывает, что соединение La₂SrNiTeO₇ в интервале 313–343 К проявляет металлическую, при 353-373 К – полупроводниковую, при 393-403 К – металлическую, при 403-423 К – полупроводниковую и при 453-483 К – металлическую проводимость.

Расчет ширины запрещенной зоны рассчитывали по формуле:

$$\Delta E = \frac{2kT_1T_2}{T_2 - T_1} \ln \frac{R_1}{R_2},$$
(2)

где k — постоянная Больцмана; R_1 и R_2 — сопротивления при температурах T_1 и T_2 соответственно.

Ширина запрещенной зоны (ΔE), рассчитанной по формуле (2), для никелито-теллурита La₂SrNiTeO₇ в интервале 353–373 К равна 2.75 эВ, а при 403–423 К составляет 3.57 эВ.

Таким образом, впервые экспериментальным методом динамической калориметрии в интервале 298.15–673 К исследованы температурные зависимости изобарной теплоемкости La₂Sr-NiTeO₇ и установлена его фундаментальная константа – стандартная теплоемкость. Для изучаемого никелито-теллурита в исследуемых диапазонах температур на кривой зависимости $C_p^{\circ}(T)$ выявлены λ -образные температурные зависимости теплоемкости, относящиеся к фазовому переходу II рода.

С учетом температур фазовых переходов выведены уравнения температурной зависимости теп-

Рис. 3. Температурная зависимость электросопротивления La₂SrNiTeO₇.

лоемкости никелито-теллурита. Методом ионных инкрементов рассчитана стандартная энтропия исследуемого теллурита. В интервале 298.15— 673 К вычислены температурные зависимости теплоемкости $C_{\rho}^{\circ}(T)$ и термодинамических функций: энтропии $S^{\circ}(T)$, энтальпии $H^{\circ}(T) - H^{\circ}(298.15)$ и приведенного термодинамического потенциала $\Phi^{xx}(T)$.

Впервые на приборе LCR исследованы температурные зависимости электрофизических свойств (диэлектрической проницаемости и электрического сопротивления) никелито-теллурита La₂SrNiTeO₇. На кривых зависимостях $\lg \varepsilon(T)$ и $\lg R(T)$ имеются максимумы и минимумы, которые подтверждают λ -образные эффекты на кривой зависимости $C_p^{\circ}(T)$ у данного соединения, отнесенные к фазовому переходу II рода.

Полученные данные показали, что исследуемое соединение $La_2SrNiTeO_7$ обладает полупроводниковыми свойствами и представляет интерес для электронной технологии.

СПИСОК ЛИТЕРАТУРЫ

- 1. Bekturganova A.Zh., Rustembekov K.T., Kasenov B.K., et al. // Bulletin of the Karaganda University. "Chemistry" series. 2017. № 2 (86). P. 68.
- 2. Рустембеков К.Т., Бектурганова А.Ж. // Журн. физ. химии. 2017. Т. 91. № 4. С. 596. DOI: 10.7868 / S0044453717040276. Rustembekov К.Т., Bekturganova A.Zh. // Russ. J. Phys. Chem. A. 2017. V. 91. № 4. P. 622. DOI: .

https://doi.org/10.1134/S0036024417040252

 Набока М.Н., Палатник Л.С., Шевченко В.Я. // Журн. ВХО. 1981. Т. 36. № 6. С. 31.

- Третьяков Ю.Д., Брылев О.А. // Журн. Рос. хим. общества им. Д.И. Менделеева. 2000. Т. 45. № 4. С. 10.
- 5. *Ерин Ю*. Найдено вещество с гигантским значением диэлектрической проницаемости // Химия и химики. 2009. № 1. С. 16. http: //chemistryandchemistis. narod.ru.
- 6. Бектурганова А.Ж., Сагинтаева Ж.И., Рустембеков К.Т. и др. // Изв. НАН РК. Серия химии и технологии. 2017. № 2 (422). С. 99.
- 7. Платунов Е.С., Буравой С.Е., Курепин В.В., Петров Г.С. Теплофизические измерения и приборы. Л.: Машиностроение, 1986. 256 с.
- Техническое описание и инструкции по эксплуатации ИТ-С-400. Актюбинск: Актюбинский завод "Эталон", 1986. 48 с.
- 9. *Robie R.A., Hewingway B.S., Fisher I.R.* Thermodynamic Properties of Minerals and Ralated Substances at 298.15 and (10⁵ Paskals) Pressure and at Higher Temperatures. Washington: United States Government Printing Office, 1978. 456 p.
- Спиридонов В.П., Лопаткин Л.В. Математическая обработка экспериментальных данных. М.: Изд-во МГУ, 1970. 221 с.
- Рустембеков К.Т., Дюсекеева А.Т., Шарипова З.М., Жумадилов Е.К. // Изв. Томского политех. ун-та. Химия. 2009. Т. 315. № 3. С. 16.
- Рустембеков К.Т., Дюсекеева А.Т. // Журн. общ. химии. 2012. Т. 82. № 8. С. 1272. Rustembekov К.Т., Dyusekeeva А.Т. // Russ. J. Gen. Chem. 2012. V. 82. № 8. Р. 1357. . https://doi.org/10.1134/S1070363212080051
- Кумок В.Н. Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108.
- Герасимов Я.И., Крестовников А.И., Шахов А.С. Химическая термодинамика в цветной металлургии. М.: Металлургия, 1960. Т. 1. 230 с.