ФИЗИЧЕСКАЯ ХИМИЯ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ

УДК 544.723.2+543.544.5

ТЕРМОДИНАМИКА АДСОРБЦИИ ИЗОМЕРНЫХ ДИПИРИДИЛОВ И ИХ ПРОИЗВОДНЫХ ИЗ ВОДНО-ОРГАНИЧЕСКИХ РАСТВОРОВ НА ПОРИСТОМ ГРАФИТИРОВАННОМ УГЛЕРОДЕ НУРЕКСАКВ™

© 2019 г. Б. Р. Сайфутдинов^{а,b,*}, А. К. Буряк^а

^а Российская академия наук, Институт физической химии и электрохимии им. А.Н. Фрумкина, Москва, 119071 Россия ^bСамарский государственный технический университет, Самара, 443100 Россия *e-mail: sayf_br@mail.ru Поступила в редакцию 28.12.2018 г. После доработки 08.02.2019 г. Принята к публикации 14.02.2019 г.

Методом высокоэффективной жидкостной хроматографии в условиях, приближенных к равновесным, изучена адсорбция изомерных дипиридилов и их производных из водно-ацетонитрильных, водно-метанольных и водно-изопропанольных растворов на графитоподобном углеродном материале Hypercarb[™] в области закона Генри. Исследованный графитоподобный углеродный материал Нурегсагb[™] проявляет высокую адсорбционную селективность при разделении изученных изомерных дипиридилов и их производных. Показано, что возможность образования прочной внутримолекулярной C-H-N'-водородной связи в молекуле 2,2'-дипиридила и его производных усиливает адсорбционное связывание молекул-адсорбатов с поверхностью графитоподобного материала за счет стабилизации их планарной конформации. Дестабилизация этой внутримолекулярной водородной связи за счет введения заместителей в различные положения пиридиновых циклов способствует специфическому межмолекулярному взаимодействию молекул-адсорбатов с компонентами растворителя и искажению планарной конформации дипиридилов, тем самым, ослабляя их удерживание на материале Hypercarb[™]. Установлено, что для всех исследованных дипиридилов, за ис-ключением 2,2'-дипиридил-*N*,*N*'-диоксида, характерна положительная адсорбция из водно-органических сред на углеродном адсорбенте, в то время как 2,2'-дипиридил-N,N'-диоксид адсорбируется слабее компонентов растворителя. Обнаружены аномальные зависимости среда – свойство для термодинамических характеристик адсорбции исследованных дипиридилов на пористом графитированном углероде, которые объясняются превалированием π - π -взаимодействий адсорбат – адсорбент над гидрофобными взаимодействиями и пересольватацией молекул адсорбатов ацетонитрилом по мере уменьшения обводненности объемного раствора.

Ключевые слова: адсорбция, хроматография, углерод, графит, термодинамика, дипиридилы **DOI:** 10.1134/S004445371909022X

Микро- и мезопористые углеродные материалы до настоящего времени вызывают интерес исследователей в качестве перспективных компонентов систем аккумулирования газов, полупроводниковых, фотоактивных и электродных материалов, носителей для гетерогенного катализа, адсорбентов в процессах концентрирования и разделения [1–7]. Особое место среди углеродных материалов занимают графитоподобные структуры, обладающие уникальной селективностью при адсорбционном разделении веществ с близким молекулярным строением [8–10].

В хроматографии получил распространение углеродный материал Hypercarb[™], созданный путем пиролитического разложения и последующей графитизации фенолформальдегидного олигомера в порах мезопористого кремнезема [11–13]. Пористый графитированный углерод (ПГУ) марки Нурегсагb^{тм} обладает высокой адсорбционной селективностью при разделении соединений, различающихся пространственным строением молекул, в том числе изомеров, методом высокоэффективной жидкостной хроматографии (ВЭ-ЖХ) [14–18]. Помимо этого, с использованием ПГУ в качестве неподвижной фазы для ВЭЖХ можно легко разделить трудноразделяемые смеси веществ, молекулы которых имеют близкое пространственное строение, но различаются числом π -электронов [15–18].

В то же время механизм адсорбции на ПГУ при жидкофазных разделениях до сих пор не понят. Практически нет данных о влиянии качественно-

Таблица 1. Структурные формулы адсорбатов

Адсор- бат	Название	Структурная формула
1	2,2'-Дипиридил	
2	4,4'-Дипиридил	N
3	6-Метил-2,2'- дипиридил	\sim N N CH ₃
4	6,6'-Диметил- 2,2'-дипиридил	H_3C N CH_3
5	5,5'-Диметил- 2,2'-дипиридил	$H_3C - \bigvee_{N=} CH_3$
6	4,4'-Диметил- 2,2'-дипиридил	H_3C CH_3 H_3C $N=$
7	Ди(2-пири- дил)кетон	
8	2,2'-Дипирил- <i>N</i> - оксид	
9	2,2'-Дипирил- <i>N,N</i> '-диоксид	

го и количественного состава жидкой фазы на термодинамические характеристики адсорбции (ТХА) различных классов соединений на ПГУ. Отсутствуют также надежные сведения о вкладе специфических и дисперсионных взаимодействий молекул-адсорбатов с поверхностью ПГУ при разных составах объемного раствора. В связи с этим трудно оптимизировать условия разделения сложных многофункциональных органических соединений, в том числе изомеров, на ПГУ методом ВЭЖХ.

Цель работы — определение ТХА изомерных дипиридилов и некоторых их производных на графитоподобном углеродном материале Нурегcarb[™] в области закона Генри из водно-органических растворов методом ВЭЖХ, а также установление зависимости ТХА от молекулярного строения адсорбатов и состава и природы жидкой фазы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве адсорбатов использовали изомерные дипиридилы и их производные от Sigma Aldrich (табл. 1). Чистота исследованных веществ доказана хроматографически.

В роли адсорбента выступал коммерческий ПГУ марки Нурегсагь^{тм} (Thermo Scientific, США) с удельной площадью поверхности $s_{yg} = 120 \text{ м}^2/\text{г}$. Размер частиц адсорбента составлял 5 мкм. Размеры стальной хроматографической колонки: длина 50 мм, внутренний диаметр 2.1 мм. Масса адсорбента в колонке g = 0.2 г.

В качестве подвижных фаз использовали бинарные водно-органические смеси. Органические компоненты – ацетонитрил (MeCN), метанол (MeOH) и изопропанол (*i*-PrOH) для ВЭЖХ. Деионизованную воду получали на мембранном деионизаторе "ДМЭ-1/Б" (БМТ, Россия). Концентрацию MeCN варьировали в интервале от $\Phi_{MeCN} = 0.40$ до $\Phi_{MeCN} = 0.90$ об. доли с шагом 0.10 об. доли, а концентрацию MeOH и *i*-PrOH оставляли постоянной и равной $\Phi_{MeOH} = \Phi_{i-PrOH} = 0.70$ об. доли.

Измерения ТХА изомерных дипиридилов из растворов выполнены в условиях динамического адсорбционного эксперимента с использованием хроматографического оборудования. Первичные хроматографические данные получали на жидкостном хроматографе "Agilent 1100 Series", укомплектованном детектором на диодной матрице, дегазатором подвижной фазы и краном-дозатором "Rheodyne" с петлей на 20 мкл. Элюирование 10⁻⁴ М растворов индивидуальных образцов адсорбатов осуществляли в изократическом режиме. Объемный расход подвижной фазы составлял 1 мл/мин. Косвенным подтверждением близости условий эксперимента к области закона Генри являлась наблюдаемая правильная гауссова форма хроматографических пиков. Температуру колонки Тварьировали в интервале от 313 до 333 К с шагом 10 К. Перед проведением динамической адсорбции дипиридилов колонку термостатировали в течение 30 мин.

Из полученных первичных экспериментальных хроматографических данных определяли величины константы Генри адсорбции ($K_{1,c}$, мкл/м²) и изменений стандартной дифференциальной молярной энергии Гиббса ($\Delta_a G^\circ$, кДж/моль), энтальпии ($\Delta_a H^\circ$, кДж/моль) и энтропии ($\Delta_a S^\circ$, Дж/(моль K)) при адсорбции так,

Таблица 2. Константы Генри адсорбции ($K_{1,c}$, мкл/м²) и стандартные дифференциальные молярные изменения энергии Гиббса ($\Delta_a G^\circ$, кДж/моль) при адсорбции дипиридилов и их производных на ПГУ из растворов MeCN- H_2O с разной объемной долей Φ_{MeCN} при $T_{av} = 323$ К

Адсор- бат	$\Phi_{\rm MeCN} = 0.40$		$\Phi_{\rm MeCN} = 0.50$		$\Phi_{\rm MeCN} = 0.60$		$\Phi_{\rm MeCN} = 0.70$		$\Phi_{\rm MeCN} = 0.80$		$\Phi_{\rm MeCN} = 0.90$	
	<i>K</i> _{1,c}	$-\Delta_{\rm a}G^{\circ}$	<i>K</i> _{1,c}	$-\Delta_{\rm a}G^{\circ}$	<i>K</i> _{1,c}	$-\Delta_{a}G^{\circ}$	<i>K</i> _{1,c}	$-\Delta_{\rm a}G^{\circ}$	<i>K</i> _{1,c}	$-\Delta_{a}G^{\circ}$	<i>K</i> _{1,c}	$-\Delta_{\rm a}G^{\circ}$
1	156.1	11.1	96.9	9.8	69.0	9.0	52.4	8.3	43.1	7.8	36.8	7.4
2	31.8	7.0	20.7	5.9	15.8	5.3	14.8	5.1	14.6	5.1	16.5	5.4
3	352.6	13.3	206.9	11.8	136.3	10.7	98.7	9.9	76.1	9.2	59.3	8.6
4	1067.7	16.2	590.8	14.6	362.7	13.3	245.2	12.3	174.8	11.4	126.7	10.6
5	1948.2	17.8	1024.7	16.1	614.0	14.7	423.9	13.8	316.1	13.0	241.4	12.3
6	938.8	15.9	504.3	14.2	310.8	12.9	218.5	12.0	167.0	11.3	131.3	10.6
7	21.6	6.0	14.1	5.0	10.1	4.3	8.0	3.8	6.7	3.5	6.2	3.3
8	12.3	4.7	9.7	4.2	9.1	4.1	10.2	4.3	11.6	4.6	16.3	5.4
9	-0.9	-1.2	-0.7	-0.8	-0.9	-1.2	-0.5	-0.5	-0.6	-0.7	0.5	0.5

Таблица 3. Стандартные дифференциальные молярные изменения энтальпии ($\Delta_a H^\circ$, кДж/моль) и энтропии ($\Delta_a S^\circ$, Дж/моль·К) при адсорбции дипиридилов и их производных на ПГУ из растворов MeCN-H₂O с разной объемной долей Φ_{MeCN} при $T_{av} = 323$ К

Адсор- бат	$\Phi_{\rm MeCN} = 0.40$		$\Phi_{\rm MeCN} = 0.50$		$\Phi_{\rm MeCN} = 0.60$		$\Phi_{\rm MeCN} = 0.70$		$\Phi_{\rm MeCN} = 0.80$		$\Phi_{\rm MeCN} = 0.90$	
	$-\Delta_{\rm a}H^{\circ}$	$-\Delta_{a}S^{\circ}$										
1	10.9	-0.5	11.0	3.8	14.2	16.4	13.3	15.5	13.1	16.5	14.7	22.7
2	6.1	-2.8	5.1	-2.8	7.8	7.7	6.3	3.6	7.1	6.2	8.0	8.1
3	13.5	0.7	13.9	6.2	14.9	12.7	15.5	17.5	16.1	21.2	17.4	27.3
4	15.6	-2.0	15.2	1.7	16.8	10.6	18.0	17.7	18.8	22.9	20.1	29.4
5	16.6	-4.1	15.7	-1.4	16.8	6.2	17.5	11.5	17.8	14.9	20.0	24.1
6	15.5	-1.0	15.3	3.2	15.98	9.2	16.6	14.2	17.4	19.1	20.2	29.4
7	5.48	-2.1	5.9	2.7	5.9	4.8	8.9	15.6	9.1	17.3	10.1	21.1
8	0.4	-13.5	1.2	-9.5	2.9	-3.6	4.7	1.3	8.0	10.5	8.4	9.4
9	4.5	17.5	—	—	—	—	—	—	—	—	—	—

Таблица 4. Термодинамические характеристики адсорбции дипиридилов и их производных на ПГУ из водноспиртовых растворов с объемной долей органического компонента $\Phi_{i-\text{PrOH}} = \Phi_{\text{MeOH}} = 0.70$ при $T_{\text{av}} = 323$ К

		<i>i</i> -PrO	H–H ₂ O		MeOH–H ₂ O					
Адсорбат	<i>K</i> _{1,c} , мкл/м ²	$-\Delta_{\mathrm{a}}G^{\circ},$ кДж/моль	$-\Delta_{\mathrm{a}}H^{\mathrm{o}},$ кДж/моль	$-\Delta_{a}S^{\circ},$ Дж/(моль К)	<i>K</i> _{1,c} , мкл/м ²	$-\Delta_{\mathrm{a}}G^{\mathrm{o}},$ кДж/моль	$-\Delta_{\mathrm{a}}H^{\mathrm{o}},$ кДж/моль	−∆ _а <i>S</i> °, Дж/(моль К)		
1	14.7	5.1	_	—	104.4	10.0	20.2	31.4		
2	3.7	2.4	—	_	59.5	8.6	21.3	39.3		
3	32.8	7.1	9.6	7.9	223.0	12.0	21.4	28.7		
4	88.4	9.6	11.0	4.2	589.2	14.6	24.1	29.2		
5	128.6	10.6	10.1	-1.4	1298.1	16.8	27.7	34.0		
6	68.7	8.9	8.1	-2.8	580.3	14.6	25.2	32.7		
7	1.8	1.4	_	—	25.3	6.4	17.2	33.2		
8	2.1	1.6	—	—	18.4	5.7	12.9	22.5		
9	-2.5	-11.0	—	—	0.2	0.2	—	—		

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 9 2019

1395

как это описано в статье [18]. Рассчитанные значения ТХА относятся к среднегармонической температуре исследованного температурного интервала равной $T_{av} = 323$ К. При расчете величин ТХА использовали значения "мертвого" объема $V_{\rm M} = 270$ мкл, объема адсорбционной фазы $v_{\rm a} = 61$ мкл и толщины адсорбционного слоя t = 2.54 нм. Результаты определения ТХА изомерных дипиридилов и их производных представлены в табл. 2–4.

Оптимизацию геометрии молекул исследованных соединений и расчет величин их дипольного момента проводили с помощью программы Gaussian 09 [19] методом теории функционала плотности (DFT) с использованием гибридного функционала B3LYP и базисного набора 6-31+G(d,p). Расчет выполняли для молекул в вакууме.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Данные табл. 2 и 4 демонстрируют существенное влияние молекулярного строения дипиридилов на их значения константы Генри адсорбции $K_{1,c}$ и стандартного дифференциального молярного изменения энергии Гиббса $\Delta_a G^\circ$ при адсорбции из растворов на поверхности ПГУ. При переходе от 2,2'-дипиридила (вещество 1) к 4,4'-дипиридилу (вещество 2) величина $K_{1,c}$ уменьшается ориентировочно в 5 раз при адсорбции из растворов с малым содержанием MeCN ($\Phi_{MeCN} = 0.40-$ 0.60 об. доли), примерно в 4 раза при адсорбции из раствора MeCN-H₂O с $\Phi_{MeCN} = 0.70$ об. доли и приблизительно в 3 раза при адсорбции из сред MeCN-H₂O с большим содержанием органического компонента ($\Phi_{MeCN} = 0.80-0.90$ об. доли).

Следует отметить, что молекулы обоих изомеров неполярны, согласно данным квантово-химического расчета, у обоих адсорбатов $\mu = 0.000 \text{ D}$. Гораздо более сильная адсорбция 2,2'-дипиридила (вещество 1) по сравнению с 4,4'-дипиридилом (вещество 2), на наш взгляд, обусловлена тем, что молекула первого имеет плоскую геометрию (табл. 2, 4). Так, планарная конформация молекулы 2,2'-дипиридила сильно стабилизирована двумя внутримолекулярными C-H-N' водородными связями между атомом водорода, находящимся в положении 3 одного пиридильного радикала, и атомом азота соседнего цикла, а также $\pi - \pi$ -сопряжением между пиридиновыми циклами, в результате чего атомы азота в молекуле 2.2'-дипиридила находятся в анти-положении друг к другу [20, 21]. Анти-конформер 2,2'-дипиридила оказывается на 27 кДж/моль стабильнее цис-конформера [21]. По данным [20] комплексообразование в растворе с участием атомов азота 2,2'дипиридила способно разрушать существующие внутримолекулярные С-Н-N' водородные связи, вследствие чего транс-ориентация атомов азота в 2,2'-дипиридиле может изменяться, и его молекула приобретает неплоскую геометрию. Однако более сильная адсорбция 2,2'-дипиридила (вещество 1) из водно-органических сред по сравнению с 4,4'-дипиридилом (вещество 2) на поверхности ПГУ (табл. 2, 4) свидетельствует об отстутствии такого комплексообразования, следовательно, 2,2'-дипиридил в указанных растворах, по-видимому, сольватируется за счет ван-дер-ваальсовых взаимодействий с растворителем.

Увеличение содержания MeCN в растворе, из среды которого происходит адсорбция, уменьшает разницу в константах Генри адсорбции 2,2'дипиридила (вещество 1) и 4,4'-дипиридила (вещество 2), что отражает ослабление адсорбционной селективности системы по отношению к этим двум изомерам. В то же время даже при $\Phi_{\text{MeCN}} = 0.90$ об. доли различия в величинах $K_{1,c}$ этих двух изомерных дипиридилов достаточно для их полного разделения методом ВЭЖХ с использованием ПГУ в качестве неподвижной фазы (табл. 2, 4). Более слабое адсорбционное связывание 4,4'-дипиридила (вещество 2), для которого угол между циклами составляет 37.2° [22], с поверхностью ПГУ по сравнению с 2,2'-дипиридилом (вещество 1), вероятно, связано с отсутствием у его молекулы плоской геометрии, для достижения которой недостатачно п-п-сопряжения между ароматическими циклами.

Введение одного метильного радикала в положение 6 молекулы 2,2'-дипиридила еще больше усиливает адсорбционное связывание молекуладсорбатов с поверхностью ПГУ (табл. 2, 4). Так, величина *К*_{1,с} 6-метил-2,2'-дипиридила (вещество 3), молекула которого обладает слабой полярностью ($\mu = 0.536$ D), практически вдвое превосходит соответствующее значение для незамещенного неполярного аналога. Такой эффект объясняется увеличением числа контактов молекулыадсорбата с графитоподобной поверхностью углеродного материала при введении метила и, кроме того, повышенной электронной плотностью на атоме азота замещенного цикла за счет электронодонорных свойств метила, которая способствует образованию внутримолекулярной С-Н-N' водородной связи и, как следствие, стабилизирует планарную конформацию данного адсорбата. Введение второго метила в положение 6' соседнего пиридинового цикла при переходе к 6,6'диметил-2,2'-дипиридилу, для которого µ = = 0.000 D, (вещество 4) увеличивает величину $K_{1,c}$ практически втрое (табл. 2, 4), что также объясняется увеличением числа контактов молекулы-адсорбата с углеродным адсорбентом и стабилизацией плоской геометрии молекулы, благоприятствующей его планарной ориентации при адсорбции на графитоподобной поверхности.

К практически двукратному возрастанию удерживания на ПГУ приводит переход от 6,6'диметил-2,2'-дипиридила (вещество 4) к его структурному изомеру – 5,5'-диметил-2,2'-дипиридилу, у которого так же $\mu = 0.000$ D, (вещество 5). Как и в случае изомерных 2,2' и 4,4'-дипиридилов, увеличение концентрации MeCN в подвижной фазе несколько уменьшает различие в величинах $K_{1,c}$ изомерных диметил-2,2'-дипиридилов, но не препятствует их полному разделению на колонках с ПГУ в условиях ВЭЖХ (табл. 2, 4). В 2 раза более сильное адсорбционное связывание 5,5'-диметил-2,2'-дипиридила с ПГУ по сравнению с 6,6'-диметил-2,2'-дипиридилом, по-видимому, связано с тем, что присутствие двух метилов в мета-положениях по отношению к атомам углерода в положениях 3 и 3' пиридиновых циклов усиливает электронодонорные свойства атомов водорода, находящихся при этих атомах углерода, тем самым, способствуя упрочнению внутримолекулярной C-H-N' водородной связи, стабилизирующей планарную конформацию молекулы 5,5'-диметил-2,2'-дипиридила.

Другой изомер – 4,4'-диметил-2,2'-дипиридил, у которого $\mu = 0.094$ D, (вещество 6), напротив, адсорбируется на ПГУ, согласно данным табл. 2 и 4, несколько слабее 6,6'-диметил-2,2'дипиридила (вещество 4). Это, по нашему мнению, обусловлено тем, что присутствие двух метилов в положениях 4 и 4' несколько ослабляет электроноакцепторные свойства атомов водорода, находящихся в положении 3 и 3' соответственно. Такое ослабление может происходить за счет положительного индуктивного эффекта метильного радикала и эффекта гиперконъюгации. В результате оно препятствует образованию прочной внутримолекулярной С-Н-N' водородной связи, стабилизирующей планарную конформацию молекулы 4,4'-диметил-2,2'-дипиридила. Поэтому, вероятно, данный адсорбат с неплоской геометрией удерживается на ПГУ меньше 6,6'-диметил-2,2'-дипиридила (табл. 2, 4).

Таким образом, основными факторами, определяющими характер адсорбции изомерных дипиридилов и их замещенных аналогов из водно-органических растворов на углеродном материале Hypercarb[™], являются геометрия молекулы адсорбата и число ее возможных контактов с графитоподобной поверхностью ПГУ. При этом присутствие в адсорбирующейся молекуле заместителей, стабилизирующих планарную конформашию. в значительной степени усиливает адсорбционное связывание дипиридилов с ПГУ. При этом, по-видимому, основным фактором, обусловливающим возможность адсорбционного связывания молекулы дипиридилов с ПГУ является именно возможность наиболее полного контакта всех ее атомов с графитоподобной поверхностью и, как следствие, реализации π-π-взаимодействия адсорбат — адсорбент и дополнительных электростатических сил, возникающих между молекулами с плоской геометрией и подвижной π -электронной системой графитоподобной поверхности ПГУ, а не взаимодействие полярных центров молекул адсорбатов с остаточными полярными функциональными группами графитового листа, как это происходит в случае графитированной термической сажи [23, 24].

В пользу последнего положения свидетельствует слабая адсорбшия молекул с неплоской геометрией. Так, ди(2-пиридил)кетон (вещество 7), согласно данным таблиц 2 и 4, адсорбируется на ПГУ из водно-органических сред гораздо слабее своего ближайшего аналога – 2,2'-дипиридила (вещество 1). Так же слабо адсорбируются на ПГУ и содержащие семиполярные связи 2,2'дипиридил-*N*-оксид и 2,2'-дипиридил-*N*,*N*'-диоксид (вещества 8 и 9 соответственно). Молекулы ди(2-пиридил)кетона и 2,2'-дипиридил-*N*-оксида обладают дипольным моментом ($\mu = 4.299$ D и $\mu = 2.048$ D соответственно), поэтому они, вероятно, вступают в сильные ориентационные взаимодействия с молекулами полярного растворителя. В то же время у молекулы 2,2'-дипиридил-N,N'-диоксида нет дипольного момента, и этот адсорбат не может взаимодействовать с растворителем посредством ориентационных сил. Эти адсорбаты, вероятно, сольватируются не только по механизму ван-дер-ваальсовых взаимодействий с полярным растворителем, но и за счет образования межмолекулярной водородной связи между основными пиридиновыми атомами азота молекул адсорбатов и кислотными центрами компонентов растворителей. Такая сольватация вкупе с неплоской геометрией этих адсорбатов приводит к их быстрому элюированию из колонки в условиях динамического адсорбционного эксперимента.

Адсорбционное равновесие, согласно приведенным значениям $\Delta_a G^\circ$, смещено в сторону образования адсорбционных комплексов молекуладсорбатов с поверхностью ПГУ (табл. 2, 4). Исключение составляет только 2,2'-дипиридил-*N*,*N*'-диоксид (вещество **9**), молекула которого непланарна и содержит две семиполярные связи. В результате за счет сочетания слабого адсорбционного связывания с графитоподобной поверхностью и сильной сольватации водно-органическим растворителем данное вещество адсорбируется слабее самого растворителя, то есть характеризуется отрицательной адсорбцией на ПГУ из водно-органических растворов. Это проявляется в его отрицательных значениях $K_{1,c}$ и положительных величинах $\Delta_a G^\circ$ (см. данные табл. 2, 4), свидетельствующих о сдвиге адсорбционного равновесия в случае 2,2'-дипиридил-N,N'-диок-

2.98 3.02 3.06 3.10 3.14 3.18 3.22 10³/*T*, K⁻¹

 $\ln K_c$ 7 \Box

5

3

Рис. 1. Зависимости логарифма константы распределения исследованных дипиридилов от обратной температуры при их адсорбции на ПГУ из раствора $MeOH-H_2O \ c \ \Phi_{MeOH} = 0.70$; здесь и далее номера на кривых соответствуют номераму соединений в табл. 1.

сида (вещество 9) в сторону разрушения адсорбционных комплексов адсорбат — адсорбент.

На рис. 1 представлены зависимости логарифма константы распределения исследованных дипиридилов от обратной температуры при их адсорбции на ПГУ из раствора MeOH $-H_2O$ с Φ_{MeOH} = 0.70 об. доли. Как и при адсорбции дипиридилов из сред MeCN-H₂O и *i*-PrOH-H₂O, эти зависимости имеют линейный возрастающий характер, что отражает экзотермический характер жидкофазной адсорбции исследованных веществ на ПГУ. Так, в табл. 3 и 4 представлены величины изменений стандартных дифференциальных молярных энтальпии $\Delta_a H^\circ$ и энтропии $\Delta_a S^\circ$ при адсорбции. Из приведенных данных видно, что жидкофазная адсорбция всех исследованных соединений характеризуется отрицательными значениями $\Delta_a H^\circ$, независимо от природы и состава объемного раствора, из среды которого происходит адсорбция. Это обусловлено превалированием энергетического выигрыша за счет взаимодействия молекул-адсорбатов с поверхностью ПГУ над энергетическими затратами на преодоление сольватационного взаимодействия молекул-адсорбатов с растворителем и десорбцию предадсорбированных на поверхности ПГУ молекул растворителя. Адсорбции большинства исследованных веществ свойственны, помимо этого, отрицательные величины $\Delta_a S^\circ$, отражающие превалирование потери числа степеней свободы адсорбционной системы за счет адсорбционного связывания молекул-адсорбатов с поверхностью

ПГУ над высвобождением дополнительного числа степеней свободы, вызванным поступлением молекул растворителя в объемный раствор вследствие разрушения сольватных оболочек молекуладсорбатов и десорбцией предадсорбированного растворителя. Исключение составляет адсорбция из максимально обводненных растворов MeCN– H_2O и из раствора *i*-PrOH– H_2O , когда для различных адсорбатов наблюдаются положительные изменения энтропии при переходе молекулы из объемного раствора в поверхностный слой (табл. 3, 4).

Максимальные по модулю величины $\Delta_a H^\circ$ и $\Delta_{a}S^{\circ}$ свойственны адсорбции исследованных дипиридилов на ПГУ из растворов MeOH-H₂O, промежуточные значения $\Delta_{a}H^{\circ}$ и $\Delta_{a}S^{\circ}$ характерны для адсорбции из растворов MeCN-H₂O, а минимальными по модулю изменениями рассматриваемых ТХА сопровождается адсорбция из растворов *i*-PrOH-H₂O (табл. 4). Таким же образом уменьшаются при переходе от растворов МеОН-H₂O к средам МеСN-H₂O и далее к бинарным растворителям i-PrOH $-H_2O$ и величины $K_{1,c}$, а также абсолютные значения $\Delta_a G^\circ$ исследованных дипиридилов (табл. 2, 4). Как известно [18], это обусловлено сильной ассоциацией смесей MeOH-H₂O по сравнению со смесями MeCN-H₂O, что приводит к более эффективному вытеснению молекул адсорбатов из сред MeOH-H₂O на неполярную поверхность. Помимо этого, в таком порядке уменьшения абсолютных величин ТХА при изменении природы водно-органического растворителя важную роль играет более высокая по сравнению с метанолом концентрация предадсорбированного ацетонитрила на неполярной поверхности [18].

Помимо природы органического компонента объемного раствора, из среды которого происходит адсорбция, сильное влияние на значения ТХА исследованных дипиридилов оказывает состав бинарного растворителя (табл. 2, 3). В то же время из представленных на рис. 2 зависимостей различных величин ТХА исследованных дипиридилов от объемной доли ацетонитрила в подвижной фазе видно, что абсолютные значения $\Delta_a G^\circ$ закономерно монотонно уменьшаются по мере роста содержания ацетонитрила в растворе Φ_{MeCN} . Такое ослабление адсорбционного связывания большинства исследованных дипиридилов связано с усилением сольватации их молекул ацетонитрилом и уменьшением гидрофобных взаимодействий вследствие разрушения сетки водородных связей в объемном растворе. Отмеченное уменьшение абсолютных величин $\Delta_a G^\circ$ с увеличением Φ_{MeCN} характерно практически всем дипиридилам (рис. 2а, б, в), за исключением 2,2'дипиридил-N-оксида, абсолютные значения $\Delta_a G^{\circ}$ которого слабо убывают с ростом Φ_{MeCN} , а затем,

Рис. 2. Зависимости термодинамических характеристик адсорбции 2,2'-дипиридила (а), 6-метил-2,2'-дипиридила (б), ди(2-пиридил)кетона (в) на ПГУ из растворов MeCN-H₂O от объемной доли Φ_{MeCN} .

наоборот, несколько увеличиваются до величин, превосходящих по модулю значения $\Delta_a G^\circ$, характерных для адсорбции из обводненных растворов (табл. 2). Это, по-видимому, обусловлено тем, что вначале повышение содержания ацетонитрила в растворе способствует сольватации пиридиновых циклов данного адсорбата, тем самым, ослабляя его удерживание, а дальнейшее увеличение объемной доли ацетонитрила, напротив, вероятно, препятствует специфической сольватации молекулы 2,2'-дипиридил-*N*-оксида водой по центрам, содержащим семиполярную связь, в результате чего удерживание несколько увеличивается (табл. 2).

В то время как большинству исследованных дипиридилов свойственны закономерные монотонно убывающие зависимости $-\Delta_a G^\circ$ от Φ_{MeCN} , зависимости среда-свойство для абсолютных значений изменений стандартных дифференциальных молярных энтальпии $\Delta_{a}H^{\circ}$ и энтропии $T\Delta_{a}S^{\circ}$ для всех исследованных соединений имеют нетривиальный возрастающий характер, причем в зависимости от природы адсорбатов эти зависимости характеризуются наличием экстремумов. областей перегиба. либо носят монотонный характер (табл. 3, рис. 2). Так, в случае 2,2'-дипиридила и 4,4'-дипиридила зависимости энтальпийной и энтропийной составляющей энергии Гиббса адсорбции от состава среды MeCN-H₂O характеризуются наличием экстремума в области $\Phi_{MeCN} = 0.60$ объемной доли (рис. 2а). В случае 6метил-2,2'-дипиридила зависимости модулей $\Delta_a H^\circ$ и $T\Delta_a S^\circ$ от состава имеют монотонный, но все так же нетривиальный возрастающий характер (рис. 2б). В случае ди(2-пиридил)кетона на зависимостях среда-свойство для энтальпийной и энтропийной составляющих энергии Гиббса адсорбции присутствуют области перегиба в диапазоне $\Phi_{MeCN} = 0.6-0.7$ объемной доли (рис. 2в). В целом возрастающий характер зависимостей среда-свойство для энтальпии и энтропии, вероятнее всего, обусловлен изменением состава адсорбированного раствора по мере уменьшения обводненности объемного раствора, в результате чего п-п-взаимодействия начинают превалировать при адсорбщии из растворов с большими объемными долями ацетонитрила и закономерно снижается роль гидрофобных взаимодействий. При этом присутствие на зависимостях средасвойство для энтальпии и энтропии экстремумов или областей перегиба, скорее всего, связано с пересольватацией молекул адсорбатов ацетонитрилом по мере уменьшения обводненности объемного раствора.

Для каждого из исследованных адсорбатов наблюдается компенсация между значениями $\Delta_a H^\circ$ и $\Delta_a S^\circ$, измеренными при адсорбции одного вещества из сред MeCN-H₂O разного состава. Одна из таких компенсационных диаграмм, характерная для 6-метил-2,2'-дипиридила, представлена на рис. 3. В то же время на зависимостях средасвойство для TXA исследованных дипиридилов области составов подвижной фазы, в которых на-

Рис. 3. Корреляция между значениями стандартных дифференциальных молярных изменений энтальпии и энтропии, измеренными при адсорбции 6-метил-2,2'-дипиридила на ПГУ из растворов MeCN- H_2O с разной объемной долей Φ_{MeCN} .

блюдаются экстремумы или области перегиба, одинаковы для энтальпийной и энтропийной составляющих энергии Гиббса адсорбции (рис. 2). Поскольку величины $\Delta_a H^\circ$ и $\Delta_a S^\circ$ являются членами уравнения Гиббса—Гельмгольца, одновременное изменение этих величин приводит к исчезновению экстремумов и перегибов на кривых зависимости $\Delta_a G^\circ$ от Φ_{MeCN} (рис. 2) [25].

Изменение состава среды MeCN–H₂O, а также изменение природы подвижной фазы при переходе к средам MeOH–H₂O и *i*-PrOH–H₂O не изменяет адсорбционной селективности изученных систем и, как следствие, порядка элюирования адсорбатов из колонки с ПГУ, что проявляется в существовании линейных корреляций между величинами $\Delta_a G^\circ$ в ряду исследованных дипиридилов. Такие корреляции между величинами $\Delta_a G^\circ$, измеренными при адсорбции дипиридилов из жидких сред разной природы, представлены на рис. 4.

Полученные в настоящей работе данные позволяют прогнозировать адсорбционное поведение исследованных дипиридилов и их производных, в том числе изомеров, а также их аналогов при жидкофазных разделениях на ПГУ.

Авторы благодарят Центр коллективного пользования ИФХЭ РАН за предоставленное оборудование для выполнения эксперимента.

Работа выполнена в рамках государственного задания ИФХЭ РАН.

Б.Р. Сайфутдинов, помимо этого, благодарит РФФИ (проект № 17-03-01308-а), Совет по гран-

Рис. 4. Зависимости значений стандартных дифференциальных молярных изменений энергии Гиббса при адсорбции исследованных дипиридилов из водно-спиртовых растворов от соответствующих значений, измеренных при адсорбции из раствора MeCN– $H_2O(\Phi_{i-PrOH} = \Phi_{MeOH} = \Phi_{MeCN} = 0.70).$

там Президента Российской Федерации для государственной поддержки молодых российских ученых и по государственной поддержке ведущих научных школ Российской Федерации (проект № МК-5757.2018.3) и Минобрнауки России (проект № 4.7150.2017/8.9) за частичную финансовую поддержку проводимых исследований.

СПИСОК ЛИТЕРАТУРЫ

- Duffy E., He X., Nesterenko E.P. et al. // RSC Adv. 2015. V. 5. P. 22906.
- Gomis-Berenguer A., Velasco L.F., Velo-Gala I., Ania C.O. // J. Colloid Interface Sci. 2017. V. 490. P. 879.
- 3. Mukdasai S., Crowley U., Pravda M. et al. // Sens. Actuators B. 2018. V. 218. P. 280.
- Mansouri H., Carmona R.J., Gomis-Berenguer A. et al. // J. Colloid Interface Sci. 2015. V. 449. P. 252.
- Lanin S.N., Rychkova S.A., Vinogradov A.E. et al. // Diam. Relat. Mater. 2016. V. 64. P. 49.
- Peristyy A., Paull B., Nesterenko P.N. // J. Chromatogr. A. 2015. V. 1391. P. 49.
- Apel N., Ulianchenko E., Moyses S. et al. // Ibid. 2017. V. 1488. P. 77.
- 8. Weber T.P., Jackson P.T., Carr P.W. // Anal. Chem. 1995. V. 67. P. 3042.
- West C., Elfakir C., Lafosse M. // J. Chromatogr. A. 2010. V. 1217. P. 3201.
- 10. Stevenson P.G., Guiochon G. // Ibid. 2012. V. 1247. P. 57.
- 11. Melmer M., Stangler T., Premstaller A., Lindner W. // Ibid. 2010. V. 1217. P. 6092.
- 12. Iverson C.D., Lucy C.A. // Ibid. 2014. V. 1373. P. 17.

- Lunn D.B., Yun Y.J., Jorgenson J.W. // Ibid 2017. V. 1530. P. 112.
- 14. Wan Q.H., Nicholas Shaw P., Davies M.C., Barrett D.A. // Ibid. 1995. V. 697. P. 219.
- Сайфутдинов Б.Р., Пимерзин А.А., Емельянова Н.С., Курбатова С.В. // Журн. физ. химии. 2012. Т. 86. № 2. С. 350.
- 16. Сайфутдинов Б.Р., Емельянова Н.С., Курбатова С.В., Пимерзин А.А. // Там же. 2012. Т. 86. № 7. С. 1270.
- 17. Сайфутдинов Б.Р., Емельянова Н.С., Курбатова С.В., Пимерзин А.А. // Изв. АН. Сер. хим. 2012. № 8. С. 1626.
- Сайфутдинов Б.Р., Емельянова Н.С., Пимерзин А.А. // Физикохимия поверхности и защита материалов. 2014. Т. 50. № 3. С. 268.

- 19. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Rev. A.02. Wallingford CT: Gaussian, Inc., 2009.
- Merritt L.L., Schroeder E.D. // Acta Crystallogr. 1956.
 V. 9. P. 801.
- Göller A., Grummt U.-W. // Chem. Phys. Lett. 2000.
 V. 321. P. 399.
- 22. *Bastiansen O., Seip H.M., Boggs J.E.* // Perspectives in structural chemistry / Ed. by *J.D. Dunitz, J.A. Ibers.* New York: John Wiley, 1971. V. 4. P. 60–165.
- Zeng Y., Prasetyo L., Nguyen V.T. et al. // Carbon. 2015. V. 81. P. 447.
- 24. *Klomkliang N., Kaewmanee R., Saimoey S. et al.* // Carbon. 2016. V. 99. P. 361.
- 25. *Сайфутдинов Б.Р.* // Изв. АН. Сер. хим. 2014. № 12. С. 2609.