_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА ____ И ТЕРМОХИМИЯ

УДК 544.31.031+544.312.031

ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ ИНУЛИНА И АБСОЛЮТНЫЕ ЭНТРОПИИ ПОЛИСАХАРИДОВ

© 2020 г. А. В. Князев^{а,*}, А. С. Шипилова^а, М. И. Лелет^а, С. С. Князева^а, Е. В. Гусарова^а, А. А. Амосов^а

^{*а*} Нижегородский государственный университет им. Н.И. Лобачевского, 603950 Нижний Новгород, Россия * *e-mail: knyazevav@gmail.com* Поступила в редакцию 09.04.2019 г. После доработки 09.04.2019 г. Принята к публикации 14.05.2019 г.

Методом точной вакуумной адиабатической калориметрии впервые измерена температурная зависимость теплоемкости инулина в диапазоне 5–340 К. Из экспериментальных данных определены термодинамические функции инулина (теплоемкость, энтальпия $H^{\circ}(T) - H^{\circ}(0)$, энтропия $S^{\circ}(T) - S^{\circ}(0)$ и функция Гиббса $G^{\circ}(T) - H^{\circ}(0)$) в интервале температур от $T \rightarrow 0$ до 340 К. С использованием мультифрактальной модели обработки низкотемпературной теплоемкости твердых тел Дебая оценена величина фрактальной размерности *D* исследуемого образца. Состав инулина изучен также с помощью MALDI-TOF масс-спектрометрии. Оценены абсолютные энтропии некоторых полисахаридов.

Ключевые слова: инулин, полисахарид, адиабатическая вакуумная калориметрия, теплоемкость, термодинамические функции, MALDI-TOF масс-спектрометрия

DOI: 10.31857/S0044453719120148

Инулин (CAS: 9005-80-5) представляет собой водорастворимый полисахарид и относится к группе неусвояемых углеводов, называемых фруктанами. Инулин встречается в ~36000 видов растений, среди которых корни цикория считаются самым богатым источником данного соединения. Обладая способностью воздействовать на организм комплексно, инулин активно используется в пищевой и фармацевтической промышленности. Он используется в качестве пребиотика, заменителя жира, заменителя сахара, модификатора текстуры пищевых продуктов, а также для разработки функциональных пищевых продуктов питания [1]. Растительный инулин может содержать от 2 до 100 единиц фруктозы, длина, состав и полидисперсность которых зависят от вида растения, фазы его жизненного цикла, даты сбора урожая, процесса экстракции и процедур, последующих за ней [2]. Таким образом, фруктаны присутствуют в растениях в виде гетерогенных смесей с различной степенью полимеризации (DP) и различной химической структурой [3].

Эта работа — продолжение систематических исследований биологически активных соединений. Ранее [4—8] мы исследовали термодинамические свойства витаминов и гормонов. Цель данной работы — калориметрическое определение стандартных термодинамических функций инулина и описание биохимических и промышленных процессов с его участием.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образец инулина, полученный из цикория, приобретен у компании BENEO-Bio Based Chemicals, Бельгия. Согласно сертификату BENEO, содержание примесей в образце составило не более 0.5%, следовательно, исследуемый инулин представляет собой индивидуальное аморфное соединение. В качестве матрицы для MALDI-TOF масс-спектрометрии использовали 2,5-дигидроксибензойную кислоту (DHB), приобретенную у Sigma-Aldrich. Масс-спектр исследуемого образца показан на рис. 1. На основе данного спектра рассчитан состав инулина (табл. 1), а затем усредненная молекулярная масса, которая составила 1036.477 г моль⁻¹.

Аппаратура и процедура измерений. Для измерения теплоемкости испытуемого вещества в диапазоне от 6 до 343 К использовали прецизионный вакуумный адиабатический калориметр БКТ-3.0 с дискретным нагревом. Описание конструкции установки и методика эксперимента представлены в [9]. Перед началом работы на

Рис. 1. MALDI-масс-спектр инулина на матрице DHB.

установке с исследуемыми образцами измеряли теплоемкость меди марки "ОСЧ 11-4" высокой чистоты, эталонных образцов синтетического ко-

DP	Формула	Состав, %
3	C ₁₈ H ₃₂ O ₁₆	24.1
4	$C_{24}H_{42}O_{21}$	18.3
5	$C_{30}H_{52}O_{26}$	15.6
6	$C_{36}H_{62}O_{31}$	9.2
7	$C_{42}H_{72}O_{36}$	7.8
8	$C_{48}H_{82}O_{41}$	5.4
9	$C_{54}H_{92}O_{46}$	2.1
10	$C_{60}H_{102}O_{51}$	2.2
11	$C_{66}H_{112}O_{56}$	3.5
12	$C_{72}H_{122}O_{61}$	2.6
13	$C_{78}H_{132}O_{66}$	2.0
14	$C_{84}H_{142}O_{71}$	1.9
15	$C_{90}H_{152}O_{76}$	1.3
16	$C_{96}H_{162}O_{81}$	1.5
17	$C_{102}H_{172}O_{86}$	1.0
18	$C_{108}H_{182}O_{91}$	0.8
19	$C_{114}H_{192}O_{96}$	0.7
		Общее 100%

Таблица 1.	Состав	исследуемого	инулина
------------	--------	--------------	---------

рунда и бензойной кислоты К-2. Анализ результатов показал, что погрешность измерения теплоемкости вещества при гелиевых температурах находилась в пределах $\pm 2\%$, при повышении температуры до 40 К она снизилась до $\pm 0.5\%$ и составляла $\pm 0.2\%$ при T > 40 К.

Степень полимеризации образца инулина определяли с использованием масс-спектрометра MALDI-TOF Axima Performance. Приготовление образца: 12 мг образца с 1 мл 2,5-дигидроксибензойной кислоты растворяли в 50%-ном ацетонитриле. После перемешивания полученный раствор дополнительно разводили в соотношении 1:9 и использовали для дальнейшего эксперимента. Образец помещали в 100-луночный планшет из нержавеющей стали и подвергали множественным ударам лазера.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Теплоемкость

Измерение теплоемкости проводили в интервале температур от 5 до 340 К. Масса образца, загруженного в калориметрическую ампулу вакуумного адиабатического калориметра БКТ-3.0, составляла 0.5647 г. 242 экспериментальных значения получены в двух сериях экспериментов. Теплоемкость образца варьировалась от 20 до 50% от общей теплоемкости калориметрической ампулы с веществом в диапазоне от 5 до 340 К.

Тип полинома	5.3–20 K	15-110 K	100-340 K
Α	4.89137095354	102.344368996	-32740.5237198
В	3.17244642147	163.895403134	47311.9218235
С	3.76031580194	96.0553303531	-29280.5154190
D	6.18141380175	0.456673708895	10268.8692282
E	4.55489152494	-53.2397303112	-2241.06418933
F	1.94134242928	50.2741138156	315.546065183
G	0.419130805492	62.0548173169	-28.6705305818
Н		-47.5829613777	1.62171702860
Ι			-0.0518394337621
J			0.000713610312437

Таблица 2. Коэффициенты в полиномах $C_p^{\circ} = f(T)$ для инулина

Методом наименьших квадратов установлены экспериментальные точки C_p° в интервале температур 5–340 К, а также получены полиномиальные уравнения зависимости теплоемкости от температуры:

$$C_{p}^{\circ} = A_{1} + B_{1}(T/30) + C_{1}(T/30)^{2} + D_{1}(T/30)^{3} + E_{1}(T/30)^{4} + F_{1}(T/30)^{5} + G_{1}(T/30)^{6} + (1) + H_{1}(T/30)^{7} + I_{1}(T/30)^{8} + J_{1}(T/30)^{9},$$

$$C_p^o = A_2 + B_2 \ln(T/30) + C_2 \ln^2(T/30) + + D_2 \ln^3(T/30) + E_2 \ln^4(T/30) + F_2 \ln^5(T/30) + (2) + G_2 \ln^6(T/30) + H_2 \ln^7(T/30),$$

$$\ln C_p^o = A_3 + B_3 \ln(T/30) + C_3 \ln^2(T/30) + + D_3 \ln^3(T/30) + E_3 \ln^4(T/30) + + F_3 \ln^5(T/30) + G_3 \ln^6(T/30).$$
(3)

Соответствующие коэффициенты (*A*, *B*, *C* и т.д.), подобранные с помощью специальных программ, приведены в табл. 2. Среднеквадратичное отклонение экспериментальных значений C_p° от усредненной кривой $C_p^{\circ} = f(T)$ составляло 0.15% в интервале от 5 до 40 K, 0.075% от 40 до 80 K и 0.050% в диапазоне от 80 до 340 K. Экспериментальные значения молярной теплоемкости инулина в диапазоне от 5 до 340 K и усредняющая кривая зависимости $C_p^{\circ} = f(T)$ представлены на рис. 2. Теплоемкость этого вещества постепенно увеличивается с повышением температуры и не проявляет каких-либо видимых аномалий.

По экспериментальным значениям в диапазоне 25–50 К была оценена величина фрактальной размерности *D* инулина. Согласно фрактальной теории теплоемкости [10], *D* – наиболее важный параметр, позволяющий делать заключения о типе топологии структуры твердых тел. Согласно теории, D = 1 для тел с цепной структурой, D = 2для слоистой структуры и D = 3 для пространственной структуры [11]. В фрактальной теории теплоемкости показатель степени при *T* является функцией теплоемкости, обозначается через *D* и называется фрактальной размерностью. Это следует конкретно из уравнения [10]:

$$C_{v} = 3D(D+1)kN\gamma(D+1)\xi(D+1)(T/\theta_{\max})^{D}, \quad (4)$$

где N – число атомов в формульной единице, k – постоянная Больцмана, $\gamma(D + 1) - \gamma$ -функция, $\xi(D + 1)$ – функция Римана и θ_{max} – характеристическая температура. Как следует из выводов [10], D можно получить из температурной зависимости теплоемкости (ln C_v or ln T). Без существенной погрешности можно принять, что $C_p^{\circ} =$ $= C_v$ при T < 50 К. Согласно зависимости ln C_v or ln T и уравнению (4), в диапазоне 25–50 К для инулина D = 2.0, $\theta_{max} = 236.4$ К. С этими значениями D и θ_{max} уравнение (4) воспроизводит экспериментальные значения в упомянутом диапазоне температур с погрешностью $\pm 2.3\%$. Значение Dуказывает на слоистую структуру инулина [11–14].

Термодинамические функции

Для расчета стандартных термодинамических функций (табл. 3) инулина его значения C_p° экстраполировались от начальной температуры измерения (~6 K) до 0 K по функции теплоемкости твердых тел Дебая [15]:

$$C_p^{\circ} = nD\left(\frac{\theta_D}{T}\right),\tag{5}$$

Рис. 2. Температурная зависимость теплоемкости инулина.

где D – символ функции Дебая, n = 3 и Θ_D (инулин) = 61.2 К – специально выбранные параметры. Уравнение (5) описывает экспериментальные значения C_p° соединения между 9 и 12 К с погрешностью 1.8%. При расчете функций предполагалось, что уравнение (5) воспроизводит значения C_p° инулина при T < 6 К с той же ошибкой.

Расчеты $H^{\circ}(T) - H^{\circ}(0)$ и $S^{\circ}(T) - S^{\circ}(0)$ были проведены с помощью численного интегрирования кривых $C_{p}^{\circ} = f(T)$ и $C_{p}^{\circ} = f(\ln T)$ соответствен-

Рис. 3. Зависимость абсолютных энтропий полисахаридов от молекулярной массы; $1 - \alpha$ -D-глюкоза, 2 -сахароза, 3 -инулин.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 1 2020

но, и функция Гиббса $G^{\circ}(T) - H^{\circ}(0)$ была оценена по энтальпиям и энтропиям при соответствующих температурах. Стандартная неопределенность значений функции составила $\pm 2\%$ при T < < 40 K, $\pm 0.5\%$ между 40 и 80 K и $\pm 0.2\%$ в диапазоне от 80 до 340 K.

На основании полученных результатов и литературных данных [16] мы построили зависимость абсолютной энтропии полисахаридов от молекулярной массы (рис. 3) с использованием абсолютных энтропий известного моносахарида (глюкозы) и дисахарида (сахарозы). Впервые установлено, что наблюдаемая зависимость абсолютной энтропии полисахаридов от молекулярной массы линейна:

$$S^{\circ}(298.15) = 1.2514M - 25.066, \tag{6}$$

коэффициент корреляции практически равен единице ($R^2 = 0.9997$).

В табл. 4 приведена оценка абсолютных энтропий некоторых полисахаридов; например, абсолютная энтропия 1-кестозы (это известный трисахарид [3]) равна 606 Дж K⁻¹ моль⁻¹.

Таким образом, в результате термодинамического исследования инулина оценена фрактальная размерность D и впервые установлено, что наблюдается линейная зависимость абсолютной энтропии полисахаридов от молекулярной массы.

-	1.	• ·		
	$C_n^{\circ}(T),$	$H^{\circ}(T) - H^{\circ}(0),$	$H^{\circ}(T),$	$-[G^{\circ}(T) - H^{\circ}(0)],$
Т, К	$Лж K^{-1}$ моль ⁻¹	кДж моль ⁻¹	Дж К ⁻¹ моль ⁻¹	кДж моль ⁻¹
0				
0	0	0	0	0
1	0.0085	0	0.0028	0.000001
2	0.06//	0	0.0226	0.000011
3	0.2284	0.0002	0.0761	0.000057
4	0.5411	0.0005	0.1804	0.000180
5	1.051	0.0013	0.3520	0.000440
6	1.893	0.0027	0.6050	0.000912
7	2.525	0.0051	0.9409	0.001527
8	3.666	0.0079	1.344	0.002813
9	5.317	0.0126	1.883	0.004299
10	7.489	0.0187	2.534	0.006594
15	25.22	0.0965	8.581	0.032234
20	50.02	0.2828	19.14	0.1000
25	75.59	0.5966	33.03	0.2293
30	102.3	1.041	49.16	0.4341
35	129.9	1.621	67.00	0.7238
40	157.2	2.339	86.14	1.106
45	183.9	3.192	106.2	1.587
50	210.0	4.177	126.9	2.169
60	261.2	6.534	169.8	3.652
70	313.0	9.404	213.9	5.569
80	366.0	12.80	259.1	7.933
90	419.0	16.72	305.3	10.75
100	469.5	21.17	352.1	14.04
110	515.0	26.10	399.0	17.80
120	558.7	31.46	445.7	22.02
130	603.7	37.28	492.2	26.71
140	649.6	43.54	538.6	31.87
150	694.8	50.26	585.0	37.48
160	738.3	57.43	631.2	43.56
170	780.0	65.02	677.2	50.11
180	821.1	73.03	723.0	57.11
190	863.0	81.45	768.5	64.57
200	907.2	90.30	813.9	72.48
210	954.6	99.60	859.3	80.84
220	1005	109.4	904.8	89.66
230	1059	119.7	950.7	98.94
240	1115	130.6	997.0	108.7
250	1171	142.0	1044	118.9
260	1228	154.0	1091	129.6
270	1285	166.6	1138	140.7
273.15	1303	170.7	1153	144.3
280	1342	179.7	1186	152.3
290	1403	193.4	1234	164.4
298.15	1455	205.1	1274	174.6
300	1468	207.8	1283	177.0
310	1539	222.8	1332	190.1
320	1617	238.6	1382	203.6
330	1698	255.2	1433	217.7
340	1773	272.5	1485	232.3

Таблица 3. Термодинамические функции инулина; M = 1036.477 г моль⁻¹, $p^{0} = 0.1$ МПа

Примечание: $u_{\rm r}(C_p^{\circ}(T)) = \pm 2\%$ (5 < T < 20 K); $\pm 0.5\%$ (20 < T < 40 K); $\pm 0.2\%$ (T > 40 K); $u_{\rm r} = \pm 1\%$ (T < 40 K); $\pm 0.5\%$ (40 < T < 80 K); $\pm 0.2\%$ (80 < T < 340 K), $u_{\rm r}(p) = \pm 1\%$ (P = 0.68).

DP	Формула	<i>S</i> °(298.15)
3	C ₁₈ H ₃₂ O ₁₆	606
4	$C_{24}H_{42}O_{21}$	809
5	$C_{30}H_{52}O_{26}$	1012
6	$C_{36}H_{62}O_{31}$	1215
7	$C_{42}H_{72}O_{36}$	1418
8	$C_{48}H_{82}O_{41}$	1621
9	$C_{54}H_{92}O_{46}$	1824
10	$C_{60}H_{102}O_{51}$	2027

Таблица 4. Абсолютные энтропии некоторых полисахаридов (Дж K^{-1} моль⁻¹)

Работа выполнена при финансовой поддержке Фонда содействия развитию малых форм предприятий в научно-технической сфере (номер проекта 10510ГУ/2016).

СПИСОК ЛИТЕРАТУРЫ

- Shoaib M., Shehzad A., Omar M. et al. // Carbohydrate Polymers. 2016. V. 147. P. 444.
- Barclay T., Ginic-Markovic M., Cooper P., Petrovsky N. // J. Excipients and Food Chemicals. 2010. V. 1. P. 27.

- 3. Apolinario A.C., Damasceno B.P.G.L., Beltrão N.E.M. et al. // Carbohydrate Polymers. 2014. V. 101. P. 368.
- 4. *Knyazev A.V., Letyanina I.A., Plesovskikh A.S. et al. //* Thermochimica Acta. 2014. V. 575. P. 12.
- Knyazev A.V., Smirnova N.N., Shipilova A.S. et al. // Ibid. 2015. V. 604. P. 115.
- Knyazev A.V., Smirnova N.N., Plesovskikh A.S. et al. // Ibid. 2014. V. 582. P. 35.
- Knyazev A.V., Emel'yanenko V.N., Shipilova A.S. et al. // J. Chem. Thermodyn. 2016. V. 100. P. 185.
- Knyazev A.V., Smirnova N.N., Shipilova A.S. et al. // J. Thermal Analysis and Calorimetry. 2016. V. 123. P. 2201.
- 9. Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. P. 623.
- 10. Yakubov T.S. // Dokl. Acad. Sci. 1990. V. 310. P. 145.
- 11. Tarasov V.V. // Z. Fiz. Khimii. 1950. V. 24. P. 111.
- 12. Knyazev A.V., Tananaev I.G., Kuznetsova N.Yu. et al. // Thermochim. Acta. 2010. V. 499. P. 155.
- Karyakin N.V., Chernorukov N.G., Suleimanov E.V. et al. // Russ. J. Phys. Chem. 2000. V. 74. P. 1226.
- 14. *Chernorukov N.G., Smirnova N.N., Knyazev A.V. et al.* // Ibid. 2006. V. 80. № 1. P. 37.
- 15. Debye P. // Annalen der Physik. 1912. V. 39. P. 789.
- Boerio-Goates J. // J. Chem. Thermodyn. 1991. V. 23. P. 403.