_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 541.8

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ КИНЕТИКИ ВЫДЕЛЕНИЯ МОЛЕКУЛЯРНОГО ХЛОРА ПРИ ОЗОНИРОВАНИИ РАСТВОРОВ ХЛОРИДОВ В БАРБОТАЖНОМ РЕАКТОРЕ

© 2020 г. А. В. Леванов^{а,*}, О. Я. Исайкина^а, В. В. Лунин^а

^а Московский государственный университет имени М.В. Ломоносова, Химический факультет, Москва, Россия

* *e-mail: levanov@kge.msu.ru* Поступила в редакцию 21.01.2019 г. После доработки 21.01.2019 г. Принята к публикации 19.02.2019 г.

Определены кинетические закономерности выделения молекулярного хлора Cl_2 при озонировании растворов хлорида натрия с различной кислотностью. Предложен механизм и построена математическая модель кинетики взаимодействия озона с хлорид-ионом в водном растворе в проточном барботажном реакторе в стационарном режиме. Модель справедлива для обычных условий озонирования, при отсутствии факторов инициирования радикальных реакций (pH \leq 8). Правильность механизма и модели подтверждена совпадением экспериментальных и расчетных зависимостей скорости выделения хлора от pH реакционного раствора.

Ключевые слова: озон, хлорид-ион, молекулярный хлор, барботажный реактор, математическое моделирование

DOI: 10.31857/S0044453719120161

Реакция озона с хлорид-ионами в водном растворе - это сложный химический процесс, основными продуктами которого, в зависимости от условий осуществления, являются молекулярный хлор Cl_2 и хлорат-ион ClO_3^- [1–6]. Направление его протекания определяется рядом факторов, важнейший из которых – показатель рН (кислотность или основность) реакционного раствора. Настоящая работа посвящена построению математической модели кинетики образования продуктов реакции О₃ с Cl⁻(аq.) в проточном барботажном реакторе, выяснению влияния рН на этот процесс, и, в частности, определению условий, при которых возможно выделение в газовую фазу молекулярного хлора. Для проверки правильности модели, результаты расчета сравниваются с экспериментальными данными по скорости выделения хлора при озонировании растворов 1 М NaCl или NaCl + HCl с различной кислотностью.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Эксперименты проводили на установке, аналогичной описанным в работах [1, 7]. Взаимодействие между озоном и хлорид-ионами осуществляли в барботажном реакторе при комнатной температуре (см. схему на рис. 1). В него помещали 170–200 мл раствора NaCl или NaCl + HCl,

причем во всех экспериментах ионная сила (*I*) и концентрация хлорид-иона равны 1 М. Исходные газы подавались в раствор со скоростью v = 21 л/ч (ст. у.) через фильтр из пористого стекла, впаянный в дно реактора. Благодаря этому, газовый поток распадался на большое количество мелких пузырьков, и эффективно контактировал с жидкостью. Раствор располагался над фильтром, высота столба жидкости составляла около 35 см. Озон получали в озонаторе барьерного разряда из особо чистого газовобразного кислорода. Концентрацию О₃ в газовой смеси ($C^{\circ}(O_3)$) измеряли на входе в реактор с помощью фотометрического озонометра "Медозон 254/5".

Для приготовления реакционных растворов использовали однократно дистиллированную воду, хлорид натрия "х.ч.", хлористоводородную кислоту "х.ч." или "ос.ч.", натрий фосфорнокислый 2-замещенный 12-водный Na₂HPO₄ · 12H₂O "х.ч.", натрий фосфорнокислый 1-замещенный 2-водный NaH₂PO₄ · 2H₂O "ч.д.а.". рН растворов NaCl регулировали с помощью фосфатных буферных растворов; общая концентрация фосфатов в реакционном растворе составляла 1/15 М. рН измеряли с помощью рН-метра-иономера "Эксперт-001" со стеклянным комбинированным электродом ЭСК-10601/7 непосредственно в

Рис. 1. Схема барботажного реактора.

ходе озонирования. В растворах, содержащих HCl с исходной концентрацией $C(HCl) \ge 0.01$ M, pH не измеряли, а оценивали по формуле pH = $-\lg C(HCl)$.

Единственным газообразным продуктом реакции O₃ с Cl⁻(aq) при различных условиях ее проведения является молекулярный хлор Cl₂ [1, 3–6]. Его определяли в выходящих из реактора газах методом фотометрической иодометрии с предварительной термической деструкцией озона [8]. Важным преимуществом метода является высокая чувствительность. Газы пропускали через кварцевую трубку, помещенную в печь. Ее температура в большинстве экспериментов (~600°C) подобрана таким образом, что О3 практически полностью разлагался, а концентрация Cl₂ оставалась неизменной. Затем газовую смесь направляли в ловушку, заполненную 100 мл водного раствора 50 г/л КІ. В ловушке хлор количественно переходил в трийодид-ион по реакции $Cl_2 + 3I^- =$

 $= I_3^- + 2Cl^-$. Из нее периодически отбирали пробы раствора, в которых на фотометре КФК-3 реги-

стрировали оптическую плотность I_3^- при длинах волн 350 или 450 нм; после измерений пробы возвращали обратно в ловушку. Количество трийо-

дид-иона, $n(I_3^-)$, находили с помощью предварительно построенных градуировочных графиков. Скорость выделения хлора, $r(Cl_2)$, определяли по тангенсу угла наклона конечного линейного участка зависимости $n(I_3^-)$ от времени,

$$r(\mathrm{Cl}_2) \equiv \frac{1}{V_L} \frac{dn(\mathrm{Cl}_2)}{dt} = \frac{1}{V_L} \frac{\Delta n(\mathrm{I}_3^-)}{\Delta t}$$

где V_L – объем раствора в реакторе.

Неизменность концентрации Cl_2 после прохождения через печь контролировали путем измерений в газовых смесях с известным содержанием хлора. В зависимости от конструкции печи, в ряде экспериментов, для удаления O_3 из газового потока требовались достаточно высокие температуры (740—860°С), при которых концентрация Cl_2 уменьшалась. В этих случаях, измеренные значения скорости выделения хлора умножали на специально определенный поправочный коэффициент, учитывающий частичное исчезновение Cl_2 в печи. Подробное обсуждение особенностей описанного метода см. в работе [8].

Предел обнаружения Cl_2 установлен при проведении "холостых" экспериментов с пустым реактором, в условиях, аналогичных реальным опытам. Он имеет значения менее 0.02 мкмоль π^{-1} мин⁻¹. В настоящей работе обсуждаются также результаты экспериментов [4], выполненных по аналогичной методике, где для подкисления раствора NaCl в исходную газовую смесь прибавляли диоксид углерода; общая скорость потока газов составляла 22 л/ч (ст. у.). При определении скорости выделения хлора, в поглотительный раствор иодида калия добавляли NaHCO₃ в концентрации 0.01 М, предел измерения $r(Cl_2)$ хлора составлял менее 0.1.

Температура равна 24°С в экспериментах с растворами NaCl + HCl, и 20–22°С в остальных экспериментах.

Результаты экспериментов представлены в табл. 1. Интересно, что выделение хлора удается детектировать даже из растворов с рН 7. При изменении рН в сторону кислых растворов, скорость выделения хлора существенно возрастает. Кинетические закономерности табл. 1 могут быть полностью и на количественном уровне объяснены на основе механизма сложной реакции O_3 с Cl⁻(aq), как показано ниже.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ КИНЕТИКИ ВЫДЕЛЕНИЯ ХЛОРА

Механизм взаимодействия озона с хлорид-ионом и значения констант скорости и равновесия. В системе "озон — хлорид-ион в водном растворе", при отсутствии факторов инициирования радикальных реакций (в частности, если реакционный раствор не слишком щелочной, pH < 8.5), окисление хлорид-иона происходит по механиз-

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ КИНЕТИКИ

Состав раствора	V _L , мл	$\frac{C^{\circ}(O_3)}{\Gamma/M^3},$	рН нач.	рН кон.	<i>r</i> (Cl ₂), мкмоль л ⁻¹ мин ⁻¹
1M NaCl (50 об.% CO ₂)	170	37	3.9	5.1	7.59 (*)
1M NaCl (50 of.% CO ₂)	170	33	3.9	5.0	7.55 (*)
1M NaCl (50 oб.% CO ₂)	170	4	3.9	4.3	1.38 (*)
1M NaCl (50 oб.% CO ₂)	170	24	3.9	4.9	5.18 (*)
1M NaCl (50 oб.% CO ₂)	170	13	4.2	4.9	4.59 (*)
1M NaCl (50 oб.% CO ₂)	170	18	3.9	4.8	4.27 (*)
1M NaCl (18 об.% CO ₂)	170	18	4.1	5.1	3.04 (*)
1M NaCl (8 об.% CO ₂)	170	18	4.3	5.5	1.79 (*)
1M NaCl + 0.067M NaH ₂ PO ₄	170	66.5	4.0	4.8	12.09
1M NaCl + 0.04M NaH ₂ PO ₄ + 0.03M Na ₂ HPO ₄	170	66	6.3	6.3	0.11
1M NaCl + 0.026M NaH ₂ PO ₄ + 0.041M Na ₂ HPO ₄	170	66	7.0	7.0	0.01 (**)
1M NaCl + 0.026M NaH ₂ PO ₄ + 0.041M Na ₂ HPO ₄	170	67	6.4	6.5	0.04 (**)
1M NaCl + 0.05M NaH ₂ PO ₄ + 0.017M Na ₂ HPO ₄	170	67	5.9	5.9	0.43
1M NaCl + 0.046M NaH ₂ PO ₄ + 0.021M Na ₂ HPO ₄	170	67	5.9	5.9	0.43
1M NaCl + 0.059M NaH ₂ PO ₄ + 0.008M Na ₂ HPO ₄	170	67	5.5	5.6	2.57
1M NaCl + 0.066M NaH ₂ PO ₄ + 0.001M Na ₂ HPO ₄	170	67	4.8	5.1	10.29
0.99M NaCl + 0.001M HCl	172	10.2	2.94	3.87	5.67
0.99M NaCl + 0.01M HCl	180	10	2		6.03
0.99M NaCl + 0.01M HCl	200	10.4	2		5.03
0.9M NaCl + 0.1M HCl	183	10	1		10.41
0.9M NaCl + 0.1M HCl	184	10.2	1		10.21
0.7M NaCl + 0.3M HCl	177	10.2	0.5		20.62
0.6M NaCl + 0.4M HCl	181	10.2	0.4		24.60
0.5M NaCl + 0.5M HCl	179	10	0.3		27.74
0.3M NaCl + 0.7M HCl	180	10.2	0.15		37.55
0.2M NaCl + 0.8M HCl	177	10.2	0.1		38.36
1M HCl	178	9.9	0		40.55
1M HCl	181	10	0		38.82

Таблица 1. Условия и результаты экспериментов по определению скорости выделения хлора

(*) данные получены при выполнении работы [4]. В первом столбце в скобках указана концентрация CO₂ в исходной смеси газов.

(**) Приведенные величины являются разностью между наблюдаемым значением скорости выделения хлора и пределом обнаружения.

му переноса атома кислорода от молекулы O_3 к иону Cl⁻; окислением Cl⁻ за счет реакций свободных радикалов можно пренебречь. Первичная стадия является сложной реакцией и описывается уравнениями

$$\mathrm{Cl}^- + \mathrm{O}_3 + \mathrm{H}^+ \rightarrow \mathrm{HOCl} + \mathrm{O}_2$$

в кислой среде [6]. Вторичные реакции представляют собой быстрые обратимые процессы протонирования — депротонирования продуктов первичной стадии, ClO[–] и HOCl, а также взаимодействие гипохлорит-иона с озоном,

$$Cl^- + O_3 \rightarrow ClO^- + O_2 \tag{1a}$$

в щелочной и нейтральной среде,

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 1 2020

$$HOCI \rightleftharpoons CIO^- + H^+,$$
 (2)

(16)

$$Cl_2(aq) + H_2O \rightleftharpoons HOCl + H^+ + Cl^-,$$
 (3)

$$\operatorname{Cl}_2(\operatorname{aq}) + \operatorname{Cl}^- \rightleftharpoons \operatorname{Cl}_3^-,$$
 (4)

$$\mathrm{ClO}^- + \mathrm{O}_3 \to \mathrm{Cl}^- + 2\mathrm{O}_2, \tag{5}$$

$$ClO^- + O_3 \rightarrow ClO_2^- + O_2, \tag{6}$$

$$\operatorname{ClO}_2^- + \operatorname{O}_3 \to [\operatorname{ClO}_2 + \operatorname{O}_3^-] \to \operatorname{ClO}_3^- + \operatorname{O}_2.$$
(7)

Конечными продуктами взаимодействия O₃ с Cl⁻ (aq.) являются молекулярный хлор Cl₂ или хло-

рат-ион ClO₃, при этом некоторая часть молекулярного хлора существует в форме трихлорид-

иона Cl₃, вследствие равновесия (4).

Первичная стадия (1) катализируется ионами H⁺, и ее константа скорости определяется выражением [7]

$$k_{1}(\text{моль } \pi^{-1} \text{ c}^{-1}) = \frac{5.10 \times 10^{10} \exp(-9020/T) + 13.5 \exp(-1120/T) \times 3.46 \times 10^{9} \exp(-7240/T)[\text{H}^{+}]}{1 + 3.46 \times 10^{9} \exp(-7240/T)[\text{H}^{+}][\text{Cl}^{-}]}, \quad (8)$$

при ионной силе реакционного раствора I = 1 М (T – температура, К). Константы равновесия (2–3) имеют значения

$$K_{2} = \frac{[\mathrm{H}^{+}][\mathrm{C1O}^{-}]}{[\mathrm{HOC1}]} = 6.121 \times 10^{-6} \times$$
(9)

$$\times \exp(-1486/T) \text{ M} (I = 1 \text{ M}) [9],$$

$$K_{3} = \frac{[\text{H}^{+}][\text{Cl}^{-}][\text{HOCl}]}{[\text{Cl}_{2}]} =$$

$$= 8 \times 10^{-4} \text{ M}^{2} \quad (I = 1\text{M}, 25^{\circ}\text{C}) \quad [10]. \quad (10)$$

Сумма констант скоростей стадий (5), (6) представляется формулой

$$k_5 + 2k_6 = 1.7 \times 10^{12} \exp\left(-\frac{57\,000}{8.31T}\right)$$
 [11], (11)

отношение констант $k_5/k_6 = 3.4$ [11]. Хлорит-ион

 ClO_2^- образуется в качестве промежуточного вещества при окислении гипохлорита ClO^- озоном, и чрезвычайно активно реагирует с O_3 по реакци-

ям (7) [12, 13] с образованием хлората ClO₃, так что скорость образования хлората определяется равенством

$$r(\text{ClO}_{3}^{-}) \equiv \frac{d[\text{ClO}_{3}^{-}]}{dt} = k_{6}[\text{ClO}^{-}][\text{O}_{3}].$$
(12)

Хлорноватистая кислота HOCl и молекулярный хлор с озоном не взаимодействуют [11, 14].

Для веществ, которые могут переходить в газовую фазу (O₃, Cl₂, HOCl), равновесие в процессах растворения — выделения из раствора характеризуется константой Генри. В настоящей работе используется запись закона Генри в виде

$$[\mathbf{X}] = H_{\mathbf{X}}C(\mathbf{X}),$$

где H_X — истинная константа Генри (безразмерная), [X] и C(X) — концентрации вещества X в реакционном растворе и контактирующем с ним газе, моль/л, в условиях равновесия (которое наблюдались бы при отсутствии химических реакций с участием X). Значения констант Генри в чистой воде [15]

$$H_{\rm Cl_2} = (RT/100) \times 8.561 \times 10^{-5} \exp(2081/T),$$

$$H_{\rm HOC1} = (RT/100) \times 1.680 \times 10^{-6} \exp(5900/T),$$
(13)

где R = 8.3145 Дж моль⁻¹ К⁻¹. Следует отметить, что константа Генри хлорноватистой кислоты очень велика ($H_{HOCl} = 2 \times 10^5$ при 20–25°С), так что выделением HOCl в газовую фазу можно полностью пренебречь при всех экспериментальных условиях, реализуемых в настоящей работе. На растворимость озона в значительной степени влияют кинетические факторы, и этот вопрос рассмотрен ниже.

Кинетические уравнения для стационарного режима. Равновесие в обратимых стадиях (2)–(4) устанавливается быстро, и в результате, участники этих равновесий практически свободно переходят друг в друга. Поэтому в нашей реакционной системе вещества ClO⁻, HOCl, Cl₂, Cl₃⁻ можно рассматривать как различные формы одной субстанции, так называемого активного хлора. Образование активного хлора происходит по реакции (1), расходование – согласно реакциям (5)–(7), а также за счет выделения молекулярного хлора из реакционного раствора в газовую фазу.

Выпишем уравнение материального баланса активного хлора и озона для стационарного режима функционирования реактора. При этом будем считать, что концентрации ионов Cl⁻, H⁺, а также pH, в ходе озонирования не изменяются, то есть, являются постоянными параметрами модели. Скорость растворения представим слагаемым $k_L a(H_X C(X) - [X])$, где $k_L a$ – объемный коэффициент массопереноса, одинаковый для всех веществ; скорость выделения из раствора соответственно равна (-1) $k_L a(H_X C(X) - [X])$. Барботажный реактор рассматриваем как реактор идеального перемешивания, содержащий две фазы — жидкую и газообразную. Система уравнений материального баланса имеет вид

$$k_1[\text{Cl}^-][\text{O}_3] = (k_5 + k_6)[\text{ClO}^-][\text{O}_3] + \frac{v}{V_L}C(\text{Cl}_2), \quad (14)$$

$$\frac{V}{V_L}(C^{\circ}(O_3) - C(O_3)) = k_L a(H_{O_3}C(O_3) - [O_3]), \quad (15)$$

$$k_{O_3}[O_3] = k_L a(H_{O_3}C(O_3) - [O_3]),$$
 (16)

где $C^{\circ}(O_3)$ — концентрация озона в газовой смеси на входе в реактор, $C(O_3)$ и $C(Cl_2)$ — озона и хлора в пузырьках газа внутри реактора и в газовом потоке на выходе из реактора, $[Cl^-]$, $[ClO^-]$, $[O_3]$ и $[Cl_2]$ — концентрации в реакционном растворе. Величина

$$k_{O_3} \equiv k_1[Cl^-] + (k_5 + k_6)[ClO^-] + k_{dec}$$

представляет собой эффективную константу скорости гибели озона в реакционном растворе, k_{dec} – константа скорости реакции саморазложения озона первого порядка. Параметр v – объемная скорость потока газовой смеси через реактор, V_L – объем реакционного раствора. При расчетах по модели, все величин выражены через единицы измерения л, моль, с.

Выразим с помощью условий равновесия (9– 10) и выражения закона Генри $[Cl_2] = H_{Cl_2}C(Cl_2)$ концентрацию гипохлорита в растворе $[ClO^-]$ через концентрацию хлора в газовой фазе $C(Cl_2)$,

$$[\text{C1O}^{-}] = \frac{K_2 K_3 H_{\text{Cl}_2}}{[\text{H}^{+}]^2 [\text{C1}^{-}]} C(\text{Cl}_2),$$

и подставим в уравнение (14). Оно преобразуется в соотношение

$$k_{1}[Cl^{-}][O_{3}] = (k_{5} + k_{6})[O_{3}] \times \frac{K_{2}K_{3}H_{Cl_{2}}}{[H^{+}]^{2}[Cl^{-}]}C(Cl_{2}) + \frac{V}{V_{L}}C(Cl_{2}),$$

из которого получим выражение концентрации хлора в газовой фазе на выходе из реактора,

$$C(\text{Cl}_2) = \frac{k_1[\text{Cl}^-][\text{O}_3]}{\frac{V}{V_L} + (k_5 + k_6)[\text{O}_3]\frac{K_2K_3H_{\text{Cl}_2}}{[\text{H}^+]^2[\text{Cl}^-]}}.$$
 (17)

Скорость выделения хлора из реактора, $r(Cl_2)$ связана с его концентрацией $C(Cl_2)$ соотношением

$$r(\mathrm{Cl}_2) = \frac{V}{V_L}C(\mathrm{Cl}_2),$$

где v — объемная скорость потока газовой смеси через реактор, V_L — объем раствора в реакторе. С учетом (17), теоретическое выражение скорости выделения хлора в нашей модели барботажного реактора в стационарном режиме, в котором

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 1 2020

происходят химические реакции (1)-(7), имеет вид

$$r(\text{Cl}_2) = \frac{k_1[\text{Cl}^-][\text{O}_3]}{1 + (k_5 + k_6)[\text{O}_3] \frac{K_2 K_3 H_{\text{Cl}_2}}{[\text{H}^+]^2[\text{Cl}^-]} \frac{V_L}{v}}.$$
 (18)

Если выразить $C(Cl_2)$ через [ClO⁻]:

$$C(\text{Cl}_2) = \frac{[\text{H}^+]^2[\text{Cl}^-]}{K_2 K_3 H_{\text{Cl}_2}} [\text{ClO}^-],$$

и подставить в (14), то получим

$$k_{1}[C1^{-}][O_{3}] = (k_{5} + k_{6})[C1O^{-}][O_{3}] + \frac{v}{V_{L}} \frac{[H^{+}]^{2}[C1^{-}]}{K_{2}K_{3}H_{C1_{2}}}[C1O^{-}],$$

откуда

$$[CIO^{-}] = \frac{k_1[CI]}{k_5 + k_6 + \frac{v}{V_L} \frac{[H^{+}]^2[CI^{-}]}{K_2 K_3 H_{Cl_2}[O_3]}}$$

Тогда скорость образования хлората (12) согласно нашей модели представляется следующим образом,

$$r(\text{ClO}_{3}^{-}) = \frac{k_{1}[\text{Cl}^{-}][\text{O}_{3}]}{1 + \frac{k_{5}}{k_{6}} + \frac{1}{k_{6}} \frac{v}{V_{L}} \frac{[\text{H}^{+}]^{2}[\text{Cl}^{-}]}{K_{2}K_{3}H_{\text{Cl}}[\text{O}_{3}]}.$$
 (19)

Для того, чтобы теоретические выражения скоростей выделения хлора (18) и образования хлората (19) можно было использовать для расчетов при условиях реальных экспериментов, необходимы значения концентрации озона в реакционном растворе, $[O_3]$. С помощью уравнений (15), (16), можно выразить $[O_3]$ через измеряемую в экспериментах величину $C^{\circ}(O_3)$ – концентрацию озона в газовом потоке на входе в реактор:

$$[O_3] = \frac{H_{O_3}C^{\circ}(O_3)}{1 + \frac{k_{O_3}}{k_L a} + k_{O_3}\frac{V_L}{v}H_{O_3}}L_{O_3}C^{\circ}(O_3).$$
(20)

Множитель

$$L_{\rm O_3} \equiv \frac{H_{\rm O_3}}{1 + \frac{k_{\rm O_3}}{k_L a} + k_{\rm O_3} \frac{V_L}{v} H_{\rm O_3}}$$

перед $C^{\circ}(O_3)$ — это коэффициент растворимости, или кажущаяся константа Генри озона. Значения L_{O_3} надежно определены в наших работах [2, 7] для реакторов и экспериментальных условий, аналогичных данному исследованию. В частности, для растворов с концентрацией хлорид-иона

Рис. 2. Зависимости от pH скоростей выделения хлора и образования хлората при озонировании растворов с концентрацией Cl⁻ 1 M, $C^{\circ}(O_3) = 67$ г/м³. Точки – значения скорости выделения хлора, определенные в экспериментах с растворами NaCl + HCl (▲); NaCl с подкислением CO₂(газ) (●); NaCl с прибавлением фосфатных буферных растворов (■). Линии рассчитаны по формулам (22), (23).

и ионной силой 1M, выражение коэффициента растворимости озона имеет вид

$$L_{O_3} = 1.26 \times 10^{-5} \exp(2760/T)$$
 [7]. (21)

С учетом (20), теоретические выражения скоростей выделения хлора (18) и образования хлората (20) можно записать следующим образом:

$$r(\text{Cl}_2) = \frac{k_1[\text{Cl}^-]L_{\text{O}_3}C^{\circ}(\text{O}_3)}{1 + (k_5 + k_6)L_{\text{O}_3}C^{\circ}(\text{O}_3)\frac{K_2K_3H_{\text{Cl}_2}}{[\text{H}^+]^2[\text{Cl}^-]}\frac{V_L}{v}}, \quad (22)$$

$$r(\text{ClO}_{3}^{-}) = \frac{k_{1}[\text{Cl}^{-}]L_{\text{O}_{3}}C^{\circ}(\text{O}_{3})}{1 + \frac{k_{5}}{k_{6}} + \frac{1}{k_{6}}\frac{v}{V_{L}}\frac{[\text{H}^{+}]^{2}[\text{Cl}^{-}]}{K_{2}K_{3}H_{\text{Cl}_{2}}L_{\text{O}_{3}}C^{\circ}(\text{O}_{3})}.$$
 (23)

Формулы (22), (23) позволяют сравнить предсказания модели с экспериментальными результатами и, таким образом, проверить корректность модели и механизма (1)–(7).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В экспериментах настоящей работы определены значения скорости выделения хлора в зависимости от pH реакционного раствора (табл. 1). В некоторых опытах, значения pH в ходе озонирования возрастали. Связано это с тем, что при образовании Cl_2 происходит расходование ионов H^+ , согласно стехиометрическому уравнению

$$O_3 + 2H^+ + 2CI^- = CI_2 + O_2 + H_2O.$$

В таких случаях, при построении экспериментальной зависимости $r(Cl_2)$ от pH, использовали конечное значение pH реакционного раствора, поскольку оно отвечает соответствующей величине для стационарного режима.

При расчетах по уравнениям (22), (23), концентрацию ионов водорода находили по формуле $[H^+] = 10^{-pH}$, а значения параметров модели имели следующие значения: $v = 21 \text{ л/ч} = 5.83 \times 10^{-3} \text{ л/c}$, $V_L = 0.18 \text{ л}$, $[Cl^-] = 1M$, температура 22°C, $C^{\circ}(O_3) = 67 \text{ г/м}^3$. Константы скорости и равновесия, и коэффициент растворимости озона определяли по уравнениям (8)–(11), (13), (21).

Экспериментальные значения скорости выделения хлора (табл. 1) получены при различных концентрациях озона в исходной смеси газов. В ходе сравнения с результатами расчетов по модели, их при необходимости пересчитывали к величине $C^{\circ}(O_3) = 67$ г/м³, при допущении прямой пропорциональности между $r(Cl_2)$ и $C^{\circ}(O_3)$. Согласно (22), при pH < 4.5 такой пересчет строго обоснован, а в более щелочных средах приводит к незначительным ошибкам. Следует отметить, что значительная часть опытов выполнена при $C^{\circ}(O_3) \approx 67$ г/м³, и их результаты пересчета не требовали.

Согласно рис. 2, зависимость скорости выделения хлора от pH разделяется на три участка. В нейтральных и слабощелочных растворах, при pH > 4.5, имеет место конкуренция между выделением хлора и образованием хлората, причем при увеличении pH, хлорат становится преобладающим продуктом. Следует отметить, что в об-

разовании хлората ClO_3^- при озонировании растворов хлоридов, заметную роль играют реакции окисления Cl^- свободными радикалами OH, и последующие радикальные реакции. Поэтому выражение (23), полученное с учетом окисления Cl^- только по молекулярному механизму, в общем случае не может правильно описать количественные закономерности образования хлората. При значениях pH < 4.5, основным продуктом является молекулярный хлор. Согласно [5], значения скорости выделения хлора в слабо- и сильнокислых растворах в большинстве случаев превышают скорость образования хлората на один—два порядка.

Скорость выделения хлора при р
H < 4.5описывается уравнением

$$r(Cl_2) = k_1[Cl^-]L_{O_2}C^{\circ}(O_3),$$
 (24)

которое следует из общего выражения (22), если $[H^+] > 10^{-4.5}$, $[Cl^-] = 1$ М. В слабокислых раство-

рах (4.5 > pH > 2), катализ ионами водорода стадии (1) не проявляется, и константа скорости k_1 практически не зависит от [H⁺]. В кислых растворах (pH < 2), имеет место специфический кислотный катализ реакции (1); скорость выделения хлора заметно растет за счет увеличения k_1 . Выражение (24) позволяет осуществить надежное определение значений константы скорости k_1 , на основе измерений величины скорости выделения хлора $r(Cl_2)$; эта задача выполнена в наших работах [1, 5, 16].

Как видно из рис. 2, экспериментальные и расчетные зависимости скорости выделения хлора от рН очень хорошо согласуются. Это свидетельствует об адекватности предложенной кинетической модели и подтверждает правильность механизма (1)–(7) образования молекулярного хлора в сложной реакции O₃ с Cl⁻(aq.). Согласно механизму (1)–(7), для объяснения закономерностей образования Cl₂ при обычных условиях озонирования, достаточно учитывать только окисление хлорид-иона молекулой О₃ по механизму переноса атома кислорода, и последующие реакции протонирования гипохлорита (2), (3) и его взаимодействия с озоном (5), (6). Кроме того, подтверждена корректность описания барботажного реактора озонирования как реактора идеального перемешивания с газовой и жидкой фазами.

СПИСОК ЛИТЕРАТУРЫ

1. Леванов А.В., Кусков И.В., Зосимов А.В., Антипенко Э.Е., Лунин В.В. // Кинетика и катализ. 2003. Т. 44. № 6. С. 810.

- 2. Леванов А.В., Кусков И.В., Антипенко Э.Е., Лунин В.В. // Журн. физ. химии. 2008. Т. 82. № 12. С. 2271.
- Леванов А.В., Кусков И.В., Антипенко Э.Е., Лунин В.В. // Журн. физ. химии. 2012. Т. 86. № 5. С. 849.
- Лунин В.В., Леванов А.В., Кусков И.В., Зосимов А.В., Антипенко Э.Е. // Ж. физ. химии. 2003. Т. 77. № 4. С. 657–662.
- 5. Леванов А.В., Исайкина О.Я., Лунин В.В. // Журн. физ. химии. 2019. Т. 93. № 6. С. 835.
- 6. Леванов А.В., Исайкина О.Я., Лунин В.В. // Там же. 2019. Т. 93. № 9. С. 1328.
- Levanov A.V., Isaikina O.Y., Gasanova R.B., Lunin V.V. // Ind. Eng. Chem. Res. 2018. V. 57. № 43. P. 14355.
- Леванов А.В., Кусков И.В., Зосимов А.В., Антипенко Э.Е., Лунин В.В. // Журн. аналит. химии. 2003. Т. 58. № 5. С. 496.
- 9. *Adam L.C., Fábián I., Suzuki K., Gordon G. //* Inorganic Chemistry. 1992. V. 31. № 17. P. 3534.
- Wang T.X., Margerum D.W. // Inorg. Chem. 1994.
 V. 33. № 6. P. 1050.
- Haag W.R., Hoigné J. // Water Res. 1983. V. 17. № 10. P. 1397.
- 12. *Kläning U.K., Sehested K., Holcman J. //* J. Phys. Chem. 1985. V. 89. № 5. P. 760.
- Nicoson J.S., Wang L., Becker R.H. et al. // Inorg. Chem. 2002. V. 41. № 11. P. 2975.
- Hoigné J., Bader H., Haag W.R., Staehelin J. // Water Res. 1985. V. 19. № 8. P. 993.
- 15. *Sander R.* // Atmos. Chem. Phys. 2015. V. 15. № 8. P. 4399.
- 16. Леванов А.В., Кусков И.В., Койайдарова К.Б. и др. // Кинетика и катализ. 2005. Т. 46. № 1. С. 147.