ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ

УДК 536.6+546.654:4:732:742:562-31:713-31

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА НАНОРАЗМЕРНЫХ КОБАЛЬТО(НИКЕЛИТО)-КУПРАТО-МАНГАНИТОВ LaMgCoCuMnO₆ И LaMgNiCuMnO₆

© 2020 г. Б. К. Касенов^{а,*}, Ш. Б. Касенова^а, Ж. И. Сагинтаева^а, Е. Е. Куанышбеков^а

^аХимико-металлургический институт им. Ж. Абишева, Караганда, Казахстан

*e-mail: kasenov 1946@mail.ru Поступила в редакцию 06.02.2019 г. После доработки 15.03.2019 г. Принята к публикации 09.04.2019 г.

Калориметрическим методом в интервале 298.15–673 К исследованы температурные зависимости теплоемкости наноразмерных кобальто-купрато-манганита и никелито-купрато-манганита лантана и магния LaMgCoCuMnO₆ и LaLaMgNiCuMnO₆. Установлено, что на кривой зависимости $C_p^{\circ} \sim f(T)$ LaMgCoCuMnO₆ при 398 K, а LaMgNiCuMnO₆ при 523 К претерпевают фазовые превращения II рода. Независимым методом на основе характеристических температур Дебая с использованием уравнений Корефа и Нернста—Линдемана рассчитаны стандартные теплоемкости указанных соединений, значения которых удовлетворительно согласовались с опытными данными. Рассчитаны температурные зависимости функций $S^{\circ}(T)$, $H^{\circ}(T) - H^{\circ}(298.15)$ и $\Phi^{xx}(T)$.

Ключевые слова: кобальто-купрато-манганит, никелито-купрато-манганит, термодинамика, теплоемкость, электрофизика

DOI: 10.31857/S0044453720010136

Соединения на основе купратов, манганитов, кобальтитов и никелитов редкоземельных и щелочно-земельных металлов обладают такими уникальными физико-химическими свойствами как сверхпроводимость, гигантское и колоссальное магнетосопротивление и представляют интерес как материалы твердотельных оксидных источников питания, газовых сенсоров, термоэлектрических устройств, микро- и суперконденсаторов [1– 6]. Определенный научный и практический интерес представляет исследование физико-химических свойств фаз, в которых оксиды Co(II), Ni(II), Cu(II) и Mn(III) образуют единую фазу, как кобальто-купрато-манганит и никелито-купратоманганит.

Цель данной работы — исследование термодинамических свойств кобальто-купрато-манганита LaMgCoCuMnO₆ и никелито-купрато-манганита LaMgNiCuMnO₆.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез кобальто(никелито)-купрато-манганитов в пересчете на конечные формулы LaMg-CoCuMnO₆ и LaMgNiCuMnO₆ проводили путем твердофазного взаимодействия стехиометрических количеств La₂O₃ (марки "ос. ч."), NiO, CoO, CuO, Mn_2O_3 и MgCO_3 (квалификации "ч. д. а.") при температурах 800–1200°С в течение 20 ч. Для получения равновесных фаз при низких температурах проводили низкотемпературный отжиг при 400°С в течение 10 ч. На вибрационной мельнице компании Retsch (Германия) марки "MM301" поликристаллические образцы новых соединений измельчали до наноразмерных (нанокластерных) частиц, размеры которых определяли с использованием атомно-силового микроскопа JSPM-5400 Scanning Probe Microscope "JEOL" (Япония).

Рентгенофазовый анализ полученных новых нанообразцов проводили на дифрактометре ДРОН-2.0. Индицированием рентгенограмм соединений аналитическим методом [7] установлено, что синтезированные соединения кристаллизуются в кубической сингонии со следующими параметрами решетки: LaMgCoCuMnO₆ – *a* = = 14.12 ± 0.02 Å, V° = 2814.87 ± 0.06 Å³, *Z* = 4, $V_{_{ЭЛ,ЯЧ}}^{\circ}$ = 703.72 ± 0.02 Å³, $\rho_{\text{рент}}$ = 4.19 г/см³; LaMgNi-CuMnO₆ – *a* = 14.38 ± 0.02 Å, V° = 2973.56 ± 0.06 Å³, *Z* = 4, $V_{_{ЭЛ,ЯЧ}}^{\circ}$ = 743.39 ± 0.02 Å³, $\rho_{\text{рент}}$ = 4.22 г/см³ [8]. На рис. 1 приведены атомно-силовая микроскопия полученных кобальто-купрато-манганита и никелито-купрато-манганита.

Рис. 1. Атомно-силовая микроскопия LaMgCoCuMnO₆ (а) и LaMgNiCuMnO₆ (б).

Калориметрическое измерение теплоемкости LaMgCoCuMnO₆ и LaMgNiCuMnO₆ проводили в интервале 298.15-673 К на калориметре ИТ-С-400. Методика проведения экспериментов подробно изложена в [9, 10], а также использована нами при проведении исследований аналогичных фаз [11-13]. Краткое описание методики калориметрических исследований заключается в следующем. Сначала проводили градуировку прибора с определением теплопроводности тепломера K_{T} путем проведения пяти параллельных экспериментов с медным образцом и пустой ампулой. Работу калориметра проверяли определением стандартной теплоемкости α -Al₂O₃ (76.0 Дж/(моль K)), значение которой хорошо согласуется с ее справочным данным (79.0 Дж/(моль К)) [14]. При каждой температуре через 25 К для усредненных значений удельной теплоемкости определяли среднеквадратичное отклонение ($\overline{\delta}$), а для усредненных величин мольных теплоемкостей рассчитывали случайные составляющие погрешности (Å) согласно [10]. Максимальная погрешность определения термодинамических величин, согласно паспортным данным калориметра, составляла ±10.0%. Следует также отметить, что значение стандартной теплоемкости Na₃AsO₄, определенное нами ранее на этом же калориметре (169.1 Дж/(моль К)), удовлетворительно согласуется с его рекомендованной величиной [170.3 Дж/(моль К)], приведенной в справочнике [15]. Для определения погрешностей коэффициентов в уравнениях зависимостей $C_p^{\circ} \sim f(T)$ использовали величины средних случайных погрешностей экспериментальных значений теплоемкостей.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В табл. 1 и на рис. 2 приведены результаты калориметрических измерений теплоемкостей исследуемых соединений. Видно, что исследуемые соединения (как следует из кривой зависимости $C_p^{\circ} \sim f(T)$) претерпевают фазовые переходы II рода: LaMgCoCuMnO₆ – при 398 K, LaMgNiCuMnO₆ – при 523 K, вероятно, связанные с изменениями физических и физико-химических свойств или с появлением особых характеристик. С учетом температур фазовых переходов выведены уравнения температурной зависимости теплоемкости (табл. 2).

В связи с техническими возможностями прибора, стандартные энтропии исследуемых соединений рассчитаны с использованием системы ионных энтропийных инкрементов [16] (табл. 3). Погрешность расчета энтропийных инкрементов ионов ~3.0% [16]. Далее на основании опытных зависимостей $C_p^{\circ} \sim f(T)$ и расчетных значений $S^{\circ}(298.15)$ по известным соотношениям вычисля-

Т, К	$C_p \pm \overline{\delta}$	$C_p^\circ\pm {\stackrel{\circ}{\Delta}}$	Т, К	$C_p \pm \overline{\delta}$	$C_p^\circ \pm \overset{\circ}{\Delta}$			
LaMgCoCuMnO ₆								
298.15	0.569 ± 0.014	248 ± 17	498	0.901 ± 0.017	393 ± 21			
323	0.744 ± 0.016	325 ± 19	523	0.923 ± 0.020	403 ± 24			
348	0.780 ± 0.008	340 ± 10	548	0.954 ± 0.022	416 ± 27			
373	0.807 ± 0.021	352 ± 25	573	0.981 ± 0.015	428 ± 18			
398	0.844 ± 0.018	369 ± 22	598	0.997 ± 0.026	435 ± 31			
423	0.704 ± 0.011	307 ± 13	623	1.032 ± 0.021	450 ± 25			
448	0.776 ± 0.012	339 ± 14	648	1.052 ± 0.024	460 ± 29			
473	0.872 ± 0.006	381 ± 8	673	1.066 ± 0.023	465 ± 28			
LaMgNiCuMnO ₆								
298.15	0.506 ± 0.008	222 ± 10	498	0.960 ± 0.007	419 ± 9			
323	0.592 ± 0.011	258 ± 13	523	0.991 ± 0.015	432 ± 19			
348	0.658 ± 0.011	287 ± 13	548	0.943 ± 0.014	411 ± 17			
373	0.712 ± 0.010	311 ± 12	573	0.856 ± 0.022	374 ± 27			
398	0.790 ± 0.014	345 ± 17	598	0.990 ± 0.008	432 ± 10			
423	0.823 ± 0.011	359 ± 13	623	1.044 ± 0.005	456 ± 6			
448	0.869 ± 0.012	379 ± 15	648	1.058 ± 0.019	462 ± 23			
473	0.933 ± 0.012	407 ± 14	673	1.068 ± 0.013	466 ± 16			

Таблица 1. Опытные значения теплоемкостей LaMgCoCuMnO₆ и LaMgNiCuMnO₆, [$C_p \pm \overline{\delta}$, Дж/(г K); $C_p^{\circ} \pm \overset{\circ}{\Delta}$, Дж/(моль K)]

ли температурные зависимости термодинамических функций $S^{\circ}(T)$, $H^{\circ}(T) - H^{\circ}(298.15)$ и $\Phi^{xx}(T)$ (табл. 3). При расчете их погрешностей учитывали погрешности опытных значений теплоемкостей и погрешности расчета стандартной энтропии.

Для оценки достоверности опытных данных стандартные теплоемкости LaMgCoCuMnO₆, LaMgNiCuMnO₆ также рассчитывали по Дебаю [17] с использованием дебаевских характеристических температур ($Q_{\rm A}$, K) элементов, составляющих химическое соединение, и температур плавления ($T_{\rm пл}$, K). Характеристические температуры элементов для исследуемого соединения определяли по формуле Корефа [17]:

$$Q'_{\rm L} = Q_{\rm L} \sqrt{T'_{\rm nn}/T_{\rm nn}},\tag{1}$$

где T'_{nn} и T_{nn} – температуры плавления соединения и элемента. За T'_{nn} исследуемых соединений условно принимали максимальную температуру (1473 К), при которой соединение устойчиво. Затем находили изохорную теплоемкость соединений. Переход от изохорной теплоемкости к изобарной осуществляли по уравнению Нернста– Линдемана [17]:

$$C_p = C_V + 0.005 \, 1T C_p^2(T_{\rm nn}). \tag{2}$$

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 1 2020

Значения характеристических температур ($Q_{\rm Д}$, K), температур плавления и изохорные теплоемкости элементов заимствованы из [17]. Рассчитанные значения стандартных теплоемкостей LaMgCoCuMnO₆, LaMgNiCuMnO₆, равные 240.9 и 232.1 Дж/(моль K), находятся в хорошем согласии с экспериментальными значениями C_p° (298.15) (248.0 и 222.0 Дж/(моль K) соответственно).

Таблица 2. Коэффициенты уравнения температурной зависимости теплоемкостей LaMgCoCuMnO₆ и LaMgNiCuMnO₆ (C_p° , Дж/(моль K) = $a + bT + cT^{-2}$)

*								
а	$-b \times 10^{-3}$	$-c \times 10^5$	ΔT , K					
LaMgCoCuMnO ₆								
1457 ± 78	1779 ± 96	603 ± 32	298.15-398					
1347 ± 72	2458 ± 132		398-423					
640 ± 34	85 ± 5	531 ± 29	423-673					
LaMgNiCuMnO ₆								
235 ± 9	-472 ± 19	136 ± 5	298.15-523					
1044 ± 42	1170 ± 47		523-573					
3990 ± 160	3504 ± 141	5283 ± 212	573–673					

Рис. 2. Температурные зависимости теплоемкости LaMgCoCuMnO₆ (а) и LaMgNiCuMnO₆ (б).

Таким образом, впервые экспериментальным путем в интервале 298.15—673 К исследованы изобарные теплоемкости кобальто-купрато-манганита LaMgCoCuMnO₆ и никелито-купрато-манганита LaMgNiCuMnO₆, на кривых зависимостей $C_p^{\circ} \sim f(T)$ выявлены температуры фазовых перехо-

<i>Т</i> , К	$C_p^{\circ}(T) \pm \overset{\circ}{\Delta}$	$S^{\circ}(T) \pm \overset{\circ}{\Delta}$	$H^{\circ}(T) - H^{\circ}(298.15) \pm \overset{\circ}{\Delta}$	$\Phi^{xx}(T) \pm \overset{\circ}{\Delta}$			
LaMgCoCuMnO ₆							
298.15	248 ± 13	236 ± 7	-	236 ± 20			
300	254 ± 14	238 ± 20	500 ± 30	236 ± 20			
350	343 ± 18	284 ± 24	15800 ± 800	239 ± 20			
400	369 ± 20	332 ± 28	33700 ± 1800	248 ± 21			
450	339 ± 18	371 ± 31	50200 ± 2700	260 ± 22			
500	385 ± 21	409 ± 34	68400 ± 3700	273 ± 23			
550	418 ± 22	448 ± 37	88500 ± 4800	287 ± 24			
600	441 ± 24	485 ± 41	110000 ± 5900	302 ± 25			
650	459 ± 25	521±44	132500 ± 7100	317 ± 27			
675	466 ± 25	539 ± 45	144100 ± 7700	325 ± 27			
LaMgNiCuMnO ₆							
298.15	222 ± 9	227 ± 7	-	227 ± 16			
300	225 ± 9	228 ± 16	450 ± 20	227 ± 16			
350	289 ± 12	268 ± 19	13400 ± 500	230 ± 16			
400	339 ± 14	310 ± 22	29100 ± 1200	237 ± 17			
450	380 ± 15	352 ± 25	47100 ± 1900	248 ± 17			
500	417 ± 17	394 ± 28	67100 ± 2700	260 ± 18			
550	401 ± 16	435 ± 30	88100 ± 3500	274 ± 19			
600	421 ± 17	469 ± 33	107800 ± 4300	289 ± 20			
650	463 ± 19	504 ± 35	130100 ± 5200	304 ± 21			
675	466 ± 19	522 ± 37	141700 ± 5700	312 ± 22			

Таблица 3. Термодинамические характеристики LaMgCoCuMnO₆ и LaMgNiCuMnO₆ [$C_p^{\circ}(T)$, $S^{\circ}(T)$, $\Phi^{xx}(T)$, Дж/(моль K); $H^{\circ}(T) - H^{\circ}(298.15)$, Дж/(моль)]

дов II рода, выведены уравнения температурной зависимости теплоемкостей, рассчитаны температурные зависимости термодинамических функций.

Работа выполнена согласно договору, заключенному между КН МОН РК и Химико-металлургическим институтом им. Ж. Абишева по грантам (ИРН: AP05131317, AP05131333).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Третьяков Ю.Д., Брылёв О.А.* // Журн. Росс. хим. общ-ва им. Д.И. Менделеева. 2000. Т. 45. № 4. С. 10.
- 2. *Нагаев Э.Л.* // Успехи физ. наук. 1996. Т. 166. № 8. С. 833.
- 3. Иванова Н.Б., Овчинников С.Г., Коршунов М.М. и др. // Там же. 2009. Т. 179. № 8. С. 837.
- 4. *Ерин Ю.* // Химия и химики. 2009. № 1. С. 16. http://chemistryandchemists.narod.ru
- 5. Пальгуев С.Ф., Гильдерман В.К., Земцов В.И. Высокотемпературные оксидные электронные проводники для электрохимических устройств. М.: Наука, 1990. 198 с.
- 6. Вашук В.В. Синтез и физико-химические свойства соединений с перовскитной и перовскитоподобной структурой на основе оксидов кобальта и никеля: Дис. ... докт. хим. наук. Минск: Ин-т общ. и неорган. химии НАН Беларуси, 2000. 310 с.
- Ковба Л.М., Трунов В.К. Рентгенофазовый анализ. М.: Изд-во МГУ, 1976. 256 с.

- Касенов Б.К., Касенова Ш.Б., Сагинтаева Ж.И. и др. // Хим. журн. Казахстана. 2018. № 2(62). С. 106.
- Платунов Е.С., Буравой С.Е., Курепин В.В. и др. Теплофизические измерения и приборы. Л.: Машиностроение, 1986. 256 с.
- Техническое описание и инструкции по эксплуатации ИТ-С-400. Актюбинск. Актюбинский завод "Эталон", 1986. 48 с.
- Kasenov B.K., Turtubaeva M.O., Amerkhanova Sh.K. et al. // Russ. J. Phys. Chem. A. 2015. V. 89. № 6. P. 941. https://doi.org/10.1134/S0036024415050180
- 12. Kasenov B.K., Turtubaeva M.O., Amerkhanova Sh.K. et al. // High Temperature. 2016. V. 54. № 4. P. 514. https://doi.org/10.1134/S0018151X16040106
- 13. *Kasenov B.K., Turtubaeva M.O., Amerkhanova Sh.K. et al.* // Russ. J. Phys. Chemi. A. 2017. V. 91. № 2. P. 283.

https://doi.org/10.1134/S0036024417020157

- Robie R.A., Hewingway B.S., Fisher J.K. Thermodinamic Properties of Minerals and Related Substances at 298.15 and (10⁵ Paskals) Pressure and at Higher Temperatures. Washington, 1978. 456 p.
- Термические константы веществ / Справочник под ред. В.П. Глушко. М.: Наука, 1981. Вып. Х. Ч. 1. 300 с.
- Кумок В.Н. // В сб.: Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108.
- 17. *Морачевский А.С., Сладков И.В.* Термодинамические расчеты в металлургии. М.: Металлургия, 1985. 137 с.