_____ ФИЗИЧЕСКАЯ ХИМИЯ ___ РАСТВОРОВ

УЛК 532.739

ОКИСЛЕНИЕ ЩАВЕЛЕВОЙ КИСЛОТЫ В РЕАКЦИОННОЙ СИСТЕМЕ ОЗОН-ХЛОРИД-ИОН В ВОДНОМ РАСТВОРЕ

© 2020 г. А. В. Леванов^{а,*}, О. Я. Исайкина^а, П. Ш. Азизова^b, А. Н. Харланов^a, В. В. Лунин^a

^aХимический факультет МГУ имени М.В. Ломоносова, Москва, Россия ^bФилиал МГУ имени М.В. Ломоносова в Баку, Баку, Азербайджан *e-mail: levanov@kge.msu.ru Поступила в редакцию 01.03.2019 г.

Поступила в редакцию 01.03.2019 г. После доработки 01.03.2019 г. Принята к публикации 09.04.2019 г.

Показано, что скорость окисления щавелевой кислоты $H_2C_2O_4$ в ходе озонирования ее растворов заметно возрастает, если в раствор добавлен хлорид натрия. На основе данных о кинетике выделения молекулярного хлора при обработке озоном растворов $H_2C_2O_4$ и NaCl, выяснен механизм реакции щавелевой кислоты с хлором, и определена константа скорости этой реакции.

Ключевые слова: озон, хлорид-ион, щавелевая кислота, молекулярный хлор, кинетика, барботажный реактор

DOI: 10.31857/S0044453720010173

Шавелевая кислота и ее соли, оксалаты, являются загрязнителями воды, и присутствуют в сточных водах различных производств [1]. Удаление оксалатов из растворов различного состава имеет большое значение в некоторых промышленных процессах переработки алюминиевых руд [2], и жидких радиоактивных отходов [3]. Озон широко используется в хозяйственной деятельности человека при обработке различных видов воды [4], при этом конечным продуктом озонолиза многих органических примесей является щавелевая кислота или ее анионы [5]. Они с большим трудом подвергаются окислительной деструкции. По этим причинам, исследование окисления щавелевой кислоты и оксалатов в процессах озонирования является актуальной задачей. Целью настоящей работы является изучение кинетики окисления щавелевой кислоты при озонировании водных растворов, содержащих значительные концентрации хлорид-ионов, и определение механизма и константы скорости реакции шавелевой кислоты с хлором.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

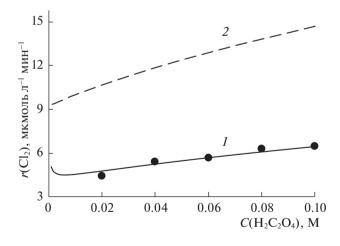
Экспериментальная установка и методика эксперимента аналогичны описанным в работах [6—8]. Озонированию подвергали водные растворы щавелевой кислоты ацидиметрической концентрации 0.02—0.1 М, 0.02—0.1 М щавелевой кислоты и 1 М NaCl, 0.06 М щавелевой кислоты и 0.4—1 М NaCl. Для их приготовления использова-

ли однократно дистиллированную воду, хлорид натрия "х. ч.", стандарт-титры щавелевой кислоты. рН контролировали с помощью рН-метра-иономера "Эксперт-001" со стеклянным электродом ЭСК-10601/7 и хлорсеребряным электродом ЭВЛ-1М3.1 до и после озонирования. Процесс проводили в барботажном реакторе при комнатной температуре ($21 \pm 1^{\circ}$ С), скорость потока исходной газовой смеси (озонированного кислорода) v = 21 л/ч (ст.у.), концентрация озона на входе в реактор $C^{\circ}(O_3) = 20$ г/м³, объем реакционного раствора $V_L = 220$ мл в большинстве экспериментов.

Выходящие из реактора газы пропускали через печь для разложения озона, а затем определяли в них диоксид углерода CO_2 и молекулярный хлор Cl_2 при стационарном режиме функционирования реактора. Содержание диоксида углерода определяли методом ИК-спектроскопии на ИКфурье спектрометре EQUINOX 55/S (Bruker) при разрешении $0.5~{\rm cm}^{-1}$ и усреднении по 50 сканам. Оптическую кювету длиной 10 см с окнами из CaF_2 заполняли выходящими газами и помещали в кюветное отделение спектрометра. Для исключения влияния атмосферного CO_2 , прибор и кюветное отделение продували газообразным азотом.

Молекулярный хлор определяли методом фотометрической иодометрии с предварительной термической деструкцией озона [9]. В настоящей работе температура печи составляла 500—550°С, что обеспечивало практически полное удаление

Таблица 1. Оптическая плотность в максимуме линии 2360 cm^{-1} в ИК-спектре выходящих из реактора газов. Объем реакционного раствора 200-220 мл


$C^{\circ}(O_3)$, Γ/M^3	Состав реакционного раствора	D_{2360}
57	$0.1 \text{ M H}_2\text{C}_2\text{O}_4$	0.40
57	$0.1 \text{ M H}_2\text{C}_2\text{O}_4 + 1 \text{ M NaCl}$	0.78
10	$0.02 \text{ M H}_2\text{C}_2\text{O}_4$	0.06
10	$0.02 \text{ M H}_2\text{C}_2\text{O}_4 + 1 \text{ M NaCl}$	0.14
20	$0.02 \text{ M H}_2\text{C}_2\text{O}_4$	0.03
20	$0.02 \text{ M H}_2\text{C}_2\text{O}_4 + 1 \text{ M NaCl}$	0.19
20	$0.06 \text{ M H}_2\text{C}_2\text{O}_4$	0.12
20	$0.06 \text{ M H}_2\text{C}_2\text{O}_4 + 1 \text{ M NaCl}$	0.32

озона и неизменность концентрации Cl_2 . После прохождения через печь, газовую смесь направляли в ловушку, заполненную 100 мл водного раствора 50 г/л KI. В ней хлор количественно перехо-

дил в трийодид-ион I_3^- , концентрацию которого определяли с помощью фотометра КФК-3. Скорость выделения хлора, $r(Cl_2)$, находили по тангенсу угла наклона конечного линейного участка зависимости количества I_3^- от времени,

$$r(\mathrm{Cl}_2) \equiv \frac{1}{V_L} \frac{dn(\mathrm{Cl}_2)}{dt} = \frac{1}{V_L} \frac{\Delta n(\mathrm{I}_3^-)}{\Delta t},$$

где V_L — объем раствора в реакторе. Для учета возможного вклада различных побочных процессов в окисление иодида в ловушке, выполнен "холо-

Рис. 1. Зависимости скорости выделения хлора при озонировании раствора 1 M NaCl и щавелевой кислоты, от ацидиметрической концентрации кислоты; $C^{\circ}(O_3) = 20 \text{ г/m}^3$. Точки — экспериментальные данные; I — расчет по модели с учетом окисления щавелевой кислоты хлором; 2 — расчет при допущении отсутствия взаимодействия хлора с щавелевой кислотой.

стой" эксперимент, в ходе которого озонировали 0.1 М раствор щавелевой кислоты без добавления хлорида натрия (остальные условия аналогичны реальным опытам). Скорость образования трииодида при этом составила пренебрежимо малое значение 0.03 мкмоль л⁻¹мин⁻¹, что не превышает 1% от измеренных величин скорости выделения хлора.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

При озонировании ($C^{\circ}(O_3) = 10-57 \text{ г/м}^3$) водных растворов 0.02-0.1 М щавелевой кислоты (рН 1.3-1.9) в ИК-спектре выходящих газов наблюдается характерная колебательно-вращательная структура полосы поглощения СО₂ с центром около $2350 \, \text{см}^{-1}$, а также интенсивные полосы поглошения паров воды; вклада в спектр полос поглощения других веществ не обнаружено. При постоянной скорости потока озонированного кислорода, интенсивность полос поглощения СО₂ в выходящих газах пропорциональна скорости его выделения из реактора. Для оценки изменения концентрации СО2, сравнивали интенсивность в максимуме линии колебательно-вращательной структуры при 2360 см^{-1} . В табл. 1 представлены интенсивности этой линии при различных условиях эксперимента.

 ${
m CO_2}$ образуется в результате окисления щавелевой кислоты или ее анионов озоном. Скорость этой реакции весьма мала; кажущаяся константа скорости, оцененная на основе величин интенсивности сигналов ${
m CO_2}$ в ИК-спектре выходящих газов и концентраций озона и щавелевой кислоты в растворе, по порядку величины равна 10^{-3} — 10^{-2} л моль $^{-1}$ с $^{-1}$.

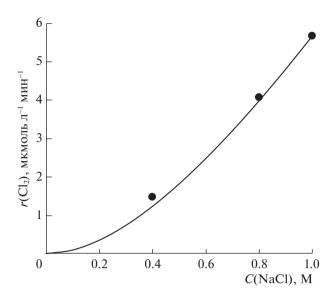
При добавлении в реакционный раствор хлорида натрия в концентрации 1 M, скорость выделения диоксида углерода возрастает в 2-6 раз (см. табл. 1). С другой стороны, скорость выделения молекулярного хлора, $r(Cl_2)$, который образуется в результате реакции хлорид-ионов с озоном, в присутствии щавелевой кислоты становится заметно меньше (рис. 1). Эти явления обусловлены окислением щавелевой кислоты активным хлором в растворе.

Следует отметить, что первичными продуктами взаимодействия O_3 с $Cl^-(aq)$ являются хлорноватистая кислота HOCl и/или гипохлорит-ион ClO^- . Они вступают в обратимые реакции

$$HOCl \rightleftharpoons ClO^- + H^+,$$
 (1)

$$Cl_2(aq) + H_2O \rightleftharpoons HOCl + H^+ + Cl^-,$$
 (2)

$$Cl_2(aq) + Cl^- \rightleftharpoons Cl_3^-,$$
 (3)


равновесие в которых устанавливается быстро. В результате, в растворе присутствуют соединения хлора в степени окисления +1 и 0, ClO^- , HOCl, Cl_2 , Cl_3^- , количественные соотношения между которыми определяются значениями соответствующих констант равновесия и концентрациями H^+ и Cl^- в реакционном растворе. Частицы ClO^- , HOCl, Cl_2 , Cl_3^- можно рассматривать как различные формы единой химической совокупности, так называемого *активного хлора*. Если хотя бы одна из форм участвует в какой-либо химической реакции, то пропорционально изменяются концентрации и остальных форм.

Известно, что шавелевая кислота и оксалаты быстро реагируют с активным хлором (но практически не взаимодействуют с соединениями хлора в более высоких степенях окисления, ClO_2^- , ClO_2 , ClO_3^-) [10]. Последующие разделы работы посвящены определению механизма этой реакции, на основе экспериментальных данных о выделении Cl₂ при озонировании растворов щавелевой кислоты и NaCl (рис. 1, 2). Для этого, построим математическую модель кинетики процесса, искомыми параметрами которой являются вид зависимости и константа скорости реакции хлора с щавелевой кислотой. Параметры найдем из условия минимального расхождения расчетных и экспериментальных зависимостей скорости выделения хлора, $r(Cl_2)$, от концентраций щавелевой кислоты и хлорид-иона.

Будем описывать барботажный реактор как реактор идеального перемешивания, содержащий две фазы — жидкую и газообразную, и рассмотрим стационарный режим его функционирования. Выпишем уравнение материального баланса (равенство скоростей образования и расходования) активного хлора,

$$k_{O_3+Cl^-}[Cl^-][O_3] = r_{Ox} + \frac{v}{V_L}C(Cl_2).$$
 (4)

Здесь $k_{\mathrm{O_3+Cl^-}}$ — константа скорости первичной реакции $\mathrm{O_3}$ с $\mathrm{Cl^-}(\mathrm{aq})$ с образованием HOCl или $\mathrm{ClO^-}$, r_{Ox} — скорость реакции одной из форм активного хлора (HOCl, или $\mathrm{ClO^-}$, или $\mathrm{Cl_2}$, или $\mathrm{Cl_3^-}$) с какой-либо из форм щавелевой кислоты (самой кислотой $\mathrm{H_2C_2O_4}$, гидрооксалатом $\mathrm{HC_2O_4^-}$, или оксалатом $\mathrm{C_2O_4^{2-}}$). Реакциями гипохлорит-иона с озоном можно пренебречь, поскольку щавелевая кислота обуславливает достаточно высокую кислотность реакционного раствора (pH 1.1—1.7 во всех экспериментах). $C(\mathrm{Cl_2})$ — это концентрация молекулярного хлора в выходящих газах. Слагаемое $v\,C(\mathrm{Cl_2})/V_L$ описывает убыль активного хлора

Рис. 2. Зависимость скорости выделения хлора от концентрации NaCl, при озонировании раствора $0.06~\mathrm{M}$ щавелевой кислоты и хлорида натрия; $C^{\circ}(\mathrm{O_3}) = 20~\mathrm{r/m}^3$. Точки — экспериментальные данные (для растворов $0.06~\mathrm{M}~\mathrm{H_2C_2O_4}$ и $0.4~\mathrm{M}~\mathrm{NaCl}$ + $+~0.6~\mathrm{M}~\mathrm{KNO_3}, 0.8~\mathrm{M}~\mathrm{NaCl}, 1~\mathrm{M}~\mathrm{NaCl})$; линия — расчет по модели (для растворов $0.06~\mathrm{M}~\mathrm{H_2C_2O_4}$, с ионной силой $1~\mathrm{M}~\mathrm{M}~\mathrm{KNO_3}$) и концентрацией хлорид-иона $0-1~\mathrm{M}$).

за счет выноса Cl_2 из реактора с газовым потоком. Константа $k_{\operatorname{O}_3+\operatorname{Cl}^-}$ (л моль $^{-1}\operatorname{c}^{-1}$) представляется выражением

$$k_{\text{O}_3+\text{CI}^-} = \frac{2.44 \times 10^{-3} + 0.0212[\text{H}^+]}{1 + 0.0707[\text{H}^+][\text{CI}^-]},$$
 (5)

при ионной силе реакционного раствора I = 1 M и температуре 21°C, согласно [6]. Присутствие в (5) концентрации H^+ отражает катализ реакции O_3 с Cl^- (aq) ионами водорода. Концентрация озона в растворе, $[O_3]$, определяется формулой

$$[O_3] = L_{O_3} C^{\circ}(O_3),$$
 (6)

где $C^{\circ}(\mathrm{O}_3)$ — концентрацию озона в газовом потоке на входе в реактор. Значение коэффициента растворимости (кажущейся константы Генри) $L_{\mathrm{O}_3}=0.151$ (при ионной силе 1 М и температуре $21^{\circ}\mathrm{C}$) определено в работе [6] для растворов хлорида натрия в том же реакторе и при аналогичных экспериментальных условиях.

Если считать, что имеет место химическое взаимодействие только одной из форм активного хлора с одной формой щавелевой кислоты, то всего можно выписать двенадцать различных выражений скорости r_{Ox} :

$$r_{Ox} = k_{Ox_A} [Cl_2] [H_2C_2O_4],$$

$$r_{Ox} = k_{Ox_B} [Cl_2] [HC_2O_4],$$

$$r_{Ox} = k_{Ox_C} [Cl_2] [C_2O_4^{2-}],$$

$$r_{Ox} = k_{Ox_D} [HOCl] [H_2C_2O_4],$$

$$r_{Ox} = k_{Ox_E} [HOCl] [HC_2O_4^{2-}],$$

$$r_{Ox} = k_{Ox_E} [HOCl] [C_2O_4^{2-}],$$

$$r_{Ox} = k_{Ox_E} [ClO^{-}] [H_2C_2O_4],$$

$$r_{Ox} = k_{Ox_H} [ClO^{-}] [HC_2O_4^{2-}],$$

$$r_{Ox} = k_{Ox_I} [ClO^{-}] [C_2O_4^{2-}],$$

$$r_{Ox} = k_{Ox_I} [ClO^{-}] [C_2O_4^{2-}],$$

$$r_{Ox} = k_{Ox_I} [Cl_3^{-}] [HC_2O_4^{2-}],$$

$$r_{Ox} = k_{Ox_K} [Cl_3^{-}] [HC_2O_4^{2-}],$$

$$r_{Ox} = k_{Ox_I} [Cl_3^{-}] [C_2O_4^{2-}].$$

Для того, чтобы из уравнения (4) получить формулы для расчета концентрации Cl_2 в выходящих газах $C(Cl_2)$, и скорости выделения хлора из реактора $r(Cl_2)$, необходимо в равенствах (7) выразить концентрации Cl_2 , HOCl, ClO^- , и Cl_3^- через $C(Cl_2)$, концентрации H^+ , $H_2C_2O_4$, $HC_2O_4^-$ и $C_2O_4^{2-}$ — через ацидиметрическую концентрацию щавелевой кислоты, $C(H_2C_2O_4)$. Используя квазиравновесное приближение для различных форм активного хлора, имеем

$$[Cl_{2}] = H_{Cl_{2}}C(Cl_{2}),$$

$$[HOCl] = \frac{K_{Cl_{2}}H_{Cl_{2}}}{[H^{+}][Cl^{-}]}C(Cl_{2}),$$

$$[ClO^{-}] = \frac{K_{HOCl}K_{Cl_{2}}H_{Cl_{2}}}{[H^{+}]^{2}[Cl^{-}]}C(Cl_{2}),$$

$$[Cl_{3}^{-}] = K_{Cl_{2}}[Cl^{-}]H_{Cl_{2}}C(Cl_{2}).$$
(8)

Здесь H_{Cl_2} — константа Генри молекулярного хлора, K_{HOCl} — константа диссоциации хлорноватистой кислоты (реакция (1)), K_{Cl_2} — константа гидролиза Cl_2 (реакция (2)), $K_{\text{Cl}_3^-}$ — константа устойчивости иона Cl_3^- (реакция (3)).

Концентрации в реакционном растворе ионов H^+ , недиссоциированной молекулы щавелевой кислоты $\mathrm{H}_2\mathrm{C}_2\mathrm{O}_4$ и анионов гидроксалата $\mathrm{HC}_2\mathrm{O}_4^-$ и оксалата $\mathrm{C}_2\mathrm{O}_4^{2-}$ рассчитывали путем решения системы алгебраических уравнений, включающей выражения констант равновесия диссоциации

кислоты в водном растворе, уравнения материального баланса и сохранения заряда:

$$K_{a1} = \frac{[H^{+}][HC_{2}O_{4}^{-}]}{[H_{2}C_{2}O_{4}]}, \quad K_{a2} = \frac{[H^{+}][C_{2}O_{4}^{2-}]}{[HC_{2}O_{4}^{-}]},$$

$$C(H_{2}C_{2}O_{4}) = [H_{2}C_{2}O_{4}] + [HC_{2}O_{4}^{-}] + [C_{2}O_{4}^{2-}], \quad (9)$$

$$[H^{+}] = [HC_{2}O_{4}^{-}] + 2[C_{2}O_{4}^{2-}].$$

Расчеты по уравнениям (4)—(9) выполняли для температуры 21°С и ионной силы реакционного раствора 1 М, что соответствовало условиям экспериментов. Константы равновесия при этих условиях имеют значения

$$H_{\text{Cl}_2} = 1.51 \text{ [11]}, \quad K_{\text{Cl}_2} = 7.50 \times 10^{-4} \text{ M}^2 \text{ [12]},$$

$$K_{\text{Cl}_3} = 0.18 \text{ M}^{-1} \text{ [13]}, \quad K_{\text{HOCl}} = 3.92 \times 10^{-8} \text{ M} \text{ [14]}, (10)$$

$$K_{\text{al}} = 0.151 \text{ M} \text{ [15]}, \quad K_{\text{a2}} = 3.18 \times 10^{-4} \text{ M} \text{ [15]}.$$

Считали, что ацидиметрическая концентрация щавелевой кислоты, $C(H_2C_2O_4)$, и концентрация хлорид-иона в реакционном растворе, $[Cl^-]$, при озонировании не изменяются, поскольку реальное уменьшение этих концентраций за время наших экспериментов пренебрежимо мало.

В том интервале концентраций щавелевой кислоты, который использовался в экспериментах настоящей работы ($C(H_2C_2O_4)=0.02-0.1\ M$), отношение концентраций аниона гидроксалата и иона H^+ является практически постоянным, $[HC_2O_4^-]/[H^+]=0.97-0.99$. Поэтому удобно скорости (7) выразить через это отношение и через концентрацию H^+ , причем значения $[H^+]$ определяются путем решения системы уравнений (9).

Оказывается, что вид теоретических выражений скорости выделения хлора, получаемых из уравнения (4), соответствует экспериментальным зависимостям рис. 1, 2 только тогда, когда скорость $r_{\rm Ox}$ не зависит от концентрации ${\rm H}^+$ (в выражение $r_{\rm Ox}$ входит только отношение $[{\rm HC_2O_4^-}]/[{\rm H}^+]$), и обратно пропорциональна концентрации ${\rm Cl}^-$. Это может быть лишь в двух случаях, отвечающих тому, что реакция щавелевой кислоты с хлором заключается в химическом взаимодействии либо молекулы хлорноватистой кислоты с ионом гидроксалата,

$$HOCl + HC_2O_4^- \rightarrow H_2O + Cl^- + 2CO_2,$$
 (11)

либо иона гипохлорита с молекулой недиссоциированной щавелевой кислоты,

$$ClO^{-} + H_2C_2O_4 \rightarrow H_2O + Cl^{-} + 2CO_2.$$
 (12)

При этом скорость $r_{\rm Ox}$ определяется соответственно равенствами

$$r_{\text{Ox}} = k_{\text{Ox}_{\text{E}}}[\text{HOCl}][\text{HC}_{2}\text{O}_{4}^{-}] =$$

$$= k_{\text{Ox}_{\text{E}}} \frac{K_{\text{Cl}_{2}} H_{\text{Cl}_{2}}}{[\text{Cl}^{-}]} \frac{[\text{HC}_{2}\text{O}_{4}^{-}]}{[\text{H}^{+}]} C(\text{Cl}_{2}),$$
(13)

$$r_{\text{Ox}} = k_{\text{Ox_G}}[\text{ClO}^{-}][\text{H}_{2}\text{C}_{2}\text{O}_{4}] =$$

$$= k_{\text{Ox_G}} \frac{K_{\text{HOCl}}K_{\text{Cl}_{2}}H_{\text{Cl}_{2}}}{K_{\text{al}}[\text{Cl}^{-}]} \frac{[\text{HC}_{2}\text{O}_{4}^{-}]}{[\text{H}^{+}]} C(\text{Cl}_{2}).$$
(14)

С учетом (4), (6), (8), (13), (14), концентрация хлора в газовой фазе на выходе из реактора представляется уравнениями

$$C(\text{Cl}_2) = \frac{k_{\text{O}_3 + \text{Cl}^-}[\text{Cl}^-]L_{\text{O}_3}C^{\circ}(\text{O}_3)}{\frac{V}{V_L} + k_{\text{Ox}_-\text{E}} \frac{K_{\text{Cl}_2}H_{\text{Cl}_2}}{[\text{Cl}^-]}[\text{HC}_2\text{O}_4^-]},$$

$$C(\text{Cl}_2) = \frac{k_{\text{O}_3 + \text{Cl}^-}[\text{Cl}^-] L_{\text{O}_3} C^{\circ}(\text{O}_3)}{\frac{V}{V_L} + k_{\text{Ox}_G} \frac{K_{\text{HOCl}} K_{\text{Cl}_2} H_{\text{Cl}_2}}{K_{\text{al}}[\text{Cl}^-]} \frac{[\text{HC}_2 \text{O}_4^-]}{[\text{H}^+]}.$$

Скорость выделения хлора из реактора, $r(Cl_2)$ связана с концентрацией $C(Cl_2)$ соотношением

$$r(\operatorname{Cl}_2) = \frac{v}{V_I} C(\operatorname{Cl}_2),$$

где v — объемная скорость потока газовой смеси, V_L — объем реакционного раствора. Таким образом, теоретические выражения скорости выделения хлора в нашей модели, в которой происходят химические реакции хлорид-иона с озоном и щавелевой кислоты с хлором, таковы:

$$r(\text{Cl}_2) = \frac{k_{\text{O}_3 + \text{Cl}^-}[\text{Cl}^-]L_{\text{O}_3}C^{\circ}(\text{O}_3)}{1 + k_{\text{Ox}_E}} \frac{K_{\text{Cl}_2}H_{\text{Cl}_2}[\text{HC}_2\text{O}_4^-]V_L}{[\text{Cl}^-]}, \quad (15)$$

или

$$r(\text{Cl}_2) = \frac{k_{\text{O}_3 + \text{Cl}^-}[\text{Cl}^-] L_{\text{O}_3} C^{\circ}(\text{O}_3)}{1 + k_{\text{O}_{\text{X}}} \frac{K_{\text{HOCl}} K_{\text{Cl}_2} H_{\text{Cl}_2} [\text{HC}_2 \text{O}_4^-] V_L}{K_{\text{al}}[\text{Cl}^-] [\text{H}^+] v}.$$
(16)

Их можно переписать в виде одной формулы

$$r(\text{Cl}_2) = \frac{k_{\text{O}_3 + \text{Cl}^-}[\text{Cl}^-]L_{\text{O}_3}C^{\circ}(\text{O}_3)}{1 + \kappa \frac{[\text{HC}_2\text{O}_4^-]}{[\text{Cl}^-][\text{H}^+]} \frac{V_L}{V}},$$
(17)

где

$$\kappa = k_{\text{Ox E}} K_{\text{Cl}_2} H_{\text{Cl}_3}, \tag{18}$$

если имеет место реакция (11), или

$$\kappa = k_{\text{Ox E}} K_{\text{HOCl}} K_{\text{Cl}_2} H_{\text{Cl}_2} / K_{\text{al}}$$
 (19)

в случае реакции (12). Коэффициент к является неизвестным параметром выражения (17), поскольку неизвестны константы скорости $k_{\rm Ox_E}$ или $k_{\rm Ox_G}$ реакций (11) или (12).

Величину параметра к определили из условия минимального расхождения значений $r(Cl_2)$, полученных в эксперименте (рис. 1, 2), и рассчитанных по формуле (17):

$$\kappa = 0.0342$$
 моль π^{-1} c⁻¹ при температуре 21°C.

Этой величине соответствуют значения констант $k_{\rm Ox_E}=30.2$ л моль $^{-1}$ с $^{-1}$, или $k_{\rm Ox_G}=1.17$ × × 10^8 л моль $^{-1}$ с $^{-1}$. Они получены из формул (18), (19), с учетом значений констант равновесия $H_{\rm Cl_2}$, $K_{\rm Cl_2}$, $K_{\rm HOCl}$ и $K_{\rm al}$ (10).

Следует отметить, что экспериментальные данные настоящей работы не позволяют выяснить, какая из реакций, (11) или (12), на самом деле имеет место при взаимодействии щавелевой кислоты с активным хлором в водном растворе. Однако известно (см. [16]), что величины констант скорости порядка 10^7 л моль $^{-1}$ с $^{-1}$ характерны только для реакций $H_2C_2O_4/HC_2O_4^-/C_2O_4^{2-}$ с активными свободными радикалами (например, гидроксильным радикалом ОН'), а константы скорости взаимодействия различных форм щавелевой кислоты с менее активными реагентами намного меньше. Поэтому весьма большое значение константы скорости реакции (12) ($k_{\rm Ox~G} = 1.17 \times$ $\times 10^{8}$ л моль⁻¹ c⁻¹) является крайне маловероятным. Таким образом, можно заключить, что реакция щавелевой кислоты с активным хлором представляет собой взаимодействие иона гидроксалата с молекулой хлорноватистой кислоты согласно уравнению (11) и с константой скорости $k_{\rm Ox~E} =$ $= 30.2 \text{ л моль}^{-1} \text{ c}^{-1} (21^{\circ}\text{C}).$

Выясним погрешность полученного значения $k_{\rm Ox_E}$. Относительная погрешность экспериментальных величин скорости выделения хлора, $r({\rm Cl_2})$, составляет не более 5%. Это приводит к относительной погрешности коэффициента к, равной 9%. Если принять, что константы равновесия $H_{\rm Cl_2}$ и $K_{\rm Cl_2}$ (10) известны с точностью $\pm 5\%$, то оценка относительной погрешности значения $k_{\rm Ox_E} = 30.2$ л моль $^{-1}$ с $^{-1}$ составляет 20%, то есть,

$$k_{\text{Ox_E}} = 30 \pm 6$$
 л моль⁻¹ c⁻¹.

Взаимодействие щавелевой кислоты с активным хлором исследовано ранее только в одной работе [17] (1932 г.). Авторы [17] пришли к выводу, что имеет место реакция (11), в интервале $10-20^{\circ}$ C, ее константа скорости $k=3.659 \times 10^{12} \exp(-7787/T)$, при 21° C, k=12 л моль-1 с-1. Правильность значений константы скорости [17]

вызывает сомнения, поскольку для ее расчета использованы величины констант равновесия $K_{\rm HOCl}$, $K_{\rm Cl_2}$ и $K_{\rm Cl^{3-}}$, которые существенно отличаются от современных данных. Наше значение константы скорости реакции (11) представляется более надежным и достоверным.

СПИСОК ЛИТЕРАТУРЫ

- Marcì G., García-López E., Palmisano L. // J. Appl. Electrochem. 2008. V. 38. № 7. P. 1029.
- 2. *Bangun J.*, *Adesina A.A.* // Applied Catalysis A: General. 1998. V. 175. № 1. P. 221.
- 3. Seliverstov A.F., Lagunova Y.O., Ershov B.G., Shash-kovskii S.G. // Russ. J. Gen. Chem. 2017. V. 87. № 11. P. 2533.
- 4. *Лунин В.В., Попович М.П., Ткаченко С.Н.* Физическая химия озона. М.: Изд-во МГУ, 1998.
- 5. *Von Sonntag C., Von Gunten U.* Chemistry of Ozone in Water and Wastewater Treatment. From Basic Principles to Applications. London: IWA Publishing, 2012.
- Levanov A.V., Isaikina O.Y., Gasanova R.B., Lunin V.V. // Ind. Eng. Chem. Res. 2018. V. 57. № 43. P. 14355.
- 7. Леванов А.В., Кусков И.В., Зосимов А.В., Антипенко Э.Е., Лунин В.В. // Кинет. катал. 2003. Т. 44. № 6. С. 810. [Levanov A.V., Kuskov I.V., Zosimov A.V., Antipenko E.E., Lunin V.V. // Kinet. Catal. 2003. V. 44. № 6. Р. 740].

- Леванов А.В., Исайкина О.Я., Лунин В.В. // Журн. физ. химии. В печати. 2019. Т. 93. № 12.
- 9. Леванов А.В., Кусков И.В., Зосимов А.В. и др.// Журн. аналит. химии. 2003. Т. 58. № 5. С. 496. [Levanov A.V., Kuskov I.V., Zosimov A.V., Antipenko E.E., Lunin V.V. // J. Anal. Chem. 2003. V. 58. № 5. P. 439].
- Gordon G., Slootmaekers B., Tachiyashiki S., Wood Iii D.W. // J. Am. Water Works Assoc. 1990. V. 82. № 4. P. 160.
- 11. *Aieta E.M., Roberts P.V.* // J. Chem. Eng. Data. 1986. V. 31. № 1. P. 51.
- 12. *Wang T.X.*, *Margerum D.W.* // Inorg. Chem. 1994. V. 33. № 6. P. 1050.
- Wang T.X., Kelley M.D., Cooper J.N., Beckwith R.C., Margerum D.W. // Inorg. Chem. 1994. V. 33. № 25. P. 5872.
- 14. Adam L.C., Fábián I., Suzuki K., Gordon G. // Inorganic Chemistry. 1992. V. 31. № 17. P. 3534.
- 15. *Kettler R.M., Palmer D.A., Wesolowski D.J.* // J. Solution Chem. 1991. V. 20. № 9. P. 905.
- NDRL/NIST Solution Kinetics Database on the Web (NIST Standard Reference Database 40). Gaithersburg, MD: National Institute of Standards and Technology, https://kinetics.nist.gov/solution/ (accesed February 11, 2019)
- Griffith R.O., Mckeown A. // Trans. Faraday Soc. 1932.
 V. 28. P. 518.