_____ ФИЗИЧЕСКАЯ ХИМИЯ __ РАСТВОРОВ

УДК 541. 11:536.7

ТЕРМОДИНАМИКА РАСТВОРЕНИЯ ГЛИЦИЛ-L-ЛЕЙЦИНА В ВОДНЫХ РАСТВОРАХ

© 2020 г. А. И. Лыткин^{*a*}, В. В. Черников^{*a*}, О. Н. Крутова^{*a*,*}, Д. К. Смирнова^{*a*}, Е. Д. Крутова^{*a*}

^аИвановский государственный химико-технологический университет, Иваново, Россия *e-mail: kdvkonkpd@yandex.ru Поступила в редакцию 13.03.2019 г. После доработки 13.03.2019 г.

Принята к публикации 22.04.2019 г.

Рассчитаны стандартные энтальпии сгорания и образования кристаллического глицил-L-лейцина. Определены тепловые эффекты растворения кристаллического глицил-L-лейцина воде и в растворах гидроксида калия при 298.15 К прямым калориметрическим методом. Рассчитаны стандартные энтальпии образования пептида и продуктов его диссоциации в водном растворе.

Ключевые слова: термодинамика, кислота, растворы, калориметр, энтальпия **DOI:** 10.31857/S0044453720010197

Важную роль в биохимических процессах, протекающих в жидких средах, играют модельные соединения, к числу которых принадлежат аминокислоты и пептиды. Особенно велика их роль в процессах "адресной" доставки лекарственных препаратов в нужные органы или ткани при помоши молекул-носителей. С энергетической и структурной точки зрения вода – основа жизни, и только посредством воды или водных систем различные внешние воздействия способны влиять на живые системы. Исследования в области водных или смешанных растворов белковых компонентов требуют в первую очередь изучения и понимания механизмов взаимодействия с водой. В связи с этим, особое значение при изучении термодинамических аспектов подобных систем приобретают калориметрические методы [1].

Целью настоящей работы является определение стандартных энтальпий образования глицил-L-лейцина и продуктов его диссоциации в водном растворе по тепловым эффектам растворения пептида в воде и в водных растворах КОН при 298.15 К.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использован препарат глицил-L-лейцина ($C_8H_{16}N_2O_3$) марки фирмы "TCI" (Япония), содержание основного вещества более 99.0% без дополнительной очистки.

Измерения теплот растворения кристаллического DL-валил-DL-лейцина проводили на калориметре с изотермической оболочкой и автоматической записью температуры [2]. Калориметр калибровали по току. Объем калориметрической жидкости составлял 42.32 мл. Работа калориметрической установки была проверена по общепринятым калориметрическим стандартам – теплоте растворения кристаллического хлорида калия в воде. Препарат КСІ очищали двукратной перекристаллизацией реактива марки "х. ч." из бидистиллята. Согласование экспериментально полученных теплот растворения KCl(кр.) в воде $\Delta_{\rm sol}H_{(\infty {\rm H}, {\rm O})} = -17.25 \pm 0.06$ кДж/моль с наиболее надежными литературными данными [3] свидетельствует об отсутствии заметной систематической погрешности в работе калориметрической установки. Навески пептидов взвешивали на весах марки ВЛР-200 с точностью 2×10^{-4} г. Перед взятием навески препарат высушивали до постоянной массы при 150°С. Содержание H₂O в пептиде составляло не более 0.2-0.3%. Бескарбонатный раствор КОН приготавливали из реактива марки "х. ч." по обычной методике [4]. Доверительный интервал среднего значения ∆Н вычисляли с вероятностью 0.95. Равновесный состав растворов рассчитывали с использованием программы RRSU [5].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Процесс растворения глицил-L-лейцина в воде можно представить схемой:

$$HL^{\pm}(\kappa p.) + nH_2O = HL^{\pm}(p-p, nH_2O).$$
 (1)

Масса навески, г	$m imes 10^3$, моль HL [±] /10 ³ г H ₂ O	<i>n</i> , моль H ₂ O/моль HL [±]	$-\Delta_{ m sol} H,$ кДж/моль	$-\Delta_{\rm f} H^{\circ}({\rm HL}^{\pm}, {\rm p-p}, n{\rm H}_2{\rm O}, 298.15 {\rm K})$	 –Δ_fH°(HL[±], p-p, nH₂O, гип., недисс., 298.15 К)
0.01002	1.234	43931	2.18 ± 0.25	894.3	894.1
0.01259	1.551	34963	2.17	894.3	894.1
0.01812	2.230	24293	2.29	894.2	894.0
0.01966	2.422	22390	2.31	894.2	893.9
0.02583	3.182	17041	2.36	894.1	893.9
0.02601	3.204	16923	2.34	894.2	893.9
0.03698	4.556	11903	2.45	894.1	893.9
0.04589	5.653	9592	2.46	894.0	893.8
0.52145	6.245	8442	2.49	894.0	893.8
0.06922	8.528	6359	2.56	893.9	893.7
0.08563	10.55	5140	2.52	893.9	893.7
0.09965	12.27	4417	2.61	893.9	893.6
0.10565	13.01	4166	2.78	893.7	893.5
0.16852	20.76	2612	2.79	893.7	893.5

Таблица 1. Энтальпии растворения глицил-L-лейцина в воде при 298.15 К

Примечание. Погрешность в тепловых эффектах растворения пептида в воде.

Стандартные энтальпии образования раствора глицил-L-лейцина при различных разведениях рассчитывали по уравнению:

$$\Delta_{\rm f} H^{\circ}({\rm HL}^{\pm}, {\rm p-p}, n{\rm H}_{2}{\rm O}, 298.15 {\rm K}) =$$

= $\Delta_{\rm f} H^{\circ}({\rm HL}^{\pm}, {\rm \kappa p.}, 298.15 {\rm K}) +$ (2)
+ $\Delta_{\rm sol} H({\rm HL}^{\pm}, {\rm \kappa p.}, 298.15 {\rm K}),$

где $\Delta_{\rm f} H^{\circ}({\rm HL^{\pm}}, {\rm кр.}, 298.15 {\rm K})$ – стандартная энтальпия образования кристаллического глицил-L-

Таблица 2. Численные значения энергетических вкладов в величины энтальпии образования глицил-Lлейцина с учетом первичного атомного окружения

Группа	Ν	$-\Delta_{\mathrm{f}} H^{\mathrm{o}}(\mathrm{тв.})_i,$ кДж/моль	−∆ _с <i>Н</i> °(тв.) _{<i>i</i>} , кДж/моль
(С)–СООН	1	435.3 ± 2.3	100.7 ± 2.2
(C) (N)–CH ₂	2	42.6 ± 1.8	640.3 ± 19.9
(C)–NH ₂	1	50.8 ± 21.2	232.1 ± 20.4
(C) ₂ –NH	1	-28.9 ± 38.1	168.1 ± 36.7
(C)(N)-C=O	1	182.3 ± 20.6	211.7 ± 16.7
(N)–(C) ₂ –CH	2	21.6 ± 3.4	516.7 ± 30.4
(C)–CH ₃	2	64.3 ± 12.6	758.6 ± 35.5
	I	$\Delta_{\rm f} H^{\circ} = -896.5$	$\Delta_{\rm c} H^{\circ} = -4543.8$

лейцина; $\Delta_{sol}H(HL^{\pm}, 298.15 \text{ K})$ – теплота растворения пептида (табл. 1).

Величины стандартных энтальпий сгорания и образования глицил-L-лейцина были рассчитаны по аддитивно групповому методу [6—8], основанному на групповой систематике с классификацией фрагментов типа классификации Бенсона, которая учитывает влияние первоначального окружения для атомов. Расчет энтальпии сгорания и образования исследуемого соединения проводили по формуле:

$$_{(f)}H^{\circ}(TB.) = \Sigma A_i \Delta_{c(f)} H_i^{\circ}, \quad i = 1, 2, 3, ..., n,$$
 (3)

где $\Delta_{c(f)}H_i^{\circ}$ — энергетический вклад в теплоту сгорания и образования определенной атомной группы, A_i — число таких атомных групп в молекуле, n — число типов атомных групп в молекуле.

Исходные данные для расчета $\Delta_{\rm f} H^{\circ}({\rm TB.})({\rm C_8H_{16}N_2O_3}) = -896.5 \pm 1.9$ кДж/моль и $\Delta_{\rm c} H^{\circ}({\rm TB.})({\rm C_8H_{16}N_2O_3}) = -4543.8 \pm 1.9$ кДж/моль представлены в табл. 2.

Из табл. 1 видно, что теплота образования глицил-L-лейцина в водном растворе в исследуемом интервале концентраций практически не зависит от величины разведения, что неудивительно для столь больших разбавлений.

Стандартную энтальпию образования цвиттер-иона глицил-L-лейцина в состоянии гипотетически недиссоциированном при конечном разведении в водном растворе находили по уравнению:

где $\alpha(H_2L^+)$, $\alpha(L^-)$ – доли частиц H_2L^+ , L^- соответственно; $\Delta_{dis}H(H_2L^+)$, $\Delta_{dis}H(HL^{\pm})$ – тепловые эффекты ступенчатой диссоциации частицы H_2L^+ .

Значения $\Delta_{dis}H^{\circ}(H_2L^+)$ и $\Delta_{dis}H^{\circ}(HL^{\pm})$ определены ранее [9]. Суммарный вклад второго и третьего слагаемых правой части уравнения (4) не превышал 0.22 кДж/моль и практически не изменялся в исследуемой области концентраций.

Стандартную энтальпию образования глицил-L-лейцина в гипотетическом недиссоциированном состоянии при бесконечном разведении находили экстраполяцией величин, полученных по уравнению (4), на нулевое значение моляльности раствора m (рис. 1).

В результате по МНК найдена величина:

$$\Delta_{\rm f} H^{\circ}({\rm HL}^{\pm}, {\rm p-p}, {\rm H}_2{\rm O}, {\rm станд. c., гип. недисс.,}$$

298.15 K) = -894.0 ± 1.9 кДж/моль.

Стандартную энтальпию образования частицы L^- в водном растворе определяли, используя данные по теплоте растворения пептида в растворах щелочи при соотношении эквивалентов не менее 1 : 2 (табл. 3). Процесс растворения пептида в растворе КОН можно представить схемой:

$$HL^{\pm}(\kappa p.) + OH^{-}(p-p, nH_2O) =$$

= $L^{-}(p-p, nH_2O) + H_2O(w).$ (5)

Расчет показал, что полнота протекания реакции (5) составляла не менее 99.9%.

Поскольку в реакции (5) $\Delta z^2 = 0$, тепловые эффекты растворения пептида при нулевой ионной силе рассчитывали по уравнению [10]:

$$\Delta_{\rm r}H_{(5)} = \Delta_{\rm r}H_{(5)}^{\circ} + iI, \qquad (6)$$

где $\Delta_{\rm r} H_{(5)}$ и $\Delta_{\rm r} H_{(5)}^{\circ}$ – тепловые эффекты процесса (5) при конечном и нулевом значениях ионной силы.

Используя полученные величины $\Delta_r H^{\circ}_{(5)}$ и значеня $\Delta_f H^{\circ}(OH^-, p-p H_2O, cтанд. c., 298.15 K),$ $<math>\Delta_f H^{\circ}(H_2O, x, 298.15 K),$ рекомендованные спра-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 1 2020

Рис. 1. Определение стандартной энтальпии образования глицил-L-лейцина в гипотетическом недиссоциированном состоянии при бесконечном разведении.

вочником [11], рассчитали стандартную энтальпию образования аниона:

$$\Delta_{\rm f} H^{\circ}({\rm L}^{-}, {\rm p-p}, {\rm H}_{2}{\rm O}, {\rm станд. c., 298.15 K}) =$$

$$= \Delta_{\rm f} H^{\circ}({\rm H}{\rm L}^{\pm}, {\rm \kappap., 298.15 K}) +$$

$$+ \Delta_{\rm f} H^{\circ}({\rm OH}^{-}, {\rm p-p H}_{2}{\rm O}, {\rm станд. c., 298.15 K}) +$$

$$+ \Delta_{\rm r} H^{\circ}_{(5)} - \Delta_{\rm f} H^{\circ}({\rm H}_{2}{\rm O}, {\rm \ mm}, 298.15 K).$$
(7)

Стандартную энтальпию образования частицы HL^{\pm} в состоянии станд. с., гип. недисс. рассчитывали также по уравнению:

$$\Delta_{\rm f} H^{\circ}({\rm HL}^{\pm}, {\rm p-p}, {\rm H}_2{\rm O}, {\rm станд. c., гип. недисс.,}$$

298.15 K) = $\Delta_{\rm f} H^{\circ}({\rm L}^-, {\rm p-p}, {\rm H}_2{\rm O}, {\rm станд. c.,}$ (8)
298.15 K) – $\Delta_{\rm dis} H^{\circ}({\rm HL}^{\pm}, 298.15 {\rm K}).$

Значение стандартной энтальпии образования цвиттер-иона пептида удовлетворительно согласуется с ранее полученной величиной. В качестве

Таблица 3. Энтальпии растворения глицил-L-лейцина в растворе КОН при различных концентрациях и T = 298.15 К (кДж/моль)

Масса навески, г	c°_{KOH} , моль/л	$\Delta_{\rm sol} H$, кДж/моль
0.0215 0.0212 0.0215	0.004911	$\begin{array}{c} 8.53 \pm 0.27 \\ 8.51 \pm 0.25 \\ 8.55 \pm 0.28 \end{array}$
0.0416 0.0417 0.0418	0.009822	$\begin{array}{c} 8.97 \pm 0.25 \\ 8.99 \pm 0.26 \\ 8.89 \pm 0.25 \end{array}$
0.0891 0.0890 0.0892	0.01964	9.85 ± 0.25 9.81 ± 0.27 9.80 ± 0.26

 $-\Delta_{e}H^{\circ}(298.15 \text{ K}).$ Частица Состояние кДж/моль HL± Крист. 896.5 ± 1.9 р-р. Н₂О, станл. с.. 894.0 ± 1.9 гип. нелисс. H_2L^+ 891.4 ± 1.9 р-р, H₂O, станд. с., гип. недисс. Lр-р, H₂O, станд. с., гип. недисс. р-р, H₂O, станд. с. 848.8 ± 1.9

Таблица 4. Стандартные энтальпии образования глицил-L-лейцина и продуктов его диссоциации в водном растворе

наиболее вероятной принята средневзвешенная величина по результатам двух независимых определений $\Delta_f H^{\circ}(HL^{\pm}, p-p, H_2O, \text{станд. с., гип. не$ $дисс., 298.15 K) = -894.0 \pm 1.9 кДж/моль.$

Стандартную энтальпию образования частицы H_2L^+ рассчитывали по уравнению:

 $\Delta_{\rm f} H^{\circ}({\rm H}_{2}{\rm L}^{+}, \text{ p-p}, {\rm H}_{2}{\rm O}, \text{ станд. с., гип. недисс.,}$ 298.15 K) = $\Delta_{\rm f} H^{\circ}({\rm HL}^{\pm}, \text{ p-p}, {\rm H}_{2}{\rm O}, \text{ станд. с.,}$ гип. недисс., 298.15 K) – $-\Delta_{\rm dis} H^{\circ}({\rm H}_{2}{\rm L}^{+}, 298.15 \text{ K}).$ (9)

Значения стандартных энтальпий образования глицил-L-лейцина и продуктов его диссоциации в водном растворе (табл. 4) получены впервые. Они являются ключевыми величинами в термохимии пептида, открывают возможности проведения строгих термодинамических расчетов в системах с глицил-L-лейцина. Работа выполнена в НИИ Термодинамики и кинетики химических процессов Ивановского государственного химико-технологического университета в рамках Государственного задания (базовая часть), проект № 4.7104.2017/89 использованием оборудования Центра коллективного пользования ИГХТУ (ЦКП ИГХТУ).

СПИСОК ЛИТЕРАТУРЫ

- 1. Баделин В.Г., Тюнина Е.Ю., Тарасова Г.Н. // Изв. вузов. химия и хим. технология. 2007. Т. 50. Вып. 9. С. 76.
- Васильев В.П., Кочергина Л.А., Крутова О.Н. // Изв. вузов. химия и хим. технология. 2003. Т. 46. Вып. 6. С. 69.
- 3. *Archer D.G.* // J. Phys. Chem. Ref. Data. 1999. V. 28. № 1. P. 1.
- 4. *Коростелев П.П.* Приготовление растворов для химико-аналитических работ. М.: Изд-во АН СССР, 1962. С. 398.
- Бородин В.А., Васильев В.П., Козловский Е.В. "Применение ЭВМ в химико-аналитических расчетах". М.: Высш. школа, 1993. 112 с.
- 6. Васильев В.П., Бородин В.А., Копнышев С.Б. // Журн. физ. химии. 1991. Т. 65. № 1. С. 55.
- 7. *Кизин А.Н., Лебедев Ю.А. //* Докл. АН СССР. 1982. Т. 262. № 4. С. 914.
- 8. *Тахистов А.В., Пономарев Д.А.* Органическая массспектрометрия. С.-Петербург: BBM, 2002. С. 346.
- 9. *Гридчин С.Н. //* Журн. общ. химии. 2015. Т. 85. Вып. 4. С. 563.
- Васильев В.П. Термодинамические свойства растворов электролитов. М.: Высш. школа, 1982. С. 313.
- 11. Термические константы веществ. Вып. III / Под ред. В.П. Глушко и др. М.: ВИНИТИ, 1965–1971.