# \_\_\_\_\_ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА \_ И ТЕРМОХИМИЯ

УДК 544.31:547'1.186

# ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА Ph₄Sb(OC(O)C≡CPh)

© 2020 г. А. В. Маркин<sup>*a*,\*</sup>, Д. В. Лякаев<sup>*a*</sup>, Н. Н. Смирнова<sup>*a*</sup>, А. В. Князев<sup>*a*</sup>, В. М. Фомин<sup>*a*</sup>, В. В. Шарутин<sup>*b*</sup>, О. К. Шарутина<sup>*b*</sup>

<sup>а</sup>Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, Россия

<sup>b</sup>Национальный исследовательский Южно-Уральский государственный университет, Челябинск, Россия \*e-mail: markin@calorimetrv-center.ru

Поступила в редакцию 13.03.2019 г. После доработки 13.03.2019 г. Принята к публикации 09.04.2019 г.

Впервые методами адиабатической вакуумной и дифференциальной сканирующей калориметрии изучена температурная зависимость теплоемкости фенилпропиолата тетрафенилсурьмы Ph<sub>4</sub>Sb(OC(O)C=CPh) в области 6–450 К. Выявлено, что изученное соединение плавится с разложением. По полученным экспериментальным данным рассчитаны стандартные термодинамические функции кристаллического Ph<sub>4</sub>Sb(OC(O)C=CPh):  $C_p^{\circ}(T)$ ,  $H^{\circ}(T) - H^{\circ}(0)$ ,  $S^{\circ}(T)$  и  $G^{\circ}(T) - H^{\circ}(T)$  для области от  $T \rightarrow 0$  до 450 К. Проведена мультифрактальная обработка низкотемпературной (T < 50 К) теплоемкости изученного соединения и установлена цепочечно-плоскостная топология его структуры. В калориметре сгорания со статической бомбой определена энергия сгорания кристалического Ph<sub>4</sub>Sb(OC(O)C=CPh) при T = 298.15 К. По полученным экспериментальным данным рассчитаны стандартные энтальпия сгорания, энтальпия образования  $\Delta_f G^{\circ}$  вещества в кристаллическом состоянии при T = 298.15 К.

*Ключевые слова:* теплоемкость, адиабатический вакуумный калориметр, калориметрия сгорания, энтальпия сгорания, стандартная энтальпия образования, фенилпропиолат тетрафенилсурьмы, фрактальная размерность, топологическая структура

DOI: 10.31857/S0044453720010215

В настоящее время элементоорганические соединения широко исследуются в связи с возможностью их потенциального применения в различных областях науки, техники и медицины. Они перспективны в лекарственной терапии [1-3]. Некоторые органические соединения сурьмы проявляют биологическую активность, в частности обладают противоопухолевыми, противомалярийными и антибактериальными свойствами, а также используются в качестве катализаторов и реагентов в органическом синтезе [4] и фотокатализаторов в деградации полимерных материалов [5]. Синтез новых комплексов этого металла и изучение их физико-химических свойств - важная и актуальная задача [6, 7]. Особо следует отметить, что соединения пятивалентной сурьмы проявляют активность против лейшманиоза и гепатита С [8, 9]. В связи с этим активно ведутся работы по получению и исследованию новых перспективных сурьмаорганических соединений [10 - 18].

К настоящему времени исследованы температурные зависимости теплоемкостей ряда органи-

ческих производных сурьмы (V) Ph<sub>3</sub>SbX<sub>2</sub>, где X – органический заместитель, в широком интервале температур [19-27]. В литературе отсутствуют термодинамические данные для фенилпропиолата тетрафенилсурьмы. В связи с этим конкретные цели настоящей работы – изучение температурной зависимости теплоемкости фенилпропиолата тетрафенилсурьмы Ph₄Sb(OC(O)C≡CPh) в области 6-450 К, выявление в указанной области температур возможных фазовых переходов и определение их стандартных термодинамических характеристик, мультифрактальная обработка низкотемпературной теплоемкости (определение фрактальной размерности *D* в функции теплоемкости для установления типа топологии структуры), расчет стандартных термодинамических функций  $C_{p}^{\circ}(T)$ ,  $H^{\circ}(T) - H^{\circ}(0), S^{\circ}(T)$  и  $G^{\circ}(T) - H^{\circ}(T)$  для соединения в области от  $T \rightarrow 0$  до 450 K, а также определение энтальпии сгорания  $\Delta_{\rm c} H^{\circ}$  и расчет стандартных характеристик образования вещества  $\Delta_{\rm f} H^{\circ}, \ \Delta_{\rm f} S^{\circ}$  и  $\Delta_{\rm f} G^{\circ}$  в кристаллическом состоянии при *T* = 298.15 К.



Рис. 1. Структура фенилпропиолата тетрафенлсурьмы Ph<sub>4</sub>Sb(OC(O)C=CPh).

# ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Изучаемый образец фенилпропиолата тетрафенилсурьмы синтезировали на кафедре химии Национального исследовательского Южно-Уральского университета (г. Челябинск). Образец фенилпропиолата тетрафенилсурьмы получали по реакции, протекающей в толуоле с участием пентафенилсурьмы и фенилпропиоловой кислоты [28]:

$$Ph_{5}Sb + HOC(O)C≡CPh \rightarrow$$
  
→ Ph\_{5}SbOC(O)C≡CPh + PhH. (1)

Смесь нагревали на водяной бане в течение 1 ч. В результате получали бесцветные кристаллы, которые затем отфильтровывали и высушивали. Целевой выход реакции составил 94%. Полученное соединение идентифицировали методом элементного анализа: найдено (%) С 68.77, Н 4.48, для формулы  $C_{33}H_{25}O_2Sb$  рассчитано (%): С 68.87, Н 4.35. Элементный анализ проводили на анализаторах "Carlo Erba CHNS-O EA 1108" для углерода и водорода.

Структуру фенилпропиолата тетрафенилсурьмы охарактеризовывали методами ИК-спектроскопии и рентгеноструктурного анализа (рис. 1). ИК-спектр (v, см<sup>-1</sup>) записывали на спектрометре Bruker Tensor 27 в области 4000–400 см<sup>-1</sup>: 3057, 2201, 1621, 1574, 1544, 1488, 1479, 1433, 1313, 1239, 1224, 1190, 1188, 1158, 1066, 1020, 996, 926, 773, 765, 746, 734, 690, 609, 469, 454, 447.

Рентгеноструктурный анализ проводили на четырехкружном диффрактометре Bruker D8 QUEST (графитовый монохроматор,  $MoK_{\alpha}$ -излу-

чение,  $\lambda = 0.71073$  Å). Исследование показало, что кристаллы моноклинные a = 10.2587(4), b == 15.0809(7), c = 17.2307(8) Å,  $\beta = 92.133(2), V =$ = 2663.9(2) Å<sup>3</sup>, пр.гр. *P*21/*n*, *Z* = 4,  $\rho$ (расч.) = = 1.434 г/см<sup>3</sup>.

Согласно данным термогравиметрического анализа, проведенного нами с помощью термомикровесов TG 209 *F1*, Netzsch Geratebau, Германия, образец фенилпропиолата тетрафенилсурьмы термически устойчив вплоть до  $T \sim 452$  K (рис. 2).

Аппаратура и методика измерений. Для изучения температурной зависимости теплоемкости  $C_p^{\circ} = f(T)$  Ph<sub>4</sub>SbOC(O)C=CPh в области 6–347 К использовали полностью автоматизированный адиабатический вакуумный калориметр БКТ-3 (АВК), сконструированный и изготовленный в АОЗТ "Термис" (пос. Менделеево Московской области). В качестве хладагентов применяли жидкие гелий и азот. Ампулу с веществом наполняли до давления 40 кПа при комнатной температуре сухим гелием в качестве теплообменного газа. Конструкция калориметра и методика работы аналогичны описанным в работах [29, 30]. Калориметрическая ампула - тонкостенный цилиндрический сосуд из титана объемом  $1.5 \times 10^{-6}$  м<sup>3</sup>. Температуру измеряли железородиевым термометром сопротивления ( $R \cong 100$  Ом), прокалиброванным в соответствии с МТШ-90. Разность температур между ампулой и адиабатической контролировали четырехспайной оболочкой медь-железо-хромелевой термопарой. Поверку надежности работы калориметра осуществляли посредством измерения  $C_p^{\circ}$  эталонного образца особо чистой меди, эталонного корунда и бензойной кислоты марки K-3, а также температур и энтальпий плавления *н*-гептана. В результате установили, что аппаратура и методика измерений позволяют получать  $C_p^{\circ}$  веществ с погрешностью  $\pm 2\%$  до 15 K,  $\pm 0.5\%$  в интервале 15–40 K и  $\pm 0.2\%$ в области 40–347 K; измерять температуры фазовых превращений с погрешностью  $\pm 0.01$  K в соответствии с МТШ-90.

измерения Для теплоемкости образца Ph₄SbOC(O)C≡CPh в области 303-452 К использовали дифференциальный сканирующий калориметр DSC204F1 Phoenix (ДСК) производства фирмы Netzsch Gerätebau, Германия. Конструкция калориметра DSC204F1 и методика работы описаны в работах [31, 32]. Поверку надежности работы калориметра осуществляли посредством стандартных калибровочных экспериментов по измерению термодинамических характеристик плавления н-гептана, ртути, индия, олова, свинца, висмута и цинка. В результате установлено, что аппаратура и методика измерений позволяют измерять температуры фазовых превращений с погрешностью ±0.5 К, энтальпий переходов – ±1%. Теплоемкость определяли методом отношений ("Ratio method"). В качестве стандартного образца сравнения использовали корунд. Методика определения  $C_p^{\circ}$  по данным ДСК-измерений подробно описана в [31]. Индивидуальные значения  $C_p^{\circ}$  при разных температурах определяли согласно уравнению:

$$C_p^{\circ} = \frac{m_{std}}{m_s} \frac{DSC_s(T) - DSC_{bl}(T)}{DSC_{std}(T) - DSC_{bl}} C_{p,std}^{\circ},$$
(2)

где  $C_p^{\circ}$  — удельная теплоемкость образца при температуре *T*,  $C_{p,std}^{\circ}$  — удельная теплоемкость стандарта (корунда) при температуре *T*,  $m_{std}$  \_ масса стандарта,  $m_s$  \_ масса исследованного образца,  $DSC_s$  \_ величина ДСК-сигнала при температуре *T* из кривой образца (мкВ),  $DSC_{std}$  \_ величина ДСКсигнала при температуре *T* из кривой стандарта (мкВ),  $DSC_{bl}$  \_ величина ДСК-сигнала при температуре *T* из базовой линии (мкВ).

Для расчета теплоемкости проводили три различных измерения: базовой линии, стандарта (корунда) и исследуемого образца. В этих измерениях сохраняли идентичными следующие параметры: поток аргона, скорость потока аргона, начальная температура, скорость нагрева и скорость сканирования, масса тигля и крышки, положение тигля на сенсоре. При измерении теплоемкости образец выдерживали при постоянной температуре в течение 30 мин в токе аргона; после чего проводили нагревание с постоянной скоростью (5 К/мин) до 452 К; измерения завершали последующим охлаждением системы до комнатной



**Рис. 2.** ТГ-кривая образца фенилпропиолата тетрафенилсурьмы.

температуры. Измерения базовой линии и стандарта проводили в том же режиме.

Отметим, что погрешность определения  $C_p^{\circ}$  указанным методом ±2%. Измерения теплофизических характеристик проводили при средней скорости нагрева ампулы с веществом 5 К/мин в атмосфере аргона.

Энтальпию сгорания исследуемого соединения определяли в усовершенствованном калориметре В-08МА со статической калориметрической бомбой [33]. Отметим, что калибровку калориметрической системы проводили по эталонной бензойной кислоте марки К-2 ( $\Delta_c U = -26460.0 \text{ Дж/г}$  при взвешивании на воздухе). Энергетический эквивалент системы  $W = 14805 \pm 3 \text{ Дж/K}$  с удвоенным квадратичным отклонением от среднего результата 0.02%.

Образцы сжигали при давлении кислорода 3 ×  $\times 10^{6}$  Па в расплавленном парафине, наличие которого, с одной стороны, обеспечивало стандартный подъем температуры в опытах, с другой - создавало условия для полного окисления исходной навески. Газообразные продукты сгорания анализировали на содержание СО2, по количеству которого рассчитывали массу взятого для опыта вещества. Методика проведения анализа газообразных продуктов сгорания приведена в работе [34]. Точность определения СО<sub>2</sub>, установленная по результатам анализа сгорания эталонной бензойной кислоты, 5 × 10<sup>-4</sup> г. Полноту сгорания определяли по отсутствию в продуктах сгорания монооксида углерода путем пропускания исследуемого газа через специальные индикаторные трубки. В пределах погрешности анализа (6 × × 10<sup>-6</sup> г) СО не обнаружен. Визуальный осмотр

9



Рис. 3. Температурная зависимость теплоемкости фенилпропиолата тетрафенилсурьмы.

поверхности бомбы не обнаружил никаких следов неполного сгорания вещества. После опыта проводили рентгенофазовый анализ твердых продуктов сгорания.

Для приведения измеренной величины  $\Delta_c U$  к стандартным условиям ( $\Delta_c U^\circ$ ) использовали приближенную формулу Уошберна [28, 29]:

$$\pi = \frac{0.30P}{-\Delta_c U/a} \left[ -1 + 1.1 \left( \frac{b - 2c}{4a} \right) - \frac{2}{p} \right],$$
 (3)

где p — начальное давление кислорода в бомбе, атм (обычно 30 атм);  $\Delta_c U/a$  — энергия сгорания углерода, содержащегося в сжигаемом веществе, ккал/моль; a, b, c — индексы в химической формуле сжигаемого вещества.

С учетом поправки Уошберна ( $\pi$ ) и поправки, обусловленной изменением числа молей газов ( $\Delta n$ ), рассчитывали стандартные величины  $\Delta_c U^\circ$  и  $\Delta_c H^\circ$  для реакции сгорания исследуемого вещества. По полученному значению  $\Delta_c H^\circ$  рассчитывали энтальпию образования  $\Delta_f H^\circ$  соединения в кристаллическом состоянии при T = 298.15 K.

### ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

#### Теплоемкость

Теплоемкость  $Ph_4SbOC(O)C=CPh$  изучена в температурном интервале 6–347 К (табл. 1) методами ABK и в интервале 303–452 К – методами ДСК. Сглаживание экспериментальных точек  $C_p^{\circ}$  проводили в виде степенных и полулогарифмических полиномов, соответствующие коэффициенты рассчитывали методом наименьших квадратов с помощью специальных программ. Относительное отклонение экспериментальных значений  $C_p^{\circ}$  от усредненной кривой  $C_p^{\circ} = f(T)$ не превышало  $\pm 2.0\%$  в интервале 6-20 К,  $\pm 0.5\%$ в интервале 20-50 К,  $\pm 0.2\% -$  в области 50-347 К в области АВК и  $\pm 2.0\% -$  в интервале от 303 до 452 К в области ДСК в температурных интервалах, где отсутствуют какие-либо превращения изучаемого соединения. Молярную массу исследуемого объекта рассчитывали по таблице атомных весов ИЮПАК [35].

На рис. 3 приведены экспериментальные точ-ки  $C_p^{\circ}$  и усредняющие кривые  $C_p^{\circ} = f(T)$  для фе-нилпропиолата тетрафенилсурьмы во всем изученном диапазоне температур. Видно, что теплоемкость соединения плавно увеличивается с ростом температуры в интервале, где отсутствуют какие-либо фазовые превращения (участок АВ); начиная с  $T \sim 426$  K значение  $C_p^{\circ}$  резко возрастает с увеличением температуры (участок ВС), что обусловлено началом плавления кристаллов Ph<sub>4</sub>Sb(OC(O)C≡CPh). Из рис. 3 видно, что фенилпропиолат тетрафенилсурьмы плавится с разложением (участок С'Д), поэтому получить значения его теплоемкости в жидком состоянии и оценить термолинамические характеристики плавления не представлялось возможным. Деструкция образца подтверждена данными независимого ТГ-анализа. За температуру плавления  $\Delta T_{\text{fus}}^{\circ} = 450.2 \pm 0.5 \text{ K}$  принимали температуру, соответствующую максимальному значению кажущейся теплоемкости в интервале превращения.

В табл. 2 приведены термодинамические характеристики плавления изученного в настоящей работе и ранее соединений [19–21, 25, 26]. Все представленные органические производные пятивалентной сурьмы плавятся в сравнительно близких температурных интервалах. Также следует отметить, что для всех производных, содержащих в своем составе кратные связи, характерно плавление с разложением.

Представлялось интересным получить для изученного вещества значение фрактальной размерности D [36, 37] по экспериментальным данным о низкотемпературной теплоемкости. Фрактальная размерность D – показатель степени при температуре в основном уравнении фрактальной модели обработки низкотемпературной теплоемкости. Значения D позволяют делать некие заключения о типе топологии структуры твердых тел, и их можно получить из графика ln  $C_v$  от ln T. В частности, это следует из уравнения:

$$C_{v} = 3D(D+1)kN\gamma(D+1)\xi(D+1)(T/\theta_{max})^{D},$$
 (4)

здесь k — постоянная Больцмана, N — число атомов в молекуле,  $\gamma(D + 1)$  — гамма-функция,  $\xi(D + 1) - \xi$ -функция Римана,  $\theta_{max}$  — характеристическая температура. Для конкретного твердого тела

Таблица 1. Экспериментальные значения теплоемкости (Дж/(К моль)) фенилпропиолата тетрафенилсурьмы Ph<sub>4</sub>Sb(OC(O)CCPh) (*M* = 575.27 г/моль)

| -            |               |        |             |              |               |              |               |       |             |       |             |
|--------------|---------------|--------|-------------|--------------|---------------|--------------|---------------|-------|-------------|-------|-------------|
| <i>Т</i> , К | $C_p^{\circ}$ | Т, К   | $C_p^\circ$ | <i>Т</i> , К | $C_p^{\circ}$ | <i>Т</i> , К | $C_p^{\circ}$ | Т, К  | $C_p^\circ$ | Т, К  | $C_p^\circ$ |
| Cep          | ия 1          | 39.85  | 109.5       | 166.78       | 354.7         | 302.84       | 590.0         | 339.2 | 655         | 397.7 | 793         |
| 5.88         | 3.51          | 43.46  | 119.4       | 170.31       | 360.6         | 306.27       | 596.6         | 340.7 | 658         | 399.2 | 795         |
| 6.06         | 3.77          | 47.07  | 128.4       | 173.83       | 366.2         | 309.74       | 602.8         | 342.2 | 662         | 400.7 | 797         |
| 6.26         | 4.09          | 50.70  | 138.3       | 177.34       | 371.6         | 313.21       | 609.1         | 343.7 | 666         | 402.2 | 801         |
| 6.35         | 4.35          | 54.33  | 147.6       | 180.85       | 377.0         | 316.68       | 614.3         | 345.2 | 671         | 403.7 | 803         |
| 6.49         | 4.62          | 57.96  | 156.1       | 184.37       | 382.6         | 320.15       | 620.0         | 346.7 | 675         | 405.2 | 806         |
| 6.62         | 4.93          | 61.61  | 164.7       | 187.88       | 388.2         | 323.61       | 625.5         | 348.2 | 678         | 406.7 | 808         |
| 6.75         | 5.24          | 65.27  | 173.2       | 191.38       | 394.1         | 327.10       | 630.8         | 349.7 | 683         | 408.2 | 808         |
| 6.87         | 5.51          | 68.89  | 181.7       | 194.86       | 399.0         | 330.57       | 637.5         | 351.2 | 686         | 409.7 | 811         |
| 7.00         | 5.64          | 72.54  | 190.0       | 198.35       | 404.3         | 333.80       | 643.5         | 352.7 | 689         | 410.2 | 810         |
| 7.12         | 5.95          | 76.22  | 198.2       | 201.83       | 410.8         | 337.10       | 650.4         | 354.2 | 693         | 411.7 | 812         |
| 7.25         | 6.20          | 79.90  | 206.2       | 205.31       | 416.0         | 340.93       | 658.8         | 355.7 | 696         | 413.2 | 814         |
| 7.54         | 6.79          | 83.57  | 214.2       | 208.79       | 422.0         | 344.40       | 668.1         | 357.2 | 700         | 414.7 | 816         |
| 7.78         | 7.46          | 87.24  | 221.7       | 212.27       | 427.7         | 347.86       | 677.4         | 358.7 | 705         | 416.2 | 818         |
| 8.07         | 8.13          | Cep    | ия 2        | 215.75       | 433.5         | Серг         | ия 3*         | 360.2 | 710         | 417.7 | 821         |
| 8.37         | 8.97          | 80.94  | 209.3       | 219.24       | 440.6         | 303.3        | 590           | 361.8 | 712         | 419.2 | 821         |
| 8.65         | 9.46          | 84.72  | 216.9       | 223.10       | 446.7         | 304.7        | 594           | 363.2 | 716         | 420.7 | 823         |
| 9.03         | 10.3          | 88.31  | 224.1       | 226.19       | 452.3         | 306.2        | 597           | 364.7 | 720         | 422.2 | 826         |
| 9.32         | 11.1          | 91.90  | 230.7       | 229.68       | 457.9         | 307.7        | 599           | 366.0 | 724         | 423.7 | 829         |
| 9.54         | 11.6          | 95.49  | 237.1       | 233.17       | 464.6         | 309.2        | 602           | 367.7 | 727         | 425.2 | 834         |
| 9.84         | 12.3          | 99.08  | 243.4       | 236.65       | 471.0         | 310.7        | 605           | 369.2 | 731         | 426.7 | 841         |
| 10.15        | 13.2          | 102.67 | 249.0       | 240.14       | 477.3         | 312.2        | 607           | 370.8 | 735         | 428.2 | 850         |
| 10.47        | 13.8          | 106.25 | 254.7       | 243.62       | 483.7         | 313.7        | 610           | 372.2 | 738         | 429.7 | 861         |
| 10.79        | 14.6          | 109.83 | 258.8       | 247.11       | 489.4         | 315.2        | 612           | 373.7 | 741         | 431.2 | 872         |
| 11.12        | 15.3          | 113.42 | 265.4       | 250.59       | 496.6         | 316.7        | 614           | 375.2 | 744         | 432.7 | 887         |
| 11.45        | 16.2          | 116.99 | 271.0       | 254.09       | 502.4         | 318.2        | 617           | 376.7 | 748         | 434.2 | 907         |
| 11.97        | 17.6          | 120.58 | 277.2       | 257.58       | 508.0         | 319.7        | 619           | 378.2 | 751         | 435.7 | 930         |
| 12.54        | 19.1          | 124.15 | 284.0       | 261.07       | 514.5         | 321.2        | 622           | 379.7 | 754         | 437.2 | 957         |
| 12.71        | 19.6          | 127.72 | 289.7       | 264.55       | 520.6         | 322.7        | 624           | 381.2 | 758         | 438.7 | 995         |
| 14.14        | 23.8          | 131.30 | 296.4       | 268.04       | 527.7         | 324.2        | 627           | 382.5 | 762         | 440.2 | 1054        |
| 15.56        | 28.80         | 134.87 | 302.2       | 271.54       | 532.5         | 325.7        | 628           | 384.2 | 766         | 441.7 | 1146        |
| 16.76        | 32.80         | 138.43 | 307.8       | 275.04       | 539.3         | 327.2        | 631           | 385.7 | 769         | 443.2 | 1317        |
| 18.17        | 37.80         | 141.70 | 313.1       | 278.52       | 546.0         | 328.7        | 634           | 387.0 | 772         | 444.7 | 1634        |
| 19.51        | 42.51         | 145.00 | 318.4       | 282.01       | 551.3         | 330.2        | 637           | 388.7 | 774         | 446.2 | 2221        |
| 22.06        | 51.41         | 149.08 | 326.5       | 285.49       | 557.9         | 331.7        | 639           | 390.2 | 777         | 447.7 | 3248        |
| 25.55        | 64.16         | 152.61 | 331.4       | 288.98       | 563.8         | 333.2        | 642           | 391.7 | 781         | 449.2 | 4493        |
| 29.08        | 76.20         | 156.16 | 337.3       | 292.45       | 570.0         | 334.7        | 646           | 393.2 | 784         | 450.7 | 5279        |
| 32.66        | 87.21         | 159.71 | 342.9       | 295.92       | 576.3         | 336.2        | 649           | 394.7 | 786         | 452.2 | 841         |
| 36.25        | 98.26         | 163.24 | 349.7       | 299.39       | 583.8         | 337.7        | 652           | 396.2 | 789         |       |             |

\* Приведено каждое третье значение

| Соединение                                                  | $\Delta T$ , K | $T_{\rm fus}^{\circ} \pm 0.5$ , K | $\Delta_{ m fus} H^{\circ}$ , кДж/моль | $\Delta_{\rm fus} S^{\circ},  {\rm Д} {\rm ж}/({\rm K}  {\rm моль})$ |
|-------------------------------------------------------------|----------------|-----------------------------------|----------------------------------------|----------------------------------------------------------------------|
| $Ph_4Sb(OC(O)C\equiv CPh)$                                  | 426-452        | 450.2                             | —                                      | —                                                                    |
| Ph <sub>5</sub> Sb [19]                                     | 370-420        | 403.3                             | —                                      | —                                                                    |
| $Ph_{3}Sb(O_{2}CCH=CH_{2})_{2}$ [20]                        | 390-430        | 428.4                             | —                                      | —                                                                    |
| $Ph_3Sb(O_2CCMe=CH_2)_2$ [21]                               | 400440         | 418.7                             | —                                      | —                                                                    |
| Ph <sub>4</sub> SbOC(O)Ph [25]                              | 407-445        | 437.5                             | $26.4\pm0.5$                           | $60.3\pm2.1$                                                         |
| Ph <sub>4</sub> SbOC(O)C <sub>10</sub> H <sub>15</sub> [26] | 414-446        | 439.9                             | $19.0\pm0.2$                           | $43.0\pm0.5$                                                         |

Таблица 2. Стандартные термодинамические характеристики плавления

 $D(D + 1)kN\gamma(D + 1)\xi(D + 1)(1/\theta_{max})^{D} = A - \text{nocto-}$ янная величина. Тогда уравнение (4) можно записать в виде:

$$\ln C_v = \ln A + D \ln T. \tag{5}$$

Экспериментальные значения  $C_p^{\circ}$  без заметной погрешности для T < 50 К можно принять равными  $C_{\nu}$ . Тогда, используя соответствующие экспериментальные данные о теплоемкости для интервала 20-50 К и уравнение (5), можно получить значение D. Оказалось, что для фенилпропиолата тетрафенилсурьмы Ph₄Sb(OC(O)C≡CPh) фрактальная размерность равна 1.5, характеристическая температура  $\theta_{max} = 211.0$  К. Эти значения определены с погрешностью ±1.5%. Полученное нами значение D указывает на слоисто-цепочечную топологию структуры Ph₄Sb(OC(O)C≡CPh) [38, 39]. В табл. 3 приведены соответствующие значения для фенилпропиолат тетрафенилсурьмы и для изученных ранее соединений [19-21, 25, 26]. Значения характеристических температур Дебая  $\theta_{max}$ , рассчитанные для одних и тех же чисел степеней свободы и температурного интервала, позволяют делать некие заключения об относительной жесткости структур твердых тел. Согласно полученным результатам,  $\theta_{\max}(Ph_4Sb(OC(O)C\equiv CPh)) <$  $< \theta_{max}(Ph_3Sb(OC(O)CMe=CH_2)_2) \approx$  $\approx \theta_{max}(Ph_4SbOC(O)C_{10}H_{15}) \approx \theta_{max}(Ph_4SbOC(O)Ph) <$ 

Таблица 3. Фрактальные размерности D и характеристические температуры  $\hat{\theta}_{max}$  для  $Ph_4Sb(OC(O)C=CPh)$ и (для сравнения) изученных ранее соединений в интервале 20-50 К

| Соединение                                                  | D   | $\theta_{max}$ , K | δ, % |
|-------------------------------------------------------------|-----|--------------------|------|
| Ph <sub>4</sub> Sb(OC(O)C≡CPh)                              | 1.5 | 211.0              | 1.5  |
| Ph <sub>5</sub> Sb [19]                                     | 1.3 | 246.7              | 1.0  |
| $Ph_3Sb(OC(O)CH=CH_2)_2$ [20]                               | 1.4 | 251.1              | 0.6  |
| $Ph_3Sb(OC(O)CMe=CH_2)_2$ [21]                              | 1.5 | 227.6              | 0.6  |
| Ph <sub>4</sub> SbOC(O)Ph [25]                              | 1.2 | 230.0              | 0.2  |
| Ph <sub>4</sub> SbOC(O)C <sub>10</sub> H <sub>15</sub> [26] | 1.5 | 228.0              | 0.5  |

**№** 1

2020

 $< \theta_{\max}(Ph_5Sb) \approx \theta_{\max}(Ph_3Sb(OC(O)CH=CH_2)_2).$ Жесткость кристаллических структур сравниваемых соединений увеличивается в том же ряду. Полученная тенденция, по-видимому, должна сохраняться и при более высоких температурах.

### Стандартные термодинамические функции

По полученным экспериментальным ланным рассчитывали стандартные термодинамические функции изученного соединения (табл. 4). Теплоемкость от 6 до 0 К определяли по предельному закону кубов Дебая:

$$C_p^{\circ} = nD(\theta_{\rm D}/T), \tag{6}$$

здесь D - функция теплоемкости Дебая, n = 6 число степеней свободы,  $\theta_{\rm D} = 60.77 \ {\rm K} - {\rm xapakte}$ ристическая температура Дебая. С этими параметрами уравнение (6) описывает экспериментальные значения теплоемкости  $C_p^{\circ}$  в области от 6 до 12 К с ошибкой ±1.5%. При расчете функций принимали, что уравнение (6) воспроизводит значения  $C_n^{\circ}$  при  $T \le 6$  К с той же погрешностью.

Методика расчета энтальпии  $H^{\circ}(T) - H^{\circ}(0)$ , энтропии  $S^{\circ}(T)$  и функции Гиббса  $G^{\circ}(T) - H^{\circ}(0)$ , подробно описана, например, в работах [40, 41].

#### Энергия и энтальпия сгорания

Энергию сгорания фенилпропиолата тетрафенилсурьмы определяли в семи опытах. Масса навески составляла ~0.2 г. Данные эксперимента представлены в табл. 5. После опыта проводили анализ продуктов сгорания. По данным рентгенофазового анализа, твердые продукты сгорания фенилпропиолата тетрафенилсурьмы содержали тетраоксид сурьмы Sb<sub>2</sub>O<sub>4</sub> (85 мас. %), триоксид сурьмы Sb<sub>2</sub>O<sub>3</sub> (15 мас. %). В продуктах сгорания сурьмы в свободном виде не обнаружено. Поскольку в продуктах сгорания обнаружено незначительное количество триоксида сурьмы, вводили соответствующую поправку на неполное окисление металла (табл. 5). Погрешность рентгенофазового анализа не превышает 3%, что существенно

# МАРКИН и др.

| TV     | $C_n^{\circ}(T),$ | $H^{\circ}(T) - H^{\circ}(0),$ | $S^{\circ}(T),$ | $-[G^{\circ}(T) - H^{\circ}(0)]$ |  |
|--------|-------------------|--------------------------------|-----------------|----------------------------------|--|
| 1, К   | Дж/(К моль)       | кДж/моль                       | Дж/(К моль)     | кДж/моль                         |  |
| 5      | 2.15              | 0.00270                        | 0.720           | 0.000901                         |  |
| 6      | 3.66              | 0.00560                        | 1.24            | 0.00187                          |  |
| 7      | 5.72              | 0.0107                         | 1.97            | 0.00311                          |  |
| 8      | 7.95              | 0.0171                         | 2.86            | 0.00584                          |  |
| 10     | 12.7              | 0.0377                         | 5.14            | 0.0137                           |  |
| 15     | 26.69             | 0.1339                         | 12.75           | 0.05733                          |  |
| 20     | 44.31             | 0.3112                         | 22.83           | 0.1455                           |  |
| 25     | 61.95             | 0.5769                         | 34.61           | 0.2883                           |  |
| 30     | 78.94             | 0.9294                         | 47.42           | 0.4931                           |  |
| 35     | 94.85             | 1.364                          | 60.80           | 0.7637                           |  |
| 40     | 109.6             | 1.876                          | 74.45           | 1.102                            |  |
| 45     | 123.2             | 2.458                          | 88.15           | 1.508                            |  |
| 50     | 136.4             | 3.108                          | 101.8           | 1.983                            |  |
| 60     | 161.0             | 4.598                          | 128.9           | 3.137                            |  |
| 70     | 184.1             | 6.323                          | 155.5           | 4.560                            |  |
| 80     | 206.7             | 8.279                          | 181.5           | 6.245                            |  |
| 90     | 227.2             | 10.45                          | 207.1           | 8.189                            |  |
| 100    | 243.5             | 12.81                          | 232.0           | 10.39                            |  |
| 110    | 259.7             | 15.34                          | 256.0           | 12.83                            |  |
| 120    | 276.3             | 18.01                          | 279.3           | 15.50                            |  |
| 130    | 294.1             | 20.87                          | 302.1           | 18.41                            |  |
| 140    | 310.3             | 23.89                          | 324.5           | 21.54                            |  |
| 150    | 326.7             | 27.07                          | 346.5           | 24.90                            |  |
| 160    | 343.8             | 30.43                          | 368.1           | 28.47                            |  |
| 170    | 360.0             | 33.95                          | 389.4           | 32.26                            |  |
| 180    | 375.8             | 37.63                          | 410.5           | 36.26                            |  |
| 190    | 391.5             | 41.46                          | 431.2           | 40.47                            |  |
| 200    | 407.5             | 45.46                          | 451.7           | 44.88                            |  |
| 210    | 424.0             | 49.62                          | 472.0           | 49.50                            |  |
| 220    | 441.2             | 53.94                          | 492.1           | 54.32                            |  |
| 230    | 458.9             | 58.44                          | 512.1           | 59.34                            |  |
| 240    | 476.9             | 63.12                          | 532.0           | 64.56                            |  |
| 250    | 495.0             | 67.98                          | 551.8           | 69.98                            |  |
| 260    | 512.9             | 73.02                          | 571.6           | 75.60                            |  |
| 270    | 530.5             | 78.24                          | 591.3           | 81.41                            |  |
| 280    | 547.8             | 83.63                          | 610.9           | 87.42                            |  |
| 290    | 565.7             | 89.19                          | 630.4           | 93.63                            |  |
| 298.15 | 581.5             | 93.87                          | 646.3           | 98.83                            |  |
| 300    | 585.8             | 94.95                          | 649.9           | 100.0                            |  |
| 310    | 602.9             | 100.9                          | 669.4           | 106.6                            |  |
| 320    | 619.1             | 107.0                          | 688.8           | 113.4                            |  |
| 330    | 637.2             | 113.3                          | 708.2           | 120.4                            |  |
| 340    | 658.1             | 119.8                          | 727.5           | 127.6                            |  |

\* Экстраполированные значения.

430\*

440\*

450\*

#### ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА

| т, г                 | <i>т</i> (пар), г | Δ <i>Τ</i> , Κ | <i>q</i> (пар), Дж | <i>q</i> (н), Дж | <i>q</i> (C), Дж | <i>q</i> (HNO <sub>3</sub> ),<br>Дж | q(Sb <sub>2</sub> O <sub>3</sub> ),<br>Дж | $-\Delta_{ m c} U,$ Дж/моль |  |
|----------------------|-------------------|----------------|--------------------|------------------|------------------|-------------------------------------|-------------------------------------------|-----------------------------|--|
| 0.24582              | 0.71776           | 2.76381        | 33550.7            | 34.0             | 7.00             | 5.27                                | 6.73                                      | 29867.2                     |  |
| 0.12618              | 0.71569           | 2.51611        | 33454.0            | 37.2             | 3.59             | 3.81                                | 3.45                                      | 29822.8                     |  |
| 0.21183              | 0.71651           | 2.69097        | 33492.3            | 32.6             | 6.03             | 8.20                                | 5.80                                      | 29828.4                     |  |
| 0.12802              | 0.71922           | 2.53118        | 33619.0            | 32.3             | 3.64             | 5.86                                | 3.50                                      | 29871.1                     |  |
| 0.24237              | 0.72167           | 2.76818        | 33733.5            | 32.1             | 6.90             | 2.34                                | 6.63                                      | 29824.2                     |  |
| 0.27509              | 0.71648           | 2.81820        | 33490.9            | 39.2             | 7.83             | 1.76                                | 7.53                                      | 29833.7                     |  |
| 0.38265              | 0.71680           | 3.03603        | 33505.8            | 30.6             | 10.9             | 2.93                                | 10.5                                      | 29871.9                     |  |
| $(29845.6 \pm 50.7)$ |                   |                |                    |                  |                  |                                     |                                           |                             |  |

Таблица 5. Результаты опытов по определению энергии сгорания фенилпропиолата тетрафенилсурьмы Ph<sub>4</sub>Sb(OC(O)C≡CPh)

Обозначения: m – масса сжигаемого вещества,  $\Delta T$  – подъем температуры в опыте с поправкой на теплообмен; q (пар), q(H), q(HNO<sub>3</sub>), q(Sb<sub>2</sub>O<sub>3</sub>), q(C) – поправки на энергию сгорания парафина, хлопчатобумажной нити, энергии образования водного раствора HNO<sub>3</sub> и кристаллического Sb<sub>2</sub>O<sub>3</sub> неполноту сгорания углерода и соответственно;  $\Delta_c U$  – энергия сгорания исследуемого вещества в условиях калориметрической бомбы. В скобках приведены средние значения.

не искажает экспериментального значения энтальпий сгорания.

Принимая во внимание мольное содержание оксидов и значение энтальпии реакции

$$Sb_2O_3(\kappa p.) + 0.5O_2(r) \to Sb_2O_4(\kappa p.),$$
 (7)

образования рассчитанной ПО энтальпиям  $\Delta_{\rm f} H^{\circ}({\rm Sb}_2 {\rm O}_3({\rm \kappa p})) = -715.46 \pm$ 3.422 [42].  $\Delta_{\rm f} H^{\circ}({\rm Sb}_2{\rm O}_4({\rm Kp})) = -907.509 \pm 4.602$  [42], установили, что величина поправки на неполное окисление металла (3-6 Дж) несущественно влияет на конечное значение  $\Delta_c U$  (≈30000 Дж). При вычислении  $\Delta U_c$  вносили обычные термохимические поправки: на сгорание хлопчатобумажной нити, используемой для поджигания навески вещества, сгорание применявшегося парафина, образование раствора HNO<sub>3</sub>.

Принимали, что процесс, протекающий в бомбе, описывается уравнением:

$$Ph_4Sb(OC(O)C\equiv CPh)(\kappa p.) + 39.25O_2(r) \rightarrow \rightarrow 33CO_2(r) + 12.5H_2O(\pi) + 0.5Sb_2O_4(\kappa p.).$$
(8)

При вычислении стандартной энтальпии сгорания кристаллического фенилпропиолата тетрафенилсурьмы вводили также поправку Уошберна ( $\pi = -0.04463\%$ ) и поправку на изменение числа молей газообразных реагентов реакции сгорания ( $\Delta n = -6.25$  моль) [43, 44]. Тогда стандартная энтальпия сгорания исследованного образца при T = 298.15 K:

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 1 2020

## Стандартные термодинамические функции образования

По величине стандартной энтальпии сгорания веществ и стандартным энтальпиям образования продуктов сгорания (CO<sub>2</sub>(г) [45], H<sub>2</sub>O(ж) [45], Sb<sub>2</sub>O<sub>4</sub>(кр.) [46]), рассчитали стандартную энтальпию образования исследуемого соединения:

По полученным экспериментальным данным (табл. 4) и данным работ [45, 47] рассчитывали стандартную энтропию образования изученного соединения при T = 298.15 К в кристаллическом состоянии:

Большие отрицательные значения энтропии образования для изученного соединения вызваны, по-видимому, тем, что в результате реакции связывается большое количество газообразного водорода, и, как следствие, при этом уменьшается число степеней свободы рассматриваемой системы.

Также рассчитывали стандартную функцию Гиббса образования по уравнению Гиббса— Гельмгольца:

$$\Delta_{\rm f}G^\circ = \Delta_{\rm f}H^\circ - 298.15\Delta_{\rm f}S^\circ,\tag{9}$$

получили:  $\Delta_f G^{\circ}(298.15, Ph_4Sb(OC(O)C=CPh), \kappa p.) = 590.30 \pm 12.14 кДж/моль.$ 

Полученные значения стандартных характеристик образования фенилпропиолата тетрафенилсурьмы соответствуют уравнению:

 $\Delta_{\rm f} H^{\circ}$ , кДж/моль  $-\Delta_{\rm f}S^{\circ}$ , Дж/(моль K)  $\Delta_{\rm f} G^{\circ}$ , кДж/моль Вещество Ph₄Sb(OC(O)C≡CPh)  $165.14 \pm 0.45$  $1426 \pm 6$  $590.30 \pm 12.14$  $1218.9 \pm 1.9$ Ph<sub>5</sub>Sb [19]  $844.1 \pm 19.5$  $1208.07 \pm 19.5$ Ph<sub>4</sub>SbOC(O)Ph [25]  $416.9 \pm 2.7$  $-10.89 \pm 0.03$  $1435 \pm 6$  $Ph_4Sb(O_2CC_{10}H_{15})$  [26]  $-27.07 \pm 15.75$  $2226 \pm 6$  $636.34 \pm 16.70$ 

**Таблица 6.** Стандартные функции образования веществ в кристаллическом состоянии при T = 298.15 К

$$Sb(\kappa p.) + 33C(rp.) + 12.5H_2(r) + O_2(r) \rightarrow$$
  

$$\rightarrow Ph_4Sb(OC(O)C \equiv CPh)(\kappa p.).$$
(10)

Для изученных ранее соединений также определили стандартные характеристики образования (табл. 6). Необходимо отметить, что в отличие от других карбоксилатов тетрафенилсурьмы, изученное соединение  $Ph_4Sb(OC(O)C\equiv CPh)_{(кр)}$  имеет положительную энтальпию образования.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта № 18-03-01090 А) и Министерства науки и высшего образования Российской Федерации (Госзадание № 4.8337.2017/BCh).

### СПИСОК ЛИТЕРАТУРЫ

- 1. *Gielen M., Tiekink E.R.T.* (Eds.), Metallotherapeutic Drug and Metal-based Diagnostic Agents, Wiley, 2005.
- Pellerito L., Nagy L. // Coord. Chem. Rev. 2002. V. 224. P. 111.
- Takahashi S., Sato H., Kubota Y. et al. // Toxicology. 2002. V. 180. P. 249.
- 4. Artem'eva E.V., Sharutina O.K., Sharutin V.V. // Russ. J. Gen. Chem. 2017. V. 87. P. 2904.
- Xiao-Yin Zhang, Lian-sheng Cui, Xia Zhang et al. // J. Mol. Struct. 2017. V. 1134. P. 742.
- Ozturk I.I., Banti C.N., Manos M.J. et al. // J. Inorg. Biochem. 2012. V. 109. P. 57.
- Шарутин В.В., Сенчурин В.С., Шарутина О.К. // Журн. неорган. химии. 2011. V. 56. С. 235.
- 8. Sarwar S., Iftikhar T., Rauf M.K. et al. // Inorganica Chimica Acta. 2018. V. 476. P. 12.
- Han A., Ozturk I.I., Banti C.N. et al. // Polyhedron. 2014. V. 79. P. 151.
- Sharutin V.V., Sharutina O.K., Efremov A.N. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 174.
- Sharutin V.V., Sharutina O.K., Gubanova Y.O. et al. // J. Organometallic Chem. 2015. V. 798. P. 41.
- 12. Sharutin V.V., Sharutina O.K., Senchurin V.S. // Russ. J. Inorg. Chem. 2015. V. 60. P. 166.
- 13. *Sharutin V.V., Sharutina O.K.* // Russ. J. Gen. Chem. 2016. V. 86. P. 1896.
- 14. Sharutin V.V., Sharutina O.K. // Ibid. 2016. V. 86. P. 1902.

- Sharutin V.V., Sharutina O.K., Khnykina K.A. // Russ. J. Inorg. Chem. 2016. V. 61. P. 180.
- Sharutin V.V., Sharutina O.K., Senchurin V.S. // Russ. J. Coord. Chem. 2016. V. 42. P. 201.
- 17. *Sharutin V.V., Sharutina O.K., Senchurin V.S.* // Russ. J. Inorg. Chem. 2016. V. 61. P. 708.
- Sharutin V.V., Sharutina O.K., Kotlyarov A.R. // Ibid. 2015. V. 60. P. 465.
- 19. Smirnova N.N., Letyanina I.A., Larina V.N. et al. // J. Chem. Themodyn. 2009. V. 41. P. 46.
- 20. Летянина И.А., Маркин А.В., Смирнова Н.Н. и др. // Журн. физ. химии. 2012. Т. 86. С. 1329.
- 21. Markin A.V., Letyanina I.A., Ruchenin V.A. et al. // J. Chem. Eng. Data. 2011. V. 56. P. 3657.
- 22. Летянина И.А., Маркин А.В., Смирнова Н.Н. и др. // Вестн. Нижегородск. ун-та им. Н.И. Лобачевского. 2012. № 3. С. 105.
- 23. Letyanina I.A., Markin A.V., Smirnova N.N. et al. // J. Therm. Anal. Calorim. 2016. V. 125. P. 339.
- 24. *Маркин А.В., Смирнова Н.Н., Лякаев Д.В. и др. //* Журн. физ. химии. 2016. Т. 90. С. 1439.
- Lyakaev D.V., Markin A.V., Smirnova N.N. et al. // J. Chem. Thermodyn. 2019. V. 131. P. 322.
- Lyakaev D.V., Markin A.V., Smirnova N.N. et al. // J. Therm. Anal. Calorim. 2018. V. 133. P. 1143
- 27. Лякаев Д.В., Маркин А.В., Хабарова Е.В. и др. // Журн. физ. химии. 2018. Т. 92. С. 1384.
- 28. *Sharutin V.V., Sharutina O.K., Kotlyarov A.R. //* Russ. J. Inorg. Chem. 2015. V. 60. P. 465.
- 29. Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. P. 623.
- 30. Малышев В.М., Мильнер Г.А., Соркин Е.Л. и др. // ПТЭ. 1985. Т. 6. С. 195.
- Hohne G.W.H., Hemminger W.F., Flammersheim H.F. Differential Scanning Calorimetry. Berlin; Heidelberg: Springer-Verlag, 2003. 299 p.
- Drebushchak V.A. // J. Therm. Anal. Cal. 2005. V. 79. P. 213.
- Кирьянов К.В., Тельной В.И. // Тр. по химии и хим. технологии: Межвуз. сб. Горький: Горьк. гос. ун-т, 1975. С. 109.
- Лебедев Ю.А., Мирошниченко Е.А. Термохимия парообразования органических веществ. М.: Наука, 1981. 214 с.

- 35. *Meija J., Coplen T.B., Berglund M. et al.* // Pure Appl. Chem. 2016. V. 88. P. 265.
- 36. *Якубов Т.С.* // Докл. АН СССР. 1990. Т. 310. № 1. С. 145.
- Lazarev V.B., Izotov A.D., Gavrichev K.S. et al. // Thermochim. Acta. 1995. V. 269–270. P. 109.
- *Тарасов В.В.* // Журн. физ. химии. 1950. Т. 24. № 1. С. 111.
- 39. *Тарасов В.В., Юницкий Г.А.* // Там же. 1965. Т. 39. С. 2077.
- 40. Lebedev B.V. // Thermochim. Acta. 1997. V. 297. P. 143.
- 41. *McCullough J.P., Scott D.W.* // Calorimetry of Non-reacting Systems. London: Butterworth, 1968.

- Термические константы веществ: Справочник / Под ред. В.П. Глушко. М.: ВИНИТИ, 1965–1981, Вып. I–X.
- 43. Скуратов С.М., Колесов В.П., Воробьев А.Ф. // Термохимия. В 2 т. Т. 2. М.: Изд-во МГУ, 1966. 436 с.
- Washburh E.W. // J. Res. Natl. Bur. Standards. V. 10 (1933) 4. P. 525–558.
- 45. *Cox J.D., Wagman D.D., Medvedev V.A.* // Codata Key Values for Thermodynamics. New York, 1984.
- Mah A.D. // Report of Investigation. Bureau of Mines. U. S. Department of the Interior., 1962.
- 47. De Sorbo, Tyler W.W. // Acta Metall. 1953. V. 1. P. 503.