ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2020, том 94, № 10, с. 1445–1449

_ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА _ И ТЕРМОХИМИЯ

УДК 547.21

КОРРЕЛЯЦИЯ СТРУКТУРА–СВОЙСТВО ДЛЯ РАСЧЕТА КРИТИЧЕСКИХ ДАВЛЕНИЙ ФАЗОВЫХ ПЕРЕХОДОВ ЖИДКОСТЬ–ПАР ПО ТОПОЛОГИЧЕСКИМ ХАРАКТЕРИСТИКАМ МОЛЕКУЛ АЛКЕНОВ

© 2020 г. М. Ю. Доломатов^{*a,b*}, Т. М. Аубекеров^{*a,**}, Э. А. Ковалева^{*a*}, К. Р. Ахтямова^{*a*}, Э. В. Вагапова^{*a*}, О. С. Коледин^{*a*}

^а Уфимский государственный нефтяной технический университет, Уфа, Россия ^b Башкирский государственный университет, Уфа, Россия *e-mail: timur_1995@inbox.ru Поступила в редакцию 19.04.2019 г. После доработки 07.03.2020 г. Принята к публикации 17.03.2020 г.

Предложена многомерная модель QSPR для расчета критического давления нормальных и замещенных алкенов через комбинации топологических дескрипторов молекулярных графов: индексов Винера, Рандича и функции собственных значений топологической матрицы, а также индексов, учитывающих различия *цис-* и *транс-*изомеров. Показано, что модель QSPR адекватно описывает критическое давление олефинов для фазового перехода жидкость—пар. Сделан вывод, что полученные результаты могут быть рекомендованы для оценки критических свойств известных и вновь синтезированных алкенов, и использоваться при проведении научных и инженерных расчетов в нефтехимии и технологии сверхкритических флюидов.

Ключевые слова: алкены, критическое давление, топологические индексы, собственные значения топологической матрицы

DOI: 10.31857/S0044453720100088

Разнообразные технологии с использованием сверхкритических флюидов все более распространяются в химической, нефтяной, нефтехимической промышленности [1]. Поэтому прогнозирование критических свойств флюидов и расчет процессов в сверхкритических условиях приобретают важное значение. Кроме того, прогнозирование критических свойств необходимо для выполнения инженерных расчетов в теплотехнике, энергетике, решении термодинамических задач и т.д.

Критическое давление (*P_c*) алкенов необходимо знать для достоверного расчёта технологии разделения смесей алкенов в газовой фазе методом экстракции, адсорбции и ректификации. С качеством информации о критических свойствах органических соединений связана селективность этих технологий. Существующие методы определения критических параметров основаны на скейлинговой теории фазовых переходов и представлениях универсальности К. Вильсона [2]. К сожалению, для сложных органических веществ эти подходы не обеспечивают необходимую точность решения задачи прогнозирования критических свойств. Проблема заключается в том, что критические давления (P_c)

зависят не только от критических параметров фазовых переходов, но и от химических факторов. Например, от числа углеродных атомов в молекуле [3]. В этом заключается трудность прогнозирования. Поэтому перспективу в изучении критических явлений имеет группа методов QSPR [4], основанных на применении структурно-химических дескрипторов – топологических индексов (ТИ) для молекулярных графов (МГ) соединений. Эти дескрипторы эффективно используются в прогнозах температуры кипения, плавления и других свойств органических веществ [5–7]. Ранее нами было показано, что критических дескрипторов [8, 9].

При рассмотрении молекул алкенов будем предполагать, что критические свойства определяются дескрипторами, характеризующими разветвленность структуры (индекс Рандича), линейность структуры (индекс Винера), *цис- и транс*-изомерию (индекс геометрической изомерии) и хюккелевский спектр, учитывающий только взаимодействие соседних атомов [6].

Топологические индексы, которые рассматриваются в предложенных комбинациях, рассчитывались по следующим формулам:

индекс Винера (не учитывает кратные и ароматические связи) [10]

$$W = \frac{1}{2} \sum_{u,v \in V(G)}^{n} d_G(u,v),$$
 (1)

где V — множество вершин ненаправленного графа G, $d_G(u, v)$ — расстояние между вершинами u и v молекулярного графа (МГ);

индекс молекулярной связности (индекс Рандича) [5]

$$\rho = \sum_{\substack{\text{по всем} \\ \text{ребрам}}} \frac{1}{\sqrt{\nu_i \nu_j}},$$
(2)

где v_i — число ребер графа отходящих от *i*-й вершины, v_j — число ребер графа отходящих от *j*-й вершины.

Так как для алкенов характерна *цис-транс*изомерия, нами был учтен индекс для характеристики различия *цис*- и *транс*-изомеров [11]

$$I = \sum_{i} (C_i + \delta_i), \qquad (3)$$

$$\delta_i = \sum_{j \sim i} \lg C_j, \tag{4}$$

где C_i — атомные параметры, присвоенные каждому атому углерода в молекуле; δ_i — сумма логарифмов атомных параметров для каждого соседнего углерода. Индекс *I* является полуэмпирическим, так как параметры атомов углерода получены в результате экспериментального исследования хроматографического поведения молекул, с измерением реальных электрических и стерических характеристик углерода [11].

Известно [6], что матрица смежности (топологическая матрица) МГ несет информацию о хюккелевском спектре энергетических состояний молекулы, которые характеризуют собственные значения матрицы смежности А для МГ [12]. Характеристический полином матрицы смежности запишем в виде

$$P(\lambda) = (-1)^n \det(A - \lambda E) =$$

= $\lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n,$ (5)

где E – единичная матрица; λ_i , a_i , $i = \overline{1, n}$ – корни, коэффициенты полинома соответственно.

Корни характеристического полинома являются собственными значениями матрицы смежности, которые для π -электронных систем интерпретируются как хюккелевские энергетические уровни электрона в молекуле [13]. Если МГ охватывает все атомы углерода, то, очевидно, что

спектр собственных значений не имеет такую четкую интерпретацию, как в π -электронных молекулах и отражает взаимодействие только соседних атомов углерода.

Индекс *L* [6] равен сумме степеней всех вершин:

$$L = \sum_{i=1}^{n} \lambda_i^2, \tag{6}$$

где λ_i — собственные значения молекулярного графа.

Выбор квадратов собственных значений МГ обусловлен следствием из теоремы Сакса [6], согласно которому, сумма корней характеристического полинома (5), т.е. сумма собственных значений топологической матрицы молекулы, равна нулю. Ранее было показано, что индекс L описывает отклонения хюккелевской энергии электронных состояний от ее среднего значения в молекуле [14].

Цель данной работы — применение модели QSPR для адекватного прогнозирования критического давления углеводородов ряда олефинов в фазовых переходах жидкость—пар.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для решения данной задачи использована многофакторная модель, полученная с применением многомерной статистики и алгоритмов множественной регрессии. Информация, необходимая для построения модели, выбрана из баз данных [15–17] и справочной литературы [18, 19]. Критическое давление рассматривалось как функция трех переменных (топологических параметров), характеризующих разветвленность, вза-имное расположение атомов углерода в молекулах углеводородов и хюккелевский спектр МГ $P_{\text{расч}}\left(\frac{L\rho}{W}, \rho, \left(\frac{I}{L}\right)^{1/3}\right)$. Полученное уравнение имеет

вид:

$$P_{\text{pacy}} = a_0 + a_1 \frac{L\rho}{W} + a_2\rho + a_3 \left(\frac{I}{L}\right)^{1/3},$$
 (7)

где a_n (n = 0, ..., 3) – коэффициенты модели, полученные методом наименьших квадратов, которые, вероятно, имеют определенный структурнохимический смысл: a_0 характеризует вклад в критическое давление факторов, не связанных явно с химической структурой, например, дальнодействующих атом-атомных потенциалов; a_1 характеризует влияние на критическое давление хюккелевского спектра, разветвленности и длины углеродного скелета; a_2 характеризует влияние на критическое давление геометрической изомерии.

В табл. 1 приведены значения C_i и lg C_i , по данным [11], необходимые для расчета индекса различия *цис*- и *транс*-изомеров.

Индексы (2), (6) были нами рассчитаны по специально разработанным программам пакета Maple 13 [20] и языка PascalABCNet [21].

Для исследуемого ряда, состоящего из 51 углеводорода, в табл. 2 приведены значения сумм квадратов собственных значений молекулярных графов (L), индекс Рандича (ρ), индекс, учитывающий различия *цис*- и *транс*-изомеров (I) и индекс Винера (W).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Коэффициент детерминации модели $R^2 = 0.975$, коэффициент множественной корреляции $r \approx 0.987$, что свидетельствует о прогностических возможностях модели (7) для критического давления. Подтверждается сильная связь предложенных топологических характеристик молекул алкенов с ее физико-химическими свойствами.

В табл. 3 приведено сравнение справочных и рассчитанных значений критического давления, а также относительная погрешность для 51 соединения ряда алкенов.

Для проверки точности и достоверности результатов прогнозирования была проведена верификация прогнозной модели. Результаты рассчитанных критических давлений десяти замещенных алкенов, не входящих в базовый ряд, приведены в табл. 4.

Анализ данных табл. 4 свидетельствует об адекватности модели (7): по точности они превосходят полученные по QSPR-модели [4].

Значения и влияние независимых величин (топологических индексов) на изменение критического давления приведены в табл. 5.

В табл. 5 приведены данные, показывающие влияние каждого дескриптора регрессионной модели в отдельности, а также их совокупное воздействие. Из табл. 5 видно, что стандартная ошибка меньше абсолютной величины коэффициентов (за исключением a_2), следовательно, коэффициенты значимы. Но коэффициент a_2 следует рассматривать как вспомогательную величину, необходимую для получения оптимальных прогнозов. *t*-Статистика дает более точную оценку значимости коэффициентов. Табличное значение критерия Стьюдента, соответствующее до**Таблица 1.** Значения C_i и $\lg C_i$ для первичных, вторичных, третичных и четвертичных атомов углерода в алканах и атомов углерода в углеродной цепи *цис*- и *транс*-алкеновых изомеров

Фрагмент	Позиция двойной связи	C _i	$-\lg C_i$	
$-CH^3$	_	- 1.0		
$-CH_2-$	_	0.9	0.04576	
-CH<	_	0.8	0.09691	
>C<	_	0.7	0.1549	
CH ₂ =; –CH=	1C	0.8975	0.04696	
-CH=trans	2C	0.895	0.04818	
-CH=cis		0.910	0.04096	
-CH=trans	3C	0.875	0.05799	
-CH=cis		0.885	0.05306	

верительной вероятности g = 0.95 и числу степеней свободы v = n - m - 1 = 51 - 3 - 1 = 47; $P_{\rm kp}(g; v) = P_{\rm kp}(0.95, 47) = 2.012.$

Сравнивая расчетную *t*-статистику коэффициентов уравнения с табличным значением, заключаем, что коэффициент a_1 уравнения регрессии незначим, однако он вносит существенный вклад в уточнение расчетных данных исследуемой выборки.

Для оценки статистической достоверности дескриптора использовали корреляционную поправку:

$$S_r = \frac{1-r^2}{\sqrt{n-1}},\tag{8}$$

где *S_r* – корреляционная поправка, *r* – коэффициент множественной корреляции; *n* – число исследуемых соединений.

Связь нельзя считать случайной, если:
$$\left| \frac{r}{S_r} \right| \ge 3$$
.

Так как в нашем случае n = 51, r = 0.987, получаем

$$S_{r1} = 0.0037$$
 и $\left| \frac{r}{S_r} \right| = \left| \frac{0.987}{0.0037} \right| = 266.8 \ge 3$ для крити-

ческого давления. Следовательно, связь нельзя считать случайной, и регрессионное уравнение проходит через центр облака исходных точек.

Таким образом, получена регрессионная модель QSPR "структура—свойство", которая хорошо согласуется с экспериментом и адекватно отражает влияние разветвленности, протяженности углеродного скелета и хюккелевского спектра на критическое давление алкенов. Данная модель может быть рекомендована для оценки критических свойств известных и вновь синтезированных

Таблица 2. Значения топологических индексов алкенов

Таблица 3. Сравнение справочных (I) и расчетных (II) значений критических давлений алкенов, Па

Соединение	L	ρ	1	W		т	1102,114	• 64
Этилен	2	0.5	1.701	0.5	Соединение	I	11	$\Delta, \%$
Пропилен	4	0.986	2.654	3 Этилен		50.32	51.33	2.000
Бутилен-1	6	1.524	3.463	8.5 Пропилен		46.13	44.25	4.082
Изобутен	6	1.354	3.086	7.5 Бутилен-1		40.2	39.35	2.123
Пентен-1	8	2.024	4.271	18	Изобутен	39.99	39.20	1.972
цис-Пентен-2	8	2.026	4.465	17	Пентен-1	35.29	35.45	0.460
2-Метилбутен-1	8	1.914	3.894	16	цис-Пентен-2	36.54	36.00	1.469
2-Метилбутен-2	8	1.866	4.039	15	2-Метилбутен-1	34	35.36	3.987
Гексен-1	10	2.524	5.080	32.5	2-Метилбутен-2	34	36.05	6.023
иис-Гексен-2	10	2.526	5.273	31	Гексен-1	31.4	31.98	1.834
иис-Гексен-3	10	2.564	5,175	30.5	цис-Гексен-2	31.6	32.41	2.576
2-Метилпентен-1	10	2.414	4.703	29.5	цис-1 ексен-3	31.7	32.11	1.290
4-Метилпентен-1	10	2.379	4.972	29.5	2-Метилпентен-1	31.6	31.99	1.223
2-Метилпентен-2	10	2.404	4.847	27.5	4-Метилпентен-1	32.2	32.64	1.366
иис-3-Метиппентен-2	10	2.101	4 872	27.5	2-Метилпентен-2	31.6	32.46	2.737
$\mu\mu c_{-4}$ -Metunnehren 2	10	2.427	5 165	28	цис-3-Метилпентен-2	32.9	32.46	1.351
2-Этилбутен-1	10	2.377	4 703	28 5	<i>цис</i> -4-метилпентен-2	32.2	33.02	2.54/
$2 3_{-}\Pi$	10	2.475	4.705	26.5	2-Этилоутен-1	31.0 22.2	31.80 22.54	0.028
Гонтон 1	10	2.297	5 000	53	2.3-диметилоутен-1	32.2 28.2	32.34 28.72	1.002
	12	3.024	5.000	55		28.3	28.73	1.529
	12	3.020	5.082	50		28.4	29.09	2.420
2 Mortugravian 1	12	5.004 2.014	5.965	30 40	2 Morturrowcou 1	20.4	20.00	1.413
	12	2.914	5.511	49	2 - METUJIEKCEH - 1	20.7	20.01	0.364
<i>цис</i> -2-Метилгексен-3	12	2.937	5.870	40	uue 5 Metulliekeen-3	29.00	29.40 20.76	0.224
<i>цис</i> -5-Метилгексен-2	12	2.882	5.974	4/	5 Metullekcen 1	29.80	29.70	0.324
5-метилгексен-1	12	2.879	5.780	49	3 - METUJIEKCEH - 1	29.34	29.40	0.402
цис-3-Метилгексен-3	12	2.965	5.631	44	$\mu \mu c \Lambda$ Methillercen 2	29.70	20.33	2.380
цис-4-Метилгексен-2	12	2.937	5.974	45	4 Metullekcell 1	29.80	29.00	3 605
4-Метилгексен-1	12	2.917	5.780	47	4 - MCIUMCKCCH - 1	20.4	29.30	1 210
4,4-Диметилпентен-1	12	2.67	5.543	43		29.89	29.25	1.219
2,3-Диметилпентен-1	12	2.835	5.404	43	2.5 - \mathcal{A}_{1}	30.02	29.27	0.831
<i>цис</i> -3,4-Диметилпентен-2	12	2.809	5.573	41	3 4-Лиметиллентен-1	29.8	29.77	0.051
3,4-Диметилпентен-1	12	2.807	5.673	43	2.4-Лиметиллентен-1	29.0	29.03	0.100
2,4-Диметилпентен-1	12	2.77	5.404	45	2.4 Диметиллентен 1	30.02	29.40	0.655
2,4-Диметилпентен-2	12	2.777	5.548	42	3.3-Лиметиллентен-1	29.89	29.96	0.033
3,3-Диметилпентен-1	12	2.758	5.543	41	2-Этиппентен-1	29.5	29.90	3 014
2-Этилпентен-1	12	2.975	5.511	47	<i>танс</i> -Бутилен-2	41.02	40.02	2 4 4 8
транс-Бутилен-2	6	1.488	3.597	8	<i>тране</i> Бунктен 2 <i>транс</i> -Пентен-2	36.54	35.88	1 810
транс-Пентен-2	8	2.026	4.406	17	транс-Гексен-2	31.6	32.31	2.249
транс-Гексен-2	10	2.526	5.214	31	транс-Гексен-3	31.7	32.04	1.067
транс-Гексен-3	10	2.564	5.135	30.5	транс-3-Метилпентен-2	32.9	32.40	1.516
транс-3-Метилпентен-2	10	2.427	4.842	27	транс-4-Метилпентен-2	32.2	32.92	2.222
<i>транс</i> -4-Метилпентен-2	10	2.399	5.107	28	транс-Гептен-2	28.5	29.00	1.755
транс-Гептен-2	12	3.026	6.023	51	транс-Гептен-3	28.5	28.74	0.848
транс-Гептен-3	12	3.064	5.944	50	транс-2-Метилгексен-3	29.86	29.34	1.735
транс-2-Метилгексен-3	12	2.937	5.836	46	транс-5-Метилгексен-2	29.86	29.67	0.624
транс-5-Метилгексен-2	12	2.882	5.915	47	транс-3-Метилгексен-2	29.76	29.15	2.059
транс-3-Метилгексен-2	12	2.927	5.651	45	транс-3-Метилгексен-3	29.76	28.96	2.691
транс-3-Метилгексен-3	12	2.965	5.611	44	транс-4-Метилгексен-2	29.86	29.51	1.171
транс-4-Метилгексен-2	12	2.937	5.915	45	транс-4.4-Диметилпентен-2	30.22	30.44	0.715
транс-4.4-Диметилпентен-2	12	2.699	5.678	41	транс-3.4-Диметилпентен-2	30.02	29.72	0.987
транс-3.4-Лиметилпентен-2	12	2.809	5.543	41	Срелнее значение			1.686
			0.010		Spedilee sha terme			1.000

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 10 2020

• /			
Соединение	Ι	II	$\Delta, \%$
4-Метил- <i>транс</i> -2-гептен	26.96	26.93	0.105
цис-3-Октен	26.74	26.16	2.171
2.3-Диметил-1-гексен	26.82	26.94	0.447
3-Этил-цис-2-гексен	26.87	27.05	0.651
2-Метил-1-октен	24.15	23.95	0.829
1-Нонен	23.3	23.71	1.741
4-Метил-1-гептен	26.68	26.63	0.202
транс-2-Октен	25.8	26.11	1.191
3-Метил-цис-3-гептен	26.87	26.82	0.186
2-Метил-1-нонен	22.02	21.93	0.429

Таблица 4. Сравнение экспериментальных (I) и расчетных (II) значений критических давлений алкенов, Па

Таблица 5. Коэффициенты модели для расчета критического давления (7), стандартная ошибка (δ) и *t*-статистика

n	<i>a_n</i> , K	δ, Κ	t-Статистика
0	15.9812	5.543651	2.882794
1	2.767696	1.486008	1.862505
2	-5.35357	0.407534	-13.1365
3	34.28768	7.552002	4.54021

соединений ряда алкенов, и может быть использована при проведении научных и инженерных расчетов критических давлений в нефтехимии и технологии сверхкритических флюидов.

СПИСОК ЛИТЕРАТУРЫ

- Clifford A.A. et al. // Supercritical Fluid Methods and Protocols. Springer Netherlands, 2000. P. 1–16. ISBN: 0-89603-571-9
- Анисимов М.А. Критические явления в жидкостях и жидких кристаллах. М.: Наука. Гл. ред. физ.-мат. лит., 1987. 272 с.
- Движение углеводородных смесей в пористой среде / В.Н. Николаевский. Э.Ф. Бондарев, М.И. Миркин, Г.С. Степанова и др. М.: Недра, 1968. 192 с.

- 4. Lulu Zhou, Beibei Wang, Juncheng Jianga, Yong Pan // Thermochimica Acta. 2017. V. 655. P. 112.
- 5. Станкевич М.И., Станкевич И.В., Зефиров Н.С. // Успехи химии. 1988. Т. 57. № 3. С. 337.
- 6. *Цветкович Д., Дуб М., Захс Х.* Спектры графов. Теория и применение. Киев: Наукова думка, 1984. 384 с.
- 7. *Харари* Ф. Теория графов. М.: Едиториал УРС, 2003. 296 с.
- Доломатов М.Ю., Шамова Н.А., Трапезникова Е.Ф. и др. // Хим. технология. 2016. Т. 17. № 1. С. 45.
- 9. Доломатов М.Ю., Аубекеров Т.М., Вагапов Э.В. и др. // Бутлеровские сообщения. 2017. Т. 52. № 11. С. 74.
- Wiener H. // J. Amer. Chem. Soc. 1947. V. 69. № 1. P. 17.
- Heinzen V.E., Soares M.F., Yunes R.A. // J. Chromatography A. 1999. V. 849. № 2. P. 495.
- Курбатова С.В. Топологические индексы в химических расчетах: учебное пособие / С.В. Курбатова, Е.А. Колосова, Е.Е. Финкельштейн. Самара: Изд-во "Самарский университет", 2014. 32 с.
- Иванов В.В., Слета Л.А. Расчетные методы прогноза биологической активности органических соединений. Харьков: ХНУ, 2003. 71 с.
- Ковалева Э.А., Доломатов М.Ю. // Бутлеровские сообщения. 2018. Т. 56. № 10. С. 46. ROI: jbc-01/18-56-10-46.
- Доломатов М.Ю., Павлов Т.И., Аубекеров Т.М. База данных физико-химических свойств органических соединений: Б.д. 201862459 // 2017.
- 16. ChemSynthesis база данных химических веществ. (www.chemsynthesis.com)
- Сетевая база данных по физико-химическим свойствам веществ и материалов. (http://db.itp.nsc.ru.http://metalldb.susu.ac.ru)
- Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей: Справочное пособие / Пер. с англ. под ред. Б.И. Соколова. 3-е изд., перераб. и доп. Л.: Химия, 1982. 592 с.
- 19. Григорьев И.С., Мейлихов Е.З. Физические величины. Справочник. М.: Энергоатомиздат, 1991. 1232 с.
- 20. Дьяконов В.П. Maple 10/11/12/13/14 в математических расчетах. М.: Изд-во ДМК-Пресс, 2018. 800 с. ISBN: 978-5-94074-770-3
- 21. Долинер Л.И. Основы программирования в среде PascalABC.Net. Екатеринбург: Изд-во Урал. ун-та, 2014. 130 с. ISBN: 978-5-7996-1260-3