СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 544.032.6;544.72

ЭЛЕКТРОННОЕ ВОЗБУЖДЕНИЕ И ГЕНЕРАЦИЯ ТОКА В ГЕТЕРОСТРУКТУРЕ ПОД ДЕЙСТВИЕМ АТОМОВ ВОДОРОДА

© 2020 г. В. П. Гранкин^{а,*}, Д. В. Гранкин^а

^а Приазовский государственный технический университет, Мариуполь, Украина *e-mail: victor.grankin@gmail.com Поступила в редакцию 20.12.2019 г. После доработки 21.02.2020 г. Принята к публикации 10.03.2020 г.

Представлены теоретические исследования генерации электронно-дырочных пар в полупроводниках под действием реакции рекомбинации атомов водорода на поверхности. Найден теоретически возможный КПД преобразования химической энергии в электрическую с помощью полупроводниковых гетероструктур.

Ключевые слова: поверхностные явления, аккомодация, водород, водородная энергетика **DOI:** 10.31857/S0044453720100118

Исследование процессов рассеяния и аккомодации энергии экзотермической каталитической реакции – важная задача физики и химии поверхности. Одним из каналов аккомодации энергии реакции, наряду с фононным, является электронный. В металлах он проявляется в виде генерации высокоэнергетических электронов и дырок (E == 1 - 3 эВ), которые регистрируются с помощью нанодиода Шоттки [1]. Экзотермическая реакция на поверхности полупроводников приводит к возбуждению гетерогенной хемилюминесценции (ГХЛ) [2] и неравновесных хемо-эффектов [3], аналогичных эффектам при фотовозбуждении. Таким образом, электронная подсистема в катализаторе является полноправным участником релаксационных процессов в системе газ-поверхность. Это указывает на возможность создания генераторов тока с прямым преобразованием химической энергии в электрическую. Однако, выход электронных возбуждений для известных систем газ-поверхность мал. Этим обусловлено то, что диоды Шоттки и полупроводниковые гетероструктуры пока не рассматриваются как возможные хемогенераторы тока.

В работе [4] найдена зависимость константы скорости аккомодации энергии гетерогенной реакции по электронному каналу от энергии электронного перехода в полупроводнике. Это дает возможность расчета вероятности электронного хемовозбуждения и КПД преобразования химической энергии в электрическую с помощью полупроводниковых гетероструктур, что и служило целью работы.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Описание электронных процессов и электронной хемогенерации для большинства гетерогенных систем является сложным. Поэтому Г. Нинхаус предложил в качестве модельной использовать реакцию атомарного водорода с поверхностью [1]. Энергия, которая выделяется в реакции водорода на поверхности, может рассеиваться неадиабатически, приводя к прямому возбуждению электронно-дырочных (e^--p^+) пар. На рис. 1 представлена энергетическая диаграмма создания пары $e^- - p^+$ и электрического тока в структуре катализатор реакции полупроводник р-типа полупроводник *n*-типа. Неравновесные электроны в р-полупроводнике увлекаются электрическим полем *p*-*n*-перехода и попадают в *n*-область. Это приводит к тому, что через внешний проводник и p-n-переход течет ток (хемоток).

Кинетическая модель, которая описывает возбуждение e^--p^+ атомами Н в полупроводнике имеет вид:

$$H + L \xrightarrow{v_1} HL,$$

$$H + HL \xrightarrow{v_2} {}_{2}^{v}L \xrightarrow{m}$$

$$\xrightarrow{m} H_2 + L + p^+ + \xrightarrow{p_1} e^-(E_1),$$

$$\xrightarrow{p_1} e^-(E_1),$$

$$\xrightarrow{p_1} e^-(E_1),$$

$$\xrightarrow{p_1} e^-(E_1),$$

здесь HL – адсорбированный атом H, L – свободный от адсорбированных частиц центр поверхности, $e^{-}(E_i)$ – электрон в зоне проводимости (C) *р*-

Рис. 1. Механизм генерации хемотока в полупроводниковой гетероструктуре; E_g – ширина запрещенной зоны, E_f – уровень Ферми, E_c – дно зоны проводимости, E_v – потолок валентной зоны, D – энергия диссоциации молекулы.

полупроводника с энергией E_i относительно потолка валентной (V) зоны, p^+ — дырка в V-зоне, ph — фонон, P_i — вероятность генерации электрона с энергией E_i в расчете на элементарный акт (на одно колебание ядер в H_2^vL). Над стрелками обозначены: v_1 и v_2 — вероятности адсорбции и рекомбинации атомов Н соответственно, Γ_1 — вероятность релаксации H_2^vL по фононному каналу в расчете на элементарный акт, m — среднее число потенциально возможных актов релаксации H_2^vL в результате колебательно-электронного обмена за время жизни H_2^vL на поверхности. Для полупроводников m-фактор может быть больше 10 [5]. Введем обозначения: [HL] $\rightarrow N_1$, [L] $\rightarrow N$, [H_2^vL] $\rightarrow N_2^v$, $e^-(E_i) \rightarrow n_i$. Из кинетической модели:

$$n_{1} = mP_{1}v_{2}N_{1},$$

$$\dots,$$

$$n_{i} = mP_{i}v_{2}N_{1},$$

$$(1)$$

$$n = \sum n_{i} = mPv_{2}N_{1}.$$

Здесь n_i – число электронов с энергией E_i , генерируемых в зону С за счет реакции на 1 см² поверхности за 1 с, n – общее число e^- , генерируемых на 1 см² поверхности за 1 с. В (1) учтено, что $\sum_{i=1}^{n} P_i = P$. Вследствие того, что энергетические уровни в зоне С расположены квазинепрерывно, рассчитанная на элементарный акт релаксации H_2^vL вероятность dP генерации электронов e^- , которые имеют энергию в интервале dE в окрестности энергии *E*, вычисляется по формуле dP = f(E)dE, где f(E) - функция распределения по $энергиям электронов <math>e^-$ в полупроводнике, которые генерируются в зону C за счет реакции. В работе [4] экспериментально найден вид зависимости для вероятности генерации высокоэнергетических электронов e^- в твердом теле энергией химической реакции рекомбинации атомов H:

$$f(E) = A \exp(-E/\Theta_{\text{char}})$$
(2)

и найдена величина характеристической энергии этой реакции $\Theta_{char} = 0.173$ эВ. Здесь E – энергия перехода e^- в полупроводнике. Найдем A из условия, что вероятность электронной релаксации $H_2^{\nu}L$ на элементарный акт на узкозонном полупроводнике с $E_g \rightarrow 0$ близка к 1, как на металлах [6]. Из условия нормировки $A = 1/\Theta_{char}$. Подставив A в (2), получим

$$f(E) = \frac{1}{\Theta_{\text{char}}} \exp(-E/\Theta_{\text{char}}).$$
 (3)

Вероятность элементарного акта электронной релаксации H^v₂L равна:

$$P(E \ge E_g) = \int_{E_g}^{\infty} f(E)dE = \exp(-E_g/\Theta_{\text{char}}).$$
(4)

Из кинетической модели и с учетом выражения (4) выход хемотока α (выход электронов $e^- c E \ge E_g$ и образующих ток в цепи) равен:

$$\alpha = mP/(mP + m\Gamma_1) = m\exp(-E_g/\Theta_{char}).$$
 (5)

Здесь учтено, что $mP + m\Gamma_1 = 1$. Величина α экспоненциально падает с E_g .

Рис. 2. Зависимости приведенной величины КПД η/m хемогенератора тока от ширины запрещенной зоны полупроводника (а, Q = 1 эВ) и энерговыделения в акте реакции (б, $E_g = 0.3$ эВ) при различных значениях характеристической энергии реакции Θ_{char} : I - 0.1, 2 - 0.14, 3 - 0.173, 4 - 0.23, 5 - 0.3 эВ. Q = 1 эВ. Расчет.

Для расчета КПД преобразования химической энергии в электрическую воспользуемся следующими соотношениями. Ток в цепи, возникающий за счет реакции на поверхности гетероструктуры площадью 1 см², равен: $I = nq(E \ge E_g)$, где q – заряд электрона. Генерируемая в этом случае электрическая мощность равна:

$$P = IU = wmE_g \exp(-E_g/\Theta_{xap}), \tag{6}$$

где w — число реакционных превращений на 1 см² полупроводника за 1 секунду. В (6) учтено, что хемо-ЭДС $U = E_g/q$. Химическая энергия, выделяющаяся на 1 см² за 1 с, составляет $W_{\text{реак}} = wQ$, где Q — энерговыделение в элементарном акте реакции. Тогда КПД равен:

$$\eta = \frac{P}{W_{\text{peak}}} = m \frac{E_g}{Q} \exp(-E_g / \Theta_{\text{xap}}).$$
(7)

Положение максимума η найдем из условия $\partial \eta / \partial E_g = 0$. Величина η будет максимальна при $E_g = \Theta_{xap}$, а КПД в максимуме равен:

$$\eta^{\max} = m\Theta_{xap}/eQ. \tag{8}$$

Учитывая, что $\Theta_{xap} \leq Q$, теоретически максимально возможный КПД хемогенератора на основе гетероструктур $\eta^{max} = 100\%$ при $\Theta_{xap} = Q$ и m = e.

На рис. 2а представлены рассчитанные согласно (7) зависимости η/m от E_g при различных Θ_{xap} и Q = 1 эВ. Видно, что η сначала растет, проходит через максимум, а затем убывает с увеличением E_g . При этом величина η/m тем больше, чем больше Θ_{xap} , и максимальна при $E_g = \Theta_{xap}$. КПД преобразования энергии реакции быстро падает с увеличением *Q* (рис. 26). Например, при $Q = E_g = \Theta_{xap} = 0.3$ эВ величина $\eta/m = 36.8\%$, а при тех же значениях $E_g = \Theta_{xap} = 0.3$ эВ, но Q = 2 эВ величина $\eta/m = 5.5\%$.

Величину *m* можно оценить, исходя из следующего. Согласно разработанному в [2] механизму для описания ГХЛ, электронное возбуждение полупроводника за счет реакции происходит вследствие передачи колебательной энергии от колебательно-возбужденного продукта реакции на поверхности электронам валентной зоны в результате многоквантового колебательно-электронного перехода. Генерацией неравновесных носителей с определенной вероятностью α потенциально могут сопровождаться *m* переходов:

$$m = \frac{pD}{\hbar\omega_0} \frac{\Gamma_{V-e}}{\Gamma_{V-e} + \Gamma_{ph}},\tag{9}$$

где $\hbar\omega_0 = 0.545$ эВ — энергия колебательного кванта H₂ на первом колебательном уровне, p == 2.9 — ангармонический фактор, D = 4.48 эВ энергия диссоциации H₂, Γ_{V-e} и Γ_{ph} — скорости колебательно-электронной и фононной релаксации соответственно. Для узкозонных полупроводников $\Gamma_{V-e} \le 0.5\Gamma_{ph}$ [3]. Подставив указанные значения в (9), имеем $m \le 8$. Так как для полупроводников *m* всегда больше 1 [5], то можно предположить, что существуют такие системы газ—поверхность, для которых могут быть получены большие значения КПД преобразования химической энергии в электрическую, соизмеримые с КПД топливных элементов. Таким образом, найденная зависимость электронного возбуждения полупроводника энергией реакции и полученный возможный КПД преобразования химической энергии в электрическую с помощью гетероструктур показывают, что электронная подсистема полупроводника является полноправным участником релаксационных процесов на поверхности, а сами полупроводниковые гетероструктуры потенциально могут использоваться как генераторы тока в водородной энергетике.

СПИСОК ЛИТЕРАТУРЫ

- 1. Nienhaus H. // Surf. Sci. Rep. 2002. V. 45. P. 3.
- 2. Tyurin Yu.I., Nikitenkov N.N., Sigfusson I.T. et al. // Intern. J. of Hydrogen Energy. 2017. V. 42. Art. no 12448.
- 3. *Тюрин Ю.И., Кабанский А.Е., Стыров В.В.* // Теор. и эксперимент. химия. 1984. Т. 20. № 6. С. 682.
- 4. *Гранкин В.П., Гранкин Д.В.* // Журн. физ. химии. 2016. Т. 90. № 6. С. 950.
- 5. *Grankin D.V., Grankin V.P., Styrov V.V. et al.* // Chem. Phys. Lett. 2016. V. 647. P. 145.
- 6. *Novko D., Blanco-Rey M., Juaristi J.I., Alducin M. //* Phys. Rev. B. 2015. V. 92. Art. no 201411.