_____ ХИМИЧЕСКАЯ КИНЕТИКА ____ И КАТАЛИЗ

УДК 541.128

АНАЛИЗ СТРУКТУРНЫХ И ФИЗИКО-ХИМИЧЕСКИХ ХАРАКТЕРИСТИК ПРОМОТИРОВАННЫХ ВИСМУТОМ Fe-НАНЕСЕННЫХ КАТАЛИЗАТОРОВ ПРОЦЕССА ГИДРИРОВАНИЯ СО

© 2020 г. Г. В. Панкина^{*a*,*}, А. Н. Харланов^{*a*}, А. В. Шумянцев^{*a*}, В. В. Лунин^{*a*}

^а Московский государственный университет имени Ломоносова, Химический факультет, Москва, 119992, Россия

**e-mail: pankina5151@inbox.ru* Поступила в редакцию 27.01.2020 г. После доработки 27.01.2020 г. Принята к публикации 11.02.2020 г.

Углеродный материал, приготовленный на основе древесины кустарника ирги (C_{Am}), применен в качестве носителя промотированного висмутом (0.6 мас. %) Fe-содержащего катализатора процесса гидрирования СО. Изучены структурные, морфологические и физико-химические характеристики систем. ИК-спектральным методом установлено, что в присутствии висмута на поверхности Fe/C_{Am} при прокаливании в токе СО наблюдаются суб-карбонильные и мостиковые формы адсорбции. При этом образуются только частицы оксида железа, что в дальнейшем существенно облегчает процесс восстановления катализаторов.

Ключевые слова: углеродный материал, железосодержащий катализатор, ИК-спектральный метод, суб-карбонильные и мостиковые формы адсорбции

DOI: 10.31857/S0044453720100234

Синтезу и применению углеродных материалов (УМ), получаемых на основе возобновляемых источников растительного происхождения, таких как древесина разнообразных пород деревьев, рисовая шелуха, отходы кофейных производств или биомассы, в последние десятилетия посвящено значительное число публикаций [1–3].

В частности, применение УМ в качестве носителей металлсодержащих, а именно, Fe и Co-содержащих катализаторов, востребовано в процессе гидрирования СО или синтезе Фишера-Тропша (СФТ), в котором синтез-газ H₂/CO может быть получен из биомассы, угля, природного и сланцевого газов. Известно, что производство УМ из природных возобновляемых источников исключает использование достаточно дорогостоящих реактивов, а также решает экологически актуальную проблему утилизации древесных отходов. При этом затраты на получение УМ из природного сырья и их стоимость относительно невелики. В зависимости от разновидности древесины и типа почв элементный состав углей может различаться как качественно, так и количественно. В состав углей в незначительных количествах в качестве примесей часто входят металлы (1-3 мас. %), используемые как промоторы каталитической реакции гидрирования СО, например, калий, медь и кадмий. Ранее нами показано, что в УМ на основе древесины кустарника облепихи содержание калия изначально составляло порядка 2 мас. % [4]. Причем, известно, что калий в качестве промотора железо-нанесенных катализаторов существенно влияет на активность и селективность СФТ, способствуя увеличению скорости образования карбидов железа [5, 6].

При выборе носителя металлсодержащих катализаторов важно учитывать, чтобы отсутствовало оксид-оксидное взаимодействие между пористой подложкой и активным компонентом, приводящее на стадии приготовления катализаторов к образованию трудно-восстанавливаемых промежуточных соединений, например, шпинельных структур, при заданных температурах практически не поддающихся восстановлению [7]. К таким носителям, по-видимому, относятся алюмо-магниевые шпинели различного стехиометрического состава, а также УМ, которые не взаимодействуют с активным компонентом.

Оксиды железа, нанесенные на углеродную матрицу или алюмо-магниевую шпинель — это композиты, как правило, с высокой удельной поверхностью и развитой пористой структурой, эффективно адсорбирующие газы и химические соединения, растворенные в жидкости [8, 9]. Такие наноматериалы характеризуются большой долей поверхностных атомов и метастабильной морфологией с локальным минимумом свободной энергии.

Элемент	C _{Am}	$C_{Am} + AMIII$	Fe/C _{Am}	FeBi/C _{Am}	$Fe/C_{Am} + AMIII$	$FeBi/C_{Am} + AMIII$
	ЭДС, мас. %		СЭМ, мас. %			
С	77.4	43.2	49.8	46.0	36.0	35.0
K	0.5	0.5	0.1	0.3	—	0.1
Ο	19.8	31.6	31.8	31.8	37.3	36.0
Si	0.2	0.1	—	—	_	—
Ca	1.7	0.8	1.2	1.3	0.3	0.3
Al	0.1	16.4	0.2	0.3	8.5	8.2
Mg	0.2	7.3	0.1	0.1	4.3	4.1
Fe	—	_	15.6	19.5	14.7	15.8
Bi	_	_	_	0.6	0.01	0.39

Таблица 1. Результаты элементного анализа C_{Am} , C_{Am} + AMШ, Fe/ C_{Am} , FeBi/ C_{Am} , Fe/ C_{Am} + AMШ и FeBi/ C_{Am} + AMШ и FeBi/ C_{Am} + AMШ и FeBi/ C_{Am} + AMШ, вычисленные по данным СЭМ и ЭДС (мас. %)

Примечание. Na, P, Cl, S, Mn < 0.1 мас. % (следовые количества).

В настоящей работе изучены особенности структурных, морфологических и физико-химических свойств углеродного материала (УМ) на основе растительной биомассы – древесины кустарника ирги – C_{Am} , механической смеси C_{Am} + АМШ (где АМШ – алюмо-магниевая шпинель) и Fe-содержащих, промотированных висмутом, катализаторов СФТ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Приготовление катализаторов

В качестве носителей Fe-содержащих катализаторов выбран УМ на основе растительной биомассы — древесины кустарника ирги (C_{Am}) и смесь УМ с алюмо-магниевой шпинелью (АМШ) (C_{Am} + АМШ). Изначально высушенную на воздухе древесину ирги измельчали до порошкообразного состояния и проводили пиролиз при 400°C в атмосфере азота. Затем полученный уголь химически активировали в растворе K_2CO_3 для формирования анизотропных соединений углерода, многократно промывали горячей дистиллированной водой от ионов калия с последующей сушкой при 90°C на воздухе в течение 5 ч.

Прокаливание проводили в заданном программированном режиме в течение 3 ч при 450°С в атмосфере азота (объемная скорость потока азота 1200 ч⁻¹, скорость нагрева 10°С/мин). Затем носители тщательно измельчали в агатовой ступке и отбирали фракции размером ≤0.08 мм. Алюмомагниевую стехиометрическую шпинель вида $Al_xMg_yO_z$ фирмы "SASOL Germany GmbH", марки Puralox MG 30 Spinel (S) с $S_{yg} = 23 \text{ м}^2/\text{г}$ использовали также фракцию размером ≤0.08 мм. Смесь C_{Am} + АМШ готовили тщательным перемешиванием УМ и АМШ в весовом соотношении 1 : 1 на лабораторной вибромельнице, а затем подвергали отжигу в заданном режиме. Катализаторы готовили следующим образом: нитраты железа $Fe(NO_3)_3 \cdot 9H_2O$ и висмута $Bi(NO_3)_3 \cdot 5H_2O$ методом пропитки наносили на предварительно подготовленные носители C_{Am} и $C_{Am} + AMШ$ из расчета 15 мас. % железа и 0.6 мас. % висмута. Катализаторы обозначали как Fe/C_{Am} , $FeBiC_{Am}$, $Fe/C_{Am} + AMШ$ и FeBiC_{Am} + AMШ.

Определение элементного состава поверхности образцов

Количественное содержание элементов (мас. %) в образцах определяли методом энерго-дисперсионной спектроскопии (ЭДС) на сканирующем электронном микроскопе JEOL-JSM-6390LA и методом сканирующей электронной микроскопии (СЭМ). Проводили три—четыре измерения в произвольных точках пробы образца и вычисляли среднее значение содержания элемента. Результаты элементного анализа исходных образцов приведены в табл. 1.

Низкотемпературная адсорбция азота

Структурные свойства носителей и Fe-содержащих катализаторов (удельная поверхность, удельная поверхность микропор, удельный объем микропор, средний размер пор в образцах) изучены методом низкотемпературной адсорбции азота на абсорбтометре Micrometrics ASAP 2000. Непосредственно перед проведением экспериментов образцы в количестве 0.2-0.3 г дегазировали в вакууме (P < 10 мм. рт. ст.) при 300°С в течение 4 ч. Измерения проводили при 77 К с интервалом 5 с. Полученные результаты представлены в табл. 2.

Дифференциально-термический анализ (ДТА/ТГА)

Термоаналитические исследования (дифференциальный термический анализ (ДТА) и деривативную термогравиметрию (ДТГ) образцов проводили на приборе совмещенного анализа в термоанализаторе STA 449 C Jupiter ("NETZSCH", Германия) в проточной инертной среде. Скорость потока аргона составляла 80 мл/мин, скорость нагрева 10 К/мин, интервал температур – от 40 до 600°C. Выделяющиеся в процессе термического разложения газы анализировали на квадрупольном масс-спектрометре QMS 403C ("NETZSCH", Германия). Диапазон сканирования был от 10 до 50 *m/z*. Фиксировали следующие ионы: H_2O^+ , O_2^+ , N_2O^+ , NO^+ , N_2^+ , NO_2^+ и C^+ .

ИК-спектральное исследование

Инфракрасные спектры диффузного отражения (ИК ДО) регистрировали на ИК Фурье-спектрометре EQUINOX 55/S (Bruker). Порошкообразную фракцию исследуемого образца помещали в кварцевую ампулу с окошком из CaF₂ и прокаливали при температуре 400°С (1 ч на воздухе и 2 ч под вакуумом не хуже 5 \times 10⁻⁵ Торр). Газообразный СО очищали перепусканием через ловушку с жидким азотом и длительно выдерживали над прокаленным цеолитом. Дифференциальные спектры адсорбированного СО получали вычитанием фонового спектра из экспериментального спектра образца, содержащего адсорбированный СО, с последующей коррекцией базовой линии в программе OPUS 6.0 (Bruker). Образцы восстанавливали в атмосфере монооксида углерода. Для этого образцы последовательно прокаливали при температуре 200, 300 и 400°С, время экспозиции при каждом значении температуры и давления составило 1 ч. После каждого шага регистрировали ИК-спектр. Осуществляли цифровое вычитание шума для улучшения качества спектров.

Сканирующая электронная микроскопия (СЭМ)

Электронную микроскопию поверхности твердых тел образцов выполняли на сканирующем электронном микроскопе JEOL JSM—6000 NeoScope со встроенным рентгеновским анализатором EX-230, оснащенным детектором обратно рассеянных электронов. Катодом служил вольфрам. Ускоряющее напряжение составляло 15 кВ. Максимальный размер образца: диаметр —

Таблица 2. Структурные характеристики C_{Am} , C_{Am} + + АМШ, Fe/C_{Am}, FeBi/C_{Am}, Fe/C_{Am} + АМШ и FeBi/C_{Am} + АМШ по данным метода низкотемпературной адсорбции азота

Состав	S _{уд.БЭТ} , м²/г	<i>d</i> , нм	V _{мкпор} . м ³ / г	$S_{\rm мкпор}, \ { m M^2}_{/\Gamma}$
C _{Am}	32.0	50.0	0.003	0.3
АМШ	15.0	32.0	0.09	10.8
C _{Am} + AMШ	38.0	32.2	0.09	10.6
Fe/C _{Am}	128.0	9.8	0.04	15.6
FeBiC _{Am}	93.0	24.0	0.07	12.0
Fe/C _{Am} + AMШ	59.0	26.0	0.12	17.7
FeBiC _{Amv} + AMIII	89.0	28.0	0.11	15.4

70 мм и высота — 50 мм, показатель размера рабочего столика для закрепления образца — 19. Изображение получали в режиме низкого вакуума. Микронное увеличение размеров образцов — 500, 1500 и 5000.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 1 приведены спектры элементного состава носителей C_{Am} и C_{Am} + АМШ, полученные методом ЭДС. В табл. 1 представлены также результаты элементного анализа катализаторов Fe/C_{Am}, FeBi/C_{Am}, Fe/C_{Am} + АМШ и FeBi/C_{Am} + + АМШ, вычисленные по данным методов ЭДС и СЭМ. Как следует из табл. 1, в небольших количествах в системах присутствует калий, однако промотирующее действие калия проявляется лишь при концентрациях 2–4 мас. % [5].

Структурные характеристики систем, полученные методом низкотемпературной адсорбции азота, приведены в табл. 2. Из табличных данных видно, что удельная поверхность сложного носителя САт + АМШ более чем в два раза выше удельной поверхности С_{Ат}, а объем микропор на порядок выше. При этом средний размер частиц оксида железа уменьшается с 50 до 32.2 нм. Нанесение железа на С_{Ат} повышает удельную поверхность в 4 раза, а средний размер частиц оксида железа уменьшается с 50 до 9.8 нм. Нанесение железа на С_{Ат} + АМШ незначительно влияет на с средний размер частиц оксида железа и объем микропор. Промотирование катализатора Fe/C_{Am} + AMШ висмутом приводит к повышению удельной поверхности образца.

На рис. 2 представлены микрофотографии поверхности образцов катализаторов Fe/C_{Am} , $FeBi/C_{Am}$ и Fe/C_{Am} + AMШ, $FeBi/C_{Am}$ + AMШ, полученные методом СЭМ. Как видно из рис. 2a, 26 поверхность Fe/C_{Am} представляет собой хоро-

Рис. 1. Спектры элементного состава носителей: а) C_{Am} (УМ) на основе кустарника ирги, б) смесь C_{Am} (УМ) + АМШ в массовом соотношении 1 : 1.

шо оформленную пластинчатую кристаллическую структуру с видимыми каналами (увеличение в 1500 раз). Промотирование висмутом Fe/C_{Am} практически не изменяет характер структуры (равномерное распределение, увеличение в 5000 раз). Что касается образцов Fe/C_{Am} + AMШ (рис. 2в, 2г), присутствие алюмо-магниевой шпинели приводит к дискретной микроструктуре (в виде коралла) с порами, распределенными по поверхности образца равномерным образом (увеличение в 500 раз). В присутствии Ві наблюдаются схожая морфология катализаторов и видимое измельчение частиц оксидов железа.

На рис. 2г выявлена зеренная структура со случайным образом расположенными отдельными укрупнениями частиц, что может быть объяснено различием (несовпадением) скоростей формирования поверхности зерен и межзеренных границ при приготовлении образцов.

Динамику топохимических процессов при приготовлении катализаторов изучали методами термогравиметрии в комплексе с дифференциальной сканирующей калориметрией (ДСК) и масс-спектрометрическим анализом выделяющихся газов.

На рис. За, 36 представлены данные термогравиметрии, ДСК и данные масс-спектрометрии выделяющихся газов для катализатора Fe/C_{Am}. Ход эндотермического процесса разложения нитрата железа можно определить по выделению продуктов разложения – NO и NO₂. В ходе эксперимента регистрировались ионные токи m/z = 30(NO⁺), m/z = 46 (NO⁺₂) и m/z = 14 (N⁺). Согласно масс-спектрометрическим данным наблюдается 4 области разложения нитрата железа с максимумами ионного тока m/z = 30 при температуре 115–

ниже ионного тока m/z = 30 и пиков не наблюдается. Ионный ток m/z = 14 (N⁺) (рис. 3a) коррелирует с ионным током m/z = 30 (NO⁺). Следует заметить, что пики ионных токов $m/z = 44 (CO_2^+)$ и m/z = 12 (C⁺) в области температур ниже 300°C совпадают по температуре с пиками ионного тока m/z = 30 (NO⁺). Следовательно, одновременно протекает экзотермический процесс окисления угля выделяющимися при реакции разложения нитрата продуктами реакции, и основная часть выделяющегося диоксида азота расходуется на окисление угля. Суммарный тепловой эффект в этом диапазоне температур будет определяться суперпозицией эндотермического эффекта разложения нитрата железа и экзотермического процесса окисления углерода.

130, 157, 198 и 252°С. Интенсивность ионного то-

ка m/z = 46 (на рисунке не показан) на порядок

Интересно, что на кривой зависимости ионного тока m/z = 44 (CO₂⁺) наблюдается пик при 318– 326°C, тогда как ионный ток m/z = 30 (NO⁺) не изменяется в этой области температур. Мы полагаем, что при этой температуре происходит окисление мелкодисперсных частичек угля за счет адсорбированного на поверхности пор кислорода.

Одновременно с этими двумя процессами происходит эндотермический процесс десорбции адсорбированной воды, определяемый нами по изменению ионного тока $m/z = 18 (H_2O^+)$. Интересно, что максимумы десорбции воды совпадают по температуре с максимумами выделения CO_2 . Очевидно, что увеличение скорости десорбции воды достигается за счет разогрева поверхности при окислении углерода.

Одновременное разложение нитрата, окисление углерода и десорбция воды дают 4 максимума

Рис. 2. Микрофотографии поверхности образцов катализаторов: a) Fe/C_{Am} , b) $FeBi/C_{Am}$, b) Fe/C_{Am} + AMШ, r) FeBi/C_{Am} + AMШ.

потери массы, по температуре близкие к максимумам выделения NO, CO₂ и воды.

Суммарный тепловой эффект определяется суперпозицией этих трех эффектов и их взаимное разнонаправленное действие определяет ход наблюдаемой зависимости ДСК. В области температур ниже 200°С на эндотермический эффект, обусловленный десорбцией воды, налагаются экзотермические эффекты при 115 и 203°С, обусловленные окислением углерода. Хотя разложение нитрата – это эндотермический эффект, суммарный тепловой эффект от последовательно протекающих реакций разложения нитрата и окисления углерода будет экзотермическим. Поэтому в области температур 200–350°С наблюдаются экзотермические эффекты от окисления углерода.

Линейное уменьшение массы образца, сопровождающееся нарастающим эндотермическим эффектом в области температур выше 400°С, может быть объяснено десорбцией воды из пор угля, что подтверждается ростом ионного тока m/z == 18 (H₂O⁺) в этой области температур.

Введение висмута в систему (катализатор FeBi/C_{Am}) изменяет форму максимума выделения NO за счет наложения на пики разложения нитрата железа пика разложения нитрата висмута при 120–140°C (рис. 3в, 3г). На кривой зависимости ионного тока m/z = 30 (NO⁺) появляется слабый пик при 405°C, обусловленный разложением остаточных количеств нитрата висмута. Введение в систему дополнительного количества нитрата приводит к увеличению выделяющегося в результате реакции с углеродом CO₂ и как следствие, разогреву образца. Заметим, что количество выделяющегося CO₂ в области температур выше 250°C существенно больше и достигает максимума при 333°C. Одновременно на кривой ионного

Рис. 3. Данные термогравиметрии, ДСК (а, б) и масс-спектрометрии выделяющихся газов (в, г) для катализаторов: а, в – Fe/C_{Am} и б, г – FeBi/C_{Am}.

тока m/z = 18 (H₂O⁺) наблюдается четкий пик десорбции воды. Тепловые эффекты наблюдаются при близких температурах, однако тепловой эффект при 333°C и потеря массы при этой температуре существенно выше, чем для образца без висмута. Этот тепловой эффект происходит в температурном интервале когда выделение NO₂ уже закончилось. Мы полагаем, что этот эффект обусловлен окислением мелких частиц углерода адсорбированным кислородом. Следовательно, введение висмута способствует разрыхлению поверхности образца и образованию большего количества мелкодисперсных частиц углерода, которые окисляются при данной температуре, после чего тепловой эффект заканчивается.

Известно, что монооксид углерода является эффективным спектральным зондом для опредедифференцировать катионы в различной степени окисления, определять их электроноакцепторные свойства и оценивать их координационное окружение. Кроме того, СО является одним из реагентов в реакции СФТ, что позволяет нам использовать СО одновременно как восстановитель и как зонд, чтобы исследовать начальный этап восстановления железа на поверхности катализаторов.

ления природы центров адсорбции [10]. Использование СО в качестве молекулы-зонда позволяет

Спектры адсорбированного при комнатной температуре СО образованы суперпозицией нескольких полос поглощения (пп). После длительной экспозиции на воздухе основной железосодержащей фазой является оксид железа Fe₂O₃. Однако, согласно данным литературных источников [10], катионы Fe³⁺ не образуют карбонильных комплексов, так как эти катионы находятся в координационно насыщенном состоянии и не способны образовывать устойчивых при комнатной температуре комплексов с молекулами со слабыми электронно-донорными свойствами. Поэтому наблюдаемые в высокочастотной области спектра полосы поглощения относят к карбонильным комплексам с координационно ненасыщенными (КН) катионами Fe²⁺. Интерпретация наблюдаемых в спектрах Fe/C_{Am} полос поглощения приведена в табл. 3 [11–14].

К сожалению, глубина проникновения света в носитель-уголь невелика, поэтому спектральная картина образована в основном комплексами СО с катионами, находящимися на внешней поверхности носителя. На рис. 4а в ИК-спектре образца Fe/C_{Am} после восстановления при 200°С наблюдаются пп 2200 см⁻¹, которую мы относим к комплексам с изолированными катионами Fe²⁺, пп 2173 см⁻¹ соответствует адсорбции на кластерах типа [FeO]²⁺. Полосу при 2085 см⁻¹ мы относим к адсорбции на катионах Fe²⁺, находящихся на поверхности металлического железа, в координационную сферу которых входят атомы кислорода (табл. 3). Природа пп. при 2140 см⁻¹ может быть дискуссионной. Мы ее относим к три-карбонильной форме адсорбции на катионах Fe²⁺.

При увеличении температуры восстановления пп 2173 и 2140 см⁻¹ перестают разрешаться и наблюлается широкая пп при 2145–2150 см⁻¹, являющаяся суперпозицией нескольких полос. Одновременно появляется пп при 2030 см⁻¹, которая может быть отнесена к адсорбции СО на атомах Fe⁰, а при повышении температуры восстановления ло 400°C наблюлается пп при 1970 см⁻¹ субкарбонильных форм адсорбции СО. Данный факт указывает на то, что при восстановлении в атмосфере СО из частиц оксида формируются частицы металлического железа. Но при этом изолированные катионы Fe²⁺ сохранили свое состояние. После экспозиции образца в атмосфере СО при температурах 300 и 400°С отмечается пп 2342 см^{-1} координированного поверхностью CO₂, возникающего при восстановлении железа.

Как видно из рис. 4б введение висмута в состав катализатора Fe/C_{Am} изменяет состояние металлического железа. Для Bi-содержащего образца в спектре адсорбированного CO не наблюдается пп, соответствующих комплексам с изолированными катионами железа и кластерами. После экспозиции при 200°C отмечаются пп при 2155–2160 см⁻¹, 2105 и 2060 см⁻¹, соответствующие комплексам CO с катионами Fe²⁺ на поверхности металлических частиц, пп при 2005 см⁻¹, соответствующая комплексам с Fe⁰ и пп при 1895 см⁻¹

Таблица 3. Интерпретация полос поглощения в спектрах адсорбированного CO образцов Fe/C_{Am} и $FeBi/C_{Am}$

Частота полосы (см ⁻¹)	Интерпретация
2205-2218	Адсорбция СО в линейной форме на изо- лированных катионах Fe ²⁺ [11, 12]
2185-2188	Адсорбция СО в линейной форме на центрах типа [FeOFe] ²⁺ [11, 12]
2175-2180	Адсорбция СО на центрах типа [FeO] ²⁺ . Дикарбонильная или трикарбонильная форма адсорбции [10–13]
2150-2160	Адсорбция СО на катионах Fe ²⁺ на поверх- ности алюмината железа. Три-карбониль- ная форма адсорбции [11, 13, 14]
2123-2130	Тетра-карбонилы на катионах Fe ⁺ [12, 13]
2090–2115	Комплекс CO с катионом Fe^{2+} , в координационную сферу которого входят атомы O_2 или C [14]
2070	Карбонильный комплекс с катионом Fe ²⁺ в окружении атомов металлического железа Fe ⁰ на поверхности частиц металлического железа [14]
2005-2015	Карбонильный комплекс на атомах Fe ⁰ , находящихся в окружении таких же ато- мов Fe ⁰ [14]
2050-2065	Комплекс с Fe ⁰ , в координационную сферу которого входят атомы O ₂ или C [14]
1995 и ниже	Суб-карбонильные формы адсорбции Fe ⁰ _n (CO) _m [10]

мостиковой формы адсорбции. Все эти полосы характерны для комплексов на поверхности частиц металлического железа.

При увеличении температуры прокаливания радикальных изменений в спектре не наблюдается. Уменьшается интенсивность пп 2105–2110 и 2060– 2075 см⁻¹ и увеличивается поглощение в области 2000–2030 см⁻¹, что отражает процесс восстановления катионов Fe²⁺ до металлического железа. Также, как и для образца Fe/C_{Am} после прокаливания при температуре 300°С и выше появляется пп координированного поверхностью CO₂.

Схожая картина наблюдается для частиц $Fe/C_{Am} + AMIII$, $FeBi/C_{Am} + AMIII$.

Таким образом, на поверхности образца Fe/C_{Am} формируются одновременно частицы оксида железа — предшественники металлических частиц и изолированные катионы Fe^{2+} и кластеры, состоящие из одного или нескольких катио-

Рис. 4. Разностные ИК-спектры СО, адсорбированного на катализаторах а – Fe/C_{Am} , б – $FeBi/C_{Am}$ при давлении 50 Торр после восстановления 1 – при 200°С, 2 – при 300°С, 3 – при 400°С.

нов железа. При введении висмута в Fe/C_{Am} формируются только частицы оксида железа, а вклад изолированных катионов и кластеров незначителен. Такие частицы значительно легче восстанавливаются в атмосфере CO.

Так, если после прокаливания при 200°С на поверхности образца Fe/C_{Am} не наблюдается суб-

карбонильных и мостиковых форм адсорбции, то для образца FeBi/ C_{Am} такие формы присутствуют уже после восстановления при данной температуре. Следовательно, промотирование образца Fe/ C_{Am} висмутом (0.6 мас. %) усиливает адсорбционную способность монооксида углерода, что положительно влияет на процесс восстановления частиц оксида железа.

Авторы выражают глубокую благодарность за возможность воспользоваться физико-химическими методами Центра коллективного пользования Химического факультета МГУ для проведения исследовательской работы, а также Н.А. Мамлеевой за помощь при получении УМ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Marquez-Montesinos F., Cordero T., Rodriguez-Mirasol J., Rodriguez J.J. // Sep. Sci. Technol. 2001. V. 36. P. 3191.
- Faug B. // Microporous and Mesoporous Materials. 2013. V. 182. P. 1.
- 3. *Pankina G.V., Chernavskii P.A., Kazak V.O., Lunin V.V. //* Russ. J. Phys. Chem. A. 2015. V. 89. № 6. P. 1008.
- 4. Панкина Г.В., Чернавский П.А., Лунин В.В. // Журн. физ. химии. 2016. Т. 90. № 9. С. 1325.
- 5. Чернавский П.А., Казак В.О., Панкина Г.В. и др. // Кинетика и катализ. 2018. Т. 59. № 2. С. 251.
- Wan H., Wu B., Zhang C., Xiang H., Li Y. // J. Mol. Catal. 2008. V. 283. P. 33.
- Чернавский П.А., Лунин В.В. // Журн. физ. химии. 1994. Т. 34. № 3. С. 531.
- 8. *Bandosz T.J.* Activated Carbon Surfaces in Environmental Remediation. N.Y.: Elsevier, 2006.
- 9. Castro C.S., Guerreiro M.C., Oliveira L.C.A. Goncalves M. et al. // Appl. Catalysis A. General. 2009. V. 367. P. 53.
- 10. *Davydov A*. Molecular spectroscopy of oxide catalyst surfaces. Willey, 2003. 668 p.
- Couble J., Bianchi D. // Applied Catalysis A: Gen. 2011 V. 409– 410. P. 28.
- 12. Fellah M.F. // J. Phys. Chem. C. 2011. V. 115. P. 1940.
- Mihaylov M., Ivanova E., Chakarova K. // Appl. Catal. A: Gen. 2011. V. 391. P. 3.
- 14. Wielers A.F.H., Kock A.J.H.M., Hop C.E.C.A. et al. // J. Catal. 1989. V. 117. P. l.