_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 547.547.466.:536.242

ТЕРМОХИМИЯ ПРОЦЕССОВ РАСТВОРЕНИЯ L-ТРЕОНИНА В ВОДНЫХ РАСТВОРАХ АЦЕТОНИТРИЛА, 1,4-ДИОКСАНА, АЦЕТОНА И ДИМЕТИЛСУЛЬФОКСИДА ПРИ *T* = 298.15 К

© 2020 г. В. И. Смирнов^{а,*}

^а Российская академия наук, Институт химии растворов им. Г.А. Крестова, 153045, Иваново, Россия *e-mail: vis@isc-ras.ru Поступила в редакцию 05.12.2019 г. После доработки 28.02.2020 г. Принята к публикации 17.03.2020 г.

Методом калориметрии измерены энтальпии растворения L-треонина в водных растворах ацетонитрила (AN), 1,4-диоксана (DO), ацетона (AC) и диметилсульфоксида (DMSO) при концентрации органического растворителя $x_2 = 0-0.25$ мол. доли и T = 298.15 К. Рассчитаны стандартные значения энтальпий растворения ($\Delta_{sol}H^\circ$), переноса ($\Delta_{tr}H^\circ$) L-треонина из воды в смешанный растворитель и энтальпийные коэффициенты парных взаимодействий (h_{xy}) L-треонина с молекулами изученных растворителей. Установлены зависимости энтальпийных характеристик растворения L-треонина от состава смеси, энергии взаимодействия между компонентами смеси, а также от электронодонорной способности органических растворителей. Проведен сравнительный анализ значений энтальпийных коэффициентов парных взаимодействий L-треонина и некоторых других аминокислот (глицина, L-аланина, L-валина и L-метионина) в исследованных смешанных растворителях. Произведена количественная оценка энтальпийных вкладов боковых цепей L-аминокислот в энергетику взаимодействия с молекулами указанных органических растворителей в водном растворе.

Ключевые слова: аминокислоты, энтальпии растворения и переноса, водно-органические смеси, энтальпийные коэффициенты парных взаимодействий

DOI: 10.31857/S0044453720100271

Представленная работа – продолжение исследований энергетики взаимодействия аминокислот и пептидов с молекулами спиртов, амидов и других органических растворителей в водных растворах [1-7]. В качестве объекта исследования выбран L-треонин. Это незаменимая аминокислота, которая входит в состав многих белков, содержится в плазме крови человека, участвует в белковом и жировом обмене, а также в синтезе коллагена. L-Треонин – оптически активная форма треонина, имеющая *L*-конфигурацию. Именно эта форма треонина играет важную роль в процессах метаболизма человека, растений и животных. Ее недостаток или избыток в живом организме может приводить к тяжелым последствиям. Основное структурное отличие L-треонина от других аминокислот – наличие в его молекуле (I) боковой цепи, содержащей как гидрофобную СН₃-группу, так и гидрофильную ОН-группу.

В качестве сорастворителей использовались органические растворители с различными физикохимическими свойствами: ацетон (АС) и диметилсульфоксид (DMSO) – полярные апротонные органические растворители с большими дипольными моментами и высокими диэлектрическими константами (широко используются в промышленности, биохимии и фармакологии); 1,4-диоксан (DO) – неполярный (шиклический эфир – составная часть многих технических жидкостей и чистящих средств); ацетонитрил (AN) – экстрагент с высокой диэлектрической проницаемостью и дипольным моментом. Основные цели работы: а) установление зависимостей энтальпий растворения и переноса L-треонина от состава водно-органических смесей в диапазоне $x_2 = 0$ -

Вещество	Формула	M, г моль ^{-1}	CAS No.	Марка	Чистота	<i>C</i> *, мас. %
L-Треонин	C ₄ H ₉ NO ₃	119.12	72-19-5	Aldrich	≥0.990	_
Ацетонитрил	C_2H_3N	41.05	75-05-8	Sigma-Aldrich	≥0.998 (anhydrous)	< 0.001
1,4-Диоксан	$C_4H_8O_2$	88.11	123-91-1	Fluka	≥0.998 (anhydrous)	< 0.003
Ацетон	C ₃ H ₆ O	58.08	67-64-1	Fluka	≥0.998 (GC)	< 0.10
Диметилсульфоксид	C ₂ H ₆ SO	78.13	67-68-5	Sigma	≥0.995 (GC)	< 0.10
Вода	H ₂ O	18.02	7732-18-5	—	H ₂ O*	—

Таблица 1. Список реактивов, их марка и чистота

Обозначения: CAS No. – сервисный номер; чистота –массовая фракция (заявлено поставщиком); H_2O^* – бидистиллят, $p \approx 2 \times 10^{-6}$ Ом см⁻¹, $n^{20}/D = 1.34$; C^* – содержание воды, титрование по Фишеру.

0.25 мол. доли органического растворителя; б) оценка энергии межмолекулярных взаимодействий молекул L-треонина с молекулами AN, AC, DO и DMSO в водных растворах посредством расчета энтальпийных коэффициентов парных взаимодействий (*h*_{xv}); в) оценка влияния энергии межмолекулярных взаимодействий между компонентами водно-органических смесей и различных физико-химических свойств органических растворителей на энтальпии растворения (переноса) L-треонина в смешанных растворителях при T = 298.15 K; г) получение новых экспериментальных данных в области растворов аминокислот и пептидов; д) количественная оценка вкладов боковых цепей L-аминокислот (на основе значений энтальпийных коэффициентов парных взаимодействий) при их взаимодействии с молекулами AN, 1,4-DO, AC и DMSO в водных растворах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Вещества, использованные в экспериментах, их молекулярная масса, формула, марка, чистота и содержание H₂O представлены в табл. 1. В эксперименте использован герметичный калориметр с изотермической оболочкой. Устройство калориметра и процедура проведения эксперимента описаны в [8]. Калибровочные данные калориметра, расчет погрешностей измерений представлены в [3]. Достоверность полученных результатов проверена путем сравнения энтальпий растворения некоторых аминокислот и пептидов с аналогичными данными других авторов. В качестве примера, наши значения $\Delta_{sol}H^{\circ}$, кДж моль⁻¹, для глицина составляют 14.25 ± 0.06 [9] и (14.23 ± 0.02 [10]), для глицилглицина 17.62 ± 0.05 [9] и (17.69 ± 0.02 [11]) и для L-метионина 11.21 ± ± 0.08 [12] и (11.30 ± 0.06 [13]). Моляльную концентрацию (*m*) L-треонина в смешанном растворителе изменяли в диапазоне от 5 \times 10⁻³ до 1.5 \times $\times 10^{-2}$ моль кг⁻¹, а концентрацию органических растворителей — в диапазоне 0–0.25 мол. доли. Вода очищена путем двойной дистилляции (удельная электропроводность ~1 × 10⁻⁵ Ом см⁻¹). Навески исследуемых веществ и водно-органические смеси взвешены на весах ВЛР-200 ("Госметр", Санкт-Петербург, Россия) с точностью 5 × 10⁻⁴ г. Эксперимент проведен при T == 298.15 ± 0.01 K.

За стандартные значения энтальпий растворения ($\Delta_{sol}H^{\circ}$) L-треонина принято среднее значение $\Delta_{sol}H^m$ из пяти измерений для каждого состава смешанного растворителя, поскольку зависимости энтальпии растворения L-треонина от концентрации в изученных водно-органических смесях не наблюдалось. Стандартные значения энтальпий растворения L-треонина, а также их стандартные отклонения в исследованных смесях представлены в табл. 2. Энтальпии переноса L-треонина ($\Delta_{tr}H^{\circ}$) из воды в водно-органические смеси графически представлены на рис. 1. Значения $\Delta_{tr} H^{\circ}$ были вычислены из стандартных значений энтальпий растворения в воде $(\Delta_{sol}H^{\circ}(w))$ и в водном растворе органического растворителя ($\Delta_{sol}H^{\circ}(w + y)$) по уравнению:

$$\Delta_{\rm tr} H^{\circ} = \Delta_{\rm sol} H^{\circ}(w + y) - \Delta_{\rm sol} H^{\circ}(w).$$
(1)

Энтальпия растворения L-треонина в воде, измеренная ранее [1], составляет 10.33 ± 0.03 кДж моль⁻¹.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Из данных табл. 2 и рис. 1 следует, что энтальпии растворения и переноса L-треонина имеют эндотермические значения во всем изученном диапазоне концентраций сорастворителей и зависят от состава смешанного растворителя. Характер межмолекулярных взаимодействий между молекулами L-треонина и сорастворителей будет определяться их структурой. Гидрофобные

AN		DO		AC			DMSO				
<i>m</i> ₂	$\Delta_{\rm sol} H^{\circ}$	$u(\Delta_{\rm sol}H^\circ)$	<i>m</i> ₂	$\Delta_{\rm sol} H^{\circ}$	$u(\Delta_{\rm sol}H^{\circ})$	<i>m</i> ₂	$\Delta_{\rm sol} H^{\circ}$	$u(\Delta_{\rm sol}H^{\circ})$	<i>m</i> ₂	$\Delta_{\rm sol} H^{\circ}$	$u(\Delta_{\rm sol}H^\circ)$
0.841	10.77	0.03	0.606	10.72	0.03	0.589	11.06	0.04	0.657	10.89	0.04
1.759	11.26	0.04	1.279	11.32	0.03	1.229	11.68	0.03	1.338	11.52	0.03
2.709	11.64	0.03	2.031	11.97	0.04	1.907	12.55	0.03	2.101	12.03	0.03
3.631	12.03	0.03	2.878	12.46	0.04	2.652	13.09	0.03	2.923	12.64	0.03
4.966	12.31	0.03	3.837	12.99	0.03	3.498	14.06	0.03	3.871	13.25	0.03
6.317	12.67	0.04	4.933	13.49	0.04	4.461	14.92	0.03	4.812	13.83	0.03
7.759	12.98	0.03	6.198	13.96	0.03	5.513	15.64	0.03	5.982	14.41	0.03
9.454	13.09	0.03	7.674	14.48	0.03	6.689	16.49	0.04	7.157	14.88	0.04
11.259	13.11	0.04	9.418	15.01	0.03	9.581	18.11	0.03	8.639	15.25	0.03
13.334	12.81	0.03	11.511	15.24	0.04	13.422	19.28	0.05	10.178	15.71	0.05
18.685	12.32	0.03	14.069	15.36	0.04	18.812	19.25	0.04	14.225	16.63	0.04
26.177	11.34	0.03	17.266	14.89	0.03	20.038	19.09	0.03	20.014	17.34	0.03

Таблица 2. Стандартные значения энтальпий растворения L-треонина ($\Delta_{sol}H^\circ$, кДж моль⁻¹) и стандартные отклонения ($u(\Delta_{sol}H^\circ, \kappaДж моль^{-1})$) в водных растворах ацетонитрила (AN), 1,4-диоксана (DO), ацетона (AC) и диметилсульфоксида (DMSO) при их различной моляльной концентрации (m_2) и T = 298.15 К

Примечание. Стандартное отклонение (*u*) моляльной концентрации растворителя $u(m_2) = 0.001$ моль кг⁻¹, температуры u(T) = 0.01 К.

(-СН₂- и -СН₃-группы) и гидрофильные группы (-NH⁺³, -COO⁻, -CO, -SO, -NH, -OH), содержащиеся в их молекулах, предполагают следующие типы межмолекулярных взаимодействий: гидрофобно-гидрофобные, гидрофобно-гидрофильные и гидрофильно-гидрофильные. Увеличение концентрации сорастворителей до $x_2 \sim$ ~ 0.15 (AN), ~0.20 (DO), ~0.23 (AC) и ~0.30 (DM-SO) вызывает рост эндотермичности растворения L-треонина в ряду AN < DO < DMSO < AC. В этой области концентрации в межмолекулярных взаимодействиях L-треонин – органический растворитель доминируют эндотермические эффекты дегидратации их молекул, гидрофобногидрофобные и гидрофобно-гидрофильные типы взаимодействий. При достижении указанных выше концентраций сорастворителей на зависимостях $\Delta_{tr} H^{\circ} = f(x_2)$ (за исключением DMSO) наблюдаются эндотермические максимумы. Такие максимумы на зависимостях $\Delta_{tr}H^{\circ} = f(x_2)$ характерны для растворов неэлектролитов [14] и соответствуют или близки к аналогичным максимумам (с противоположным знаком) на зависимоэнтальпий смешения стях органических растворителей с водой [15]. В области этих максимумов прекращается рост эндотермичности $\Delta_{\rm tr} H^{\circ}$ L-треонина в результате компенсации энергетических затрат на дегидратацию молекул

L-треонина (сорастворителя) и гидрофобно-гидрофобных взаимодействий между ними — экзотермическими эффектами прямых взаимодействий (гидрофильно-гидрофильными и образование Н-связей) L-треонин — сорастворитель. Положение и высота максимумов зависит от структуры сорастворителя. Общая эндотермич-

Рис. 1. Зависимости энтальпий переноса ($\Delta_{tr}H^{\circ}$) Lтреонина из H₂O в ее смеси с AN (*I*), DO (*2*), DMSO (*3*) и AC (*4*) от их концентрации (*x*₂) при *T* = 298.15 К.

Таблица З.	Расчетные параметры уравнения (2)	и энтальпийные коэффициенты парных взаимодействий (Δh_{xv})
L-треонина	а с молекулами ацетонитрила (AN), 1,	4-диоксана (DO), ацетона (AC) и диметилсульфоксида (DMSÖ)
в водных ра	астворах при T = 298.15 К	

Растворитель	<i>a</i> ₀	<i>a</i> ₁	R	SD	Δh_{xy}
AN	10.33 ± 0.03	0.59 ± 0.02	0.998	0.110	285 ± 12
DO	10.33 ± 0.07	0.83 ± 0.04	0.998	0.077	415 ± 20
AC	10.33 ± 0.07	1.20 ± 0.03	0.999	0.071	600 ± 12
DMSO	10.33 ± 0.06	0.93 ± 0.04	0.999	0.066	463 ± 15

Обозначения: *a*₀, *a*₁ – коэффициенты аппроксимации уравнения (2), *R* – коэффициент корреляции, *SD* – значения критерия Стьюдента, *N* = 12 – число экспериментальных точек.

ность значений $\Delta_{tr}H^{\circ}$ увеличивается в ряду: AN < < DO < AC, что может быть связано с усилением электронодонорных свойств (*DN*) этих сорастворителей в том же порядке: *DN* = 14.1, 14.5, 17.0 [16]). Увеличение концентрации сорастворителей для AN: $x_2 > 0.17$; DO: $x_2 > 0.20$; AC: $x_2 > 0.23$ приводит к снижению эндотемического вклада в $\Delta_{tr}H^{\circ}$ за счет увеличения экзотермического вклада от прямых взаимодействий аминокислота — сорастворитель в общем энтальпийном эффекте растворения.

В тройных системах (вода + органический растворитель + аминокислота) в области с низкой концентрацией сорастворителя ($x_2 < 0.1$), межчастичные взаимодействия L-треонин – сорастворитель могут быть охарактеризованы (согласно теории Макмиллана–Майера [17], адаптированной для аналогичных систем Каузманом с соавторами [18]) энтальпийными коэффициентами парных взаимодействий (h_{xy}). Для расчета значений h_{xy} использованы данные табл. 2, соотношение $h_{xy} = a_1/2$ (Дж кг/моль²) [19] и уравнение:

$$\Delta_{\rm sol}H^{\circ} = a_0 + a_1m_2 + a_2m_2^2 + a_3m_2^3, \qquad (2)$$

где m_2 — моляльная концентрация органического растворителя; a_0 , a_1 , a_2 , a_3 — коэффициенты аппроксимации, рассчитанные методом наименьших квадратов.

Расчетные параметры уравнения (2) и значения энтальпийных коэффициентов парных взаимодействий h_{xy} представлены в табл. 3. Все коэффициенты h_{xy} имеют положительный знак. Это означает, что молекулы L-треонина и сорастворителей хорошо гидратированы, а эндотермические эффекты их дегидратации, гидрофобно-гидрофобные и гидрофобно-гидрофильные типы взаимодействий преобладают над экзотермическими эффектами прямых (гидрофильно-гидрофильных) взаимодействий между ними. Коэффициенты h_{xy} для L-треонина увеличиваются в ряду смешанных растворителей: (H₂O + AN) < (H₂O + + DO) < (H₂O + DMSO) < (H₂O + AC) и зависят от физико-химических свойств сорастворителей (электронодонорной способности). Ранее мы установили зависимость величины энтальпийных коэффициентов парных взаимодействий от значений аналогичных коэффициентов (h_{A+W}) , рассчитанных для смесей вода + органический растворитель [20]. А именно, сильные межмолекулярные взаимодействия в смесях вода + органический растворитель ослабляют энтальпийный эффект межчастичных взаимодействий между молекулами аминокислоты и сорастворителя. Сравнение значений *h*_{xv} для L-треонина, рассчитанных для изученных водно-органических смесей, со значениями h_{A+W} для этих смесей показывает, что сильные межчастичные взаимодействия между компонентами в самой водно-органической смеси также ослабляют энтальпийный эффект межчастичных взаимодействий между молекулами L-треонина и сорастворителя. При этом зависимость $h_{xy} = f(h_{A+W})$ в изученных водно-органических смесях близка к линейной.

Предыдущие термохимические исследования процессов растворения алифатических аминокислот {глицин (Gly) [21], DL-аланин (Ala) [22], L-валин (Val) [23], L-метионин (Met) [24]} и данные настоящей работы для L-треонина в водных растворах ацетонитрила, 1,4-диоксана и ацетона позволяют количественно оценить энтальпийный вклад боковых цепей ($R = -CH_3$, $-CH(CH_3)_2$, -(CH₂)₂SCH₃ и -CHCH₃OH) этих аминокислот в межчастичные взаимодействия с молекулами исследованных органических растворителей. Для расчета энтальпийного вклада ($\Delta h_{xv}(\mathbf{R})$) боковой цепи R в межчастичные взаимодействия между молекулами аминокислот и указанных растворителей использованы данные [21-24] и предложенное в [7] уравнение:

$$\Delta h_{xy(\mathbf{R})} = h_{xy(\mathbf{R})} - h_{xy(\mathrm{Gly})},\tag{3}$$

где $h_{xy(Gly)}$ — энтальпийный коэффициент парных взаимодействий глицина с боковой цепью R == -CH, а $h_{xy(R)}$ — энтальпийные коэффициенты парных взаимодействий аминокислот с боковы-

Рис. 2. Количественный вклад ($\Delta h_{xy}(\mathbf{R})$, Дж кг моль⁻²) в энтальпийный коэффициент парных взаимодействий (h_{xy}) R-аминокислот с молекулами AN в водном растворе для L-аланина (1) [22], L-валина (2) [23], L-треонина (3) и L-метионина (4) [24].

ми цепями: $\mathbf{R} = -\mathbf{CH}_3$, $-\mathbf{CH}(\mathbf{CH}_3)_2$, $-(\mathbf{CH}_2)_2\mathbf{SCH}_3$ и –СНСН₃ОН. Рассчитанные значения вкладов Δh_{xv} R-боковых цепей указанных выше аминокислот в межчастичные взаимодействия с молекулами AN, 1,4-DO и AC графически представлены на рис. 2–4. Положительные значения $\Delta h_{xv(R)}$ для всех водно-органических смесей свидетельствуют о том, что боковые цепи R-аминокислот, содержащие гидрофобные группы, способствуют ослаблению взаимодействия аминокислот с молекулами AN, 1,4-DO и AC в водном растворе. А усиление гидрофобности самих боковых цепей аминокислот ведет к увеличению эндотермического вклада в энергетику межмолекулярных взаимодействий с молекулами органических растворителей. Гидрофобность боковых цепей, согласно методу, предложенному Севиджем и Вудом [25] (где гидрофобный эффект СН₂-группы принимается за единицу, эффект СН₃-группы соответствует $1.5CH_2$, а эффект CH-группы $-0.5CH_2$) усиливается в ряду Ala(1.5) < Thr(2.0) < Met(3.5) == Val(3.5). В том же порядке увеличивается эндотермичность энтальпийных вкладов боковых цепей указанных аминокислот в общий энтальпийный эффект взаимодействия с молекулами изученных органических растворителей. Отметим, что на величину $\Delta h_{xy(\mathbf{R})}$ существенно влияет как структура боковой цепи аминокислоты, так и структура органического растворителя. Если боковые цепи аминокислот содержат только гидрофобные группы (Ala, Val), то эндотермические вклады $\Delta h_{x\nu(R)}$ максимальны, если в составе боковой цепи имеются гидрофильные группы (Thr), то эндотермическией вклад $\Delta h_{xy(R)}$ существенно меньше. Это обусловлено образованием Н-свя-

Рис. 3. Количественный вклад ($\Delta h_{xy}(\mathbf{R})$, Дж кг моль⁻²) в энтальпийный коэффициент парных взаимодействий (h_{xy}) *R*-аминокислот с молекулами DO в водном растворе для L-аланина (*1*) [22], L-валина (*2*) [23], L-треонина (*3*) и L-метионина (*4*) [24].

зей с молекулами электронодонорных растворителей (AN < 1,4-DO < AC) (рис. 2–4).

В заключение отметим, что термохимические характеристики растворения и переноса L-треонина в бинарных смесях воды с исследованными органическими растворителями, определяются: а) концентрацией сорастворителя в водном растворе; б) структурой сорастворителя (его электронодонорной способностью); в) гидрофобными и гидрофильными свойствами L-треонина; г) боковые цепи молекул R-аминокислот (Ala, Val и Met), содержащие гидрофобные группы, ослабляют межмолекулярные взаимодействия аминокислоты с молекулами органических растворителей в водном растворе за счет усиления гидро-

Рис. 4. Количественный вклад ($\Delta h_{xy}(\mathbf{R})$, Дж кг моль⁻²) в энтальпийный коэффициент парных взаимодействий (h_{xy}) R-аминокислот с молекулами AC в водном растворе для L-аланина (1) [22], L-валина (2) [23], L-треонина (3) и L-метионина (4) [24].

фобно-гидрофобных взаимодействий. Большой эндотермический вклад боковых цепей L-валина и L-метионина во всех смесях связан с наибольшей гидрофобностью этих цепей в представленной группе аминокислот. Напротив, наличие в боковой цепи L-треонина OH-группы и его меньшая гидрофобность способствуют образованию H-связей с молекулами органических растворителей и уменьшению эндотермического вклада в энергетику межмолекулярных взаимодействий.

Работа посвящена памяти Валентина Георгиевича Баделина.

СПИСОК ЛИТЕРАТУРЫ

- Smirnov V.I., Badelin V.G. // Thermochim. Acta. 2010. V. 503–504. P. 97.
- 2. Smirnov V.I., Badelin V.G. // Ibid. 2009. V. 495. P. 90.
- Smirnov V.I., Badelin V.G. // J. Mol. Liquids. 2016. V. 220. P. 21.
- 4. Smirnov V.I., Badelin V.G. // Ibid. 2018. V. 258. P. 253.
- Smirnov V.I., Badelin V.G. // Russ. J. Phys. Chem. A. 2019. V. 93. P. 1465.
- Smirnov V.I., Badelin V.G. // J. Mol. Liquids. 2019. V. 285. P. 84.
- 7. Smirnov V.I., Badelin V.G. // Ibid. 2019. V. 275. P. 474.
- 8. *Badelin V.G., Tyunina E.Yu., Mezhevoi I.N. //* Russ. J. Appl. Chem. 2007. V. 80. P. 711.
- Badelin V.G., Smirnov V.I., Mezhevoi I.N. // Russ. J. Phys. Chem. 2002. V. 76. P. 1299.

- Palecz B. // J. Therm. Anal. Calorim. 1998. V. 54. P. 257.
- Piekarski H., Nowicka B. // J. Therm. Anal. Calorim. 2010. V. 102. P. 31.
- Badelin V.G., Smirnov V.I. // Russ. J. Phys. Chem. A. 2010. V. 84. P. 1163.
- Palecz B., Piekarski H., Romanowski W. // J. Mol. Liquid. 2000.V. 84. № 3. P. 279.
- Noban S., Donohue P., Waghorne W.E. // J. Phys. Chem. B. 2003. V. 107. P. 13188.
- 15. *Belousov V.P., Morachevskiy A.G., Panov M.Yu.* Thermal properties of non-electrolytes solutions. Leningrad: Khimiya, 1981. P. 264 (in Russian).
- 16. *Gutman V. //* The Donor-Acceptor Approach to Molecular Interactions. New York: Plenum Press, 1978.
- McMillan W.G., Mayer J.E. // J. Chem. Phys. 1945. V. 13. P. 276.
- Kozak J.J., Knight W.S., Kauzmann W. // J. Chem. Phys. 1968. V. 48. P. 675.
- 19. Palecz B., Piekarski H., Romanowski W. // J. Mol. Liquid. 2000.V. 84. № 3. P. 279.
- Smirnov V.I., Badelin V.G. // Russ. J. Phys. Chem. A. 2018. V. 92. № 1. P. 93.
- 21. Smirnov V.I., Badelin V.G. // Ibid. 2006. V. 80. P. 357.
- 22. Smirnov V.I., Badelin V.G. // Ibid. 2006. V. 80. P. 672.
- 23. Smirnov V.I., Badelin V.G. // Ibid. 2016. V. 90. P. 2165.
- 24. Smirnov V.I., Badelin V.G. // Thermochim. Acta. 2015. V. 616. P. 20.
- 25. *Savage J.J., Wood R.H.* // J. Solution Chem. 1976. V. 5. P. 733.