СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 543.42

КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ И УСТОЙЧИВЫЕ КОНФОРМАЦИИ МЕТИЛ 6-МЕТОКСИ-2,3,4,9-ТЕТРАГИДРО-1H-1,4-ЭТАНОКАРБАЗОЛ-3-КАРБОКСИЛАТА

© 2020 г. И. Б. Давыдова^{*a*,*}, В. М. Сенявин^{*a*}, О. Н. Зефирова^{*a*}, Г. М. Курамшина^{*a*}

^а Московский государственный университет им. М.В. Ломоносова, Химический факультет, Москва, Россия

*e-mail: irine.davydova@gmail.com Поступила в редакцию 24.12.2019 г. После доработки 24.12.2019 г. Принята к публикации 21.01.2020 г.

Исследованы спектры ИК-поглощения и КР метил 6-метокси-2,3,4,9-тетрагидро-1H-1,4-этанокарбазол-3-карбоксилата. Выполнены расчеты оптимизированных структур и гармонических силовых полей устойчивых конформеров в рамках теории функционала плотности с использованием функционалов B3LYP, M062X и BVP86 с рядом базисных наборов различной полноты, на основе расчетов предложена детальная интерпретация спектров, идентифицированы частоты фундаментальных колебаний наиболее устойчивых форм исследованного соединения. Теоретические спектры проанализированы в сравнении с экспериментальными.

Ключевые слова: конформация, колебательный спектр, частоты колебаний, мелатонин, метил 6-метокси-2,3,4,9-тетрагидро-1H-1,4-этанокарбазол-3-карбоксилат **DOI:** 10.31857/S0044453720110047

Мелатонин (N-ацетил-5-метокситриптамин) (рис. 1) – нейрогормон, обладающий хронобиотической, противораковой и иммунностимулирующей активностью, а также участвующий в регулировании артериального давления, температуры тела, деятельности сердечно-сосудистой системы [1]. Наличие мелатонина было показано у одноклеточных водорослей, растений [2], беспозвоночных и позвоночных, включая человека. В организме позвоночных животных основным исявляется эпифиз точником мелатонина (шишковидная железа головного мозга). Изменения пролукции мелатонина, следующие за изменениями продолжительности светового дня, вызывают суточные и сезонные перестройки в организме человека и животных и ритмам продукции мелатонина подчинены все эндогенные ритмы [3].

Применение самого мелатонина в лечении различных заболеваний ограничено из-за относительно короткого периода полураспада в организме — около тридцати минут [4]. Одним из приемов модификации структуры мелатонина является ограничение конформационной подвижности молекулы за счет конденсации индольного ядра с жестким бициклическим каркасом [5]. Определяющую роль во взаимодействии с рецептором играет пространственное строение функциональных групп, к которой очень чувствительны колебательные спектры (ИК-поглощения и КР), характеризующиеся высокой информативностью и сравнительной простотой применения, при этом особое значение при изучении аналогов мелатонина имеет метод комбинационного рассеяния, позволяющий изучать вещества в водных растворах. Для изучения механизмов действия новых соединений в реальных условиях необходимы надежные спектральные методики их идентификации, поэтому актуальным является получение наиболее полной информации о структурах молекул конформационно ограниченных аналогов мелатонина.

В данной работе исследованы и интерпретированы с учетом возможной поворотной изомерии спектры ИК-поглощения и КР метил 6-ме-

Рис. 1. Структура мелатонина.

Рис. 2. Структуры экзо- и эндо-изомеров А.

Рис. 3. Структуры устойчивых конформаций изомеров А: экзо-1 (а), эндо-1 (б), эндо-2 (в), экзо-2 (г).

токси-2,3,4,9-тетрагидро-1H-1,4-этанокарбазол-3-карбоксилат (*A*) (рис. 2).

Исследуемое вещество было синтезировано на химическом факультете МГУ в рамках программы поиска вешеств. действующих на мелатониновые рецепторы. А является промежуточным веществом в синтезе конформационно-ограниченного аналога мелатонина N-(экзо-6-метокси-2,3,4,9-тетрагидро-1Н-1.4-этанокарбазол-3-ил)ацетамида [6]. В качестве базового уровня теории для интерпретации полученных экспериментальных спектров выбран BVP86/TZVP [7-12], показавший достаточно высокую эффективность в сочетании с небольшими вычислительными затратами при расчетах полициклических органических соединений [13, 14]. Теоретические спектры анализировались в сравнении с экспериментальными, полученными в интервале частот 400-3600 см⁻¹ (ИК) и 50–3600 см⁻¹ (КР).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Метил 6-метокси-2,3,4,9-тетрагидро-1H-1,4этанокарбазол-3-карбоксилат A представляет собой смесь эндо- и экзо-изомеров в соотношении ~1:1, при комнатной температуре представляет собой коричневую смолу. Чистота вещества оценена равной ~95%. Регистрация спектра ИК-поглощения (для вещества, спрессованного в таблетку с бромидом калия) осуществлялась на фурье-спектрометре Tensor-27 (Вгикег, Германия) с разрешением 1 см⁻¹. Фурье-спектр КР твердых веществ регистрировался на приставке FRA-106 к спектрометру EQINOX 55 (Вгикег, Германия) при возбуждении линии 1064 нм Nd : YAG лазера мощностью 500 мВт. Разрешение 2 см⁻¹. Сигнал усреднялся по тысяче сканов. Полученные спектры представлены на рис. 3а, 3б.

МЕТОДЫ РАСЧЕТА

Квантово-механические расчеты в рамках теории функционала плотности выполнены с использованием пакета программ Gaussian 09 (Версия D.01) [15]. Квантово-химические расчеты устойчивых конформаций молекулы выполнены с использованием гибридных функционалов B3LYP [16], M062X [17] и BVP86 [11-14] с базисными наборами 6-31G**, 6-31+G** [18-20] и TZVP [11, 12] соответственно. Для всех возможных конформеров получены оптимизированные (без ограничений по симметрии) геометрические структуры и рассчитаны гармонические силовые поля, частоты колебаний, интенсивности ИКполос поглощения в газовой фазе, а также активности в спектрах КР. Кроме того, для всех конформеров был выполнен расчет частот колебаний в ангармоническом приближении. Все величины разностей энергий, приведенные далее в статье, рассчитаны с учетом поправки на нулевой колебательный уровень. Для визуализации результатов квантово-механического расчета использовалась программа Chemcraft [21]. Преобразование квантово-химических матриц силовых постоянных из декартовых координат в зависимую систему внутренних координат, анализ нормальных колебаний и расчет распределения потенциальной энергии по колебаниям рассмотренных кон-

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	N⁰	Координаты	Атомы	N⁰	Координаты	Атомы	Nº	Координаты	Атомы
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	aNH-1	1 19	52	a9	276	103	a60	15 32 9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	aCH-1	17 34	53	a10	3 20 8	104	a61	15 32 13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	aCH-2	16 33	54	a11	3 20 2	105	a62	15 31 9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	aCH-3	12.25	55	a12	382	106	a63	15 31 13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	aCH-4	14 30	56	a13	4 10 1	107	a64	15 9 13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	aCH-5	37 40	57	a14	4 10 9	108	a65	16 33 18
3 qCH-7 14 28 59 a16 51 21 10 a66 16 18 11 9 qCH-8 14 29 60 a17 51 21 11 110 a66 17 34 12 10 qCH-9 235 61 a18 51 11 12 a69 17 34 18 11 qCH-10 13 27 62 a19 62 10 113 a70 17 12 18 12 qCH-12 15 32 64 a21 63 22 610 13 116 a71 18 36 16 13 qCH-14 723 66 a23 610 13 116 a74 36 18 37 16 qCH-15 13 36 67 a24 613 2 118 a75 37 40 38 17 qCH-14 73 32 69 a26 722 2 120 a77 37 40 36 19 qCH-17 37 38 70 a27 72 9 121 a78 37 39 38 20 qCO-1 3 20 71 a28 72 a29 123 a80 37 38 36 2	7	aCH-6	6.21	58	a15	419	109	266	16 33 11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	qCH-7	14 28	59	a16	5 12 1	110	a60 a67	16 18 11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	qCH-8	14 20	60	a10	5 12 1	111	268	17 34 12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	qCH-9	235	61	a17 a18	5 1 2 11	112	a60 a69	17 34 12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	qCH 10	13 27	62	a10 a10	6 21 10	112	a0) a70	17 12 18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	qCH = 11	13 27	62	a19 a20	6 21 10 6 21 12	113	a70 a71	17 12 10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	qCH = 12	15.22	64	a20	0 21 13 6 21 2	114	a/1 a72	18 30 10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	qCH-12	0.24	65	a21	0 21 2	115	a72	18 30 17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	qСП-15 тСЦ 14	924	03	a22	6 10 15	110	a/5	18 10 1/
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	qCH-14	12.3	00	a25	6 10 2 (12 2	11/	a/4	30 18 37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	qCH-15	15 20	0/	a24	0 13 2	118	a/5	37 40 39
18qCH-1737 3969a267 7229 120a77a77 37 39 3619qCO-13 2071a28 7232 122a7937 39 3621qCO-23 872a29 7239 123a8037 38 3622qCC-14 1073a30 729 124X1a33 16 11 1823qCC-14 1073a30 729 124X1a33 16 11 724qCO-318 3675a32 9244 126X2a34 17 12 1825qCC-25 1276a33 9247 127X3a25 12 17 526qCN-21577a34 92415 128XNH19 14 527qCC-316 1878a35 947 129XCO20 32 828qCC-412 1779a36 9415 130T1a10 5 0 33 18 0 11 1629qCC-511 1680a37 97 15131T2a11 33 0 36 17 0 16 1831qCO-436 3782a3910 4 6133T4a18 340 25 5 0 17 1232qCC-710 1183a4010 11 6134T5a25 17 0 11 1 01 2 533qCC-85 1184a4111 16 10135Tmox138 39 40 18 00 37 3634qCO-58 1485a4211 16 5136Tmox237 00 16 10 35 1835qCC-85 1184<	1/	qCH-16	15 31	68	a25	7 22 23	119	a/6	37 40 38
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	qCH-17	37 39	69	a26	7 22 2	120	a77	37 40 36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	qCH-18	37 38	70	a27	7 22 9	121	a78	37 39 38
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	qCO-1	3 20	71	a28	7 23 2	122	a79	37 39 36
22qCC-14 1073a307 2 9124X1a33 16 11 1823qCN-11 474a318 3 14125Xmox36 18 16 1724qCO-318 3675a329247127X3a25 12 17 526qCN-21 577a34924 15128XNH19 1 4 527qCC-316 1878a35947129XCO20 3 2 828qCC-412 1779a3694 15130T1a10 5 0 33 18 0 11 1629qCC-511 1680a3797 15131T2a11 30 0 36 17 0 16 1830qCC-617 1881a3810 4 11132T3a16 36 0 12 34 0 18 1731qCO-436 3782a3910 4 6133T4a18 34 0 25 5 0 17 1232qCC-710 1183a4010 11 6135Tmox138 39 40 18 0 37 3634qCO-58 1485a4211 16 5136Tmox237 0 0 16 17 0 36 1835qCC-94 986a4311 10 5137Tab12 1 0 10 16 0 5 1136qCC-112 388a4512 5 17139T2b11 12 0 4 19 0 5 136qCC-126 1389a4612 5 17140T3b516 0 6 4 0 11 1039qCC-147 991a4813 27 6142Tc121 3 21 4 11 0 6 1031<	21	qCO-2	38	72	a29	7 23 9	123	a80	37 38 36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	qCC-1	4 10	73	a30	729	124	Xla	33 16 11 18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	qCN-1	14	74	a31	8 3 14	125	Xmox	36 18 16 17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	qCO-3	18 36	75	a32	9 24 4	126	X2a	34 17 12 18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	qCC-2	5 12	76	a33	9 24 7	127	X3a	25 12 17 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	qCN-2	15	77	a34	9 24 15	128	XNH	19145
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	qCC-3	16 18	78	a35	947	129	XCO	20 3 2 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	qCC-4	12 17	79	a36	9 4 15	130	T1a	10 5 0 33 18 0 11 16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	qCC-5	11 16	80	a37	9715	131	T2a	11 33 0 36 17 0 16 18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	qCC-6	17 18	81	a38	10 4 11	132	T3a	16 36 0 12 34 0 18 17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	qCO-4	36 37	82	a39	10 4 6	133	T4a	18 34 0 25 5 0 17 12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	qCC-7	10 11	83	a40	10 11 6	134	T5a	25 17 0 11 1 0 12 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	qCC-8	5 11	84	a41	11 16 10	135	Tmox1	38 39 40 18 0 0 37 36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	qCO-5	8 14	85	a42	11 16 5	136	Tmox2	37 0 0 16 17 0 36 18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	qCC-9	49	86	a43	11 10 5	137	Tab	12 1 0 10 16 0 5 11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	qCC-10	6 10	87	a44	12 25 5	138	T1b	1090519041
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	qCC-11	23	88	a45	12 25 17	139	T2b	11 12 0 4 19 0 5 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	qCC-12	6 13	89	a46	12 5 17	140	T3b	5 16 0 6 4 0 11 10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	qCC-13	27	90	a47	13 27 26	141	Tbc	1906110410
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	qCC-14	79	91	a48	13 27 6	142	Tc1	2 13 21 4 11 0 6 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	aCC-15	9 15	92	a49	13 27 15	143	Tc2	7 15 24 1 10 0 9 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	42	aCC-16	13 15	93	a50	13 26 6	144	Tcd1	2 21 10 15 26 27 6 13
44 a1 1 19 4 95 a52 13 6 15 146 Tcd3 13 31 32 47 24 15 9 45 a2 1 19 5 96 a53 14 30 28 147 Td1 10 13 21 37 35 6 2 46 a3 1 4 5 97 a54 14 30 29 148 Td2 6 3 35 22 23 9 27 47 a4 2 35 3 98 a55 14 30 8 149 Td3 2 22 23 4 15 24 7 9 48 a5 2 35 7 99 a56 14 28 29 150 Tac1 6 7 35 8 20 0 2 3 49 a6 2 35 6 100 a57 14 28 8 151 Tac2 2 00 14 0 0 3 8 50 a7 2 37 101 a58 14 29 8 152 Tac3 3 0 0 28 29 30 8 14	43	aCC-17	2.6	94	a51	13 26 15	145	Tcd2	6 26 27 9 31 32 13 15
45 a2 1 19 5 96 a53 14 30 28 147 Td1 10 13 21 37 35 62 46 a3 1 45 97 a54 14 30 29 148 Td2 6 3 35 22 23 9 27 47 a4 2 35 3 98 a55 14 30 8 149 Td3 2 22 23 4 15 24 7 9 48 a5 2 35 7 99 a56 14 28 29 150 Tac1 6 7 35 8 20 0 2 3 49 a6 2 35 6 100 a57 14 28 8 151 Tac2 2 20 0 14 0 0 3 8 50 a7 2 3 7 101 a58 14 29 8 152 Tac3 3 0 0 28 29 30 8 14 51 a8 2 3 6 102 a59 15 32 31 152 Tac3 3 0 0 28 29 30 8 14	44	al	1 19 4	95	a52	13 6 15	146	Tcd3	13 31 32 4 7 24 15 9
46 a3 1 4 5 97 a54 14 30 29 148 Td2 6 3 35 22 23 9 2 7 47 a4 2 35 3 98 a55 14 30 8 149 Td3 2 22 23 4 15 24 7 9 48 a5 2 35 7 99 a56 14 28 29 150 Tac1 6 7 35 8 20 0 2 3 49 a6 2 35 6 100 a57 14 28 8 151 Tac2 2 20 0 14 0 0 3 8 50 a7 2 3 7 101 a58 14 29 8 152 Tac3 3 0 0 28 29 30 8 14	45	a2	1 19 5	96	a53	14 30 28	147	Td1	10 13 21 3 7 35 6 2
47 a4 2 35 3 98 a55 14 30 8 149 Td3 2 22 23 4 15 24 7 9 48 a5 2 35 7 99 a56 14 28 29 150 Tac1 6 7 35 8 20 0 2 3 49 a6 2 35 6 100 a57 14 28 8 151 Tac2 2 20 0 14 0 0 3 8 50 a7 2 3 7 101 a58 14 29 8 152 Tac3 3 0 0 28 29 30 8 14	46	a3	145	97	a54	14 30 29	148	Td2	6 3 35 22 23 9 2 7
48 a5 2 35 7 99 a56 14 28 29 150 Tac1 6 7 35 8 20 0 2 3 49 a6 2 35 6 100 a57 14 28 8 151 Tac2 2 20 0 14 0 0 3 8 50 a7 2 3 7 101 a58 14 29 8 152 Tac3 3 0 0 28 29 30 8 14	47	a4	2 35 3	98	a55	14 30 8	149	Td3	2 22 23 4 15 24 7 9
49 a6 2 35 6 100 a57 14 28 25 150 1ac1 67 35 8 20 0 2 5 49 a6 2 35 6 100 a57 14 28 8 151 Tac2 2 20 0 14 0 0 3 8 50 a7 2 3 7 101 a58 14 29 8 152 Tac3 3 0 0 28 29 30 8 14 51 a8 2 3 6 102 a59 15 32 31 152 Tac3 3 0 0 28 29 30 8 14	48	25	2 35 5	90	a55	14 28 29	150		6735820023
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	a5 a6	2 35 7	100	a50 a57	14 28 8	150		2 20 0 14 0 0 3 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	a7	237	101	a58	14 29 8	152	Tac3	3 0 0 28 29 30 8 14
	51	a8	236	102	a59	15 32 31	152	1405	2 3 0 20 29 30 0 11

Таблица 1. Список внутренних координат, введенных для молекулы метил 6-метокси-2,3,4,9-тетрагидро-1Н-1,4-этанокарбазол-3-карбоксилата

2020

Рис. 4. Сравнение экспериментальных спектров ИК-поглощения (а) и КР (б) смеси изомеров *A* с рассчитанными (BVP86/TZVP) для конформеров экзо-1 (в, г), эндо-1 (д, е), эндо-2 (ж, з), экзо-2 (и, к).

формеров выполнен с помощью комплекса программ СПЕКТР [22, 23]. Введенные внутренние координаты приведены в табл. 1.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для исследуемого соединения возможен ряд конформаций, различающихся ориентацией метокси и метоксикарбонильной групп. Для экзо- и эндо-изомеров *А* нами было рассмотрено по во-

семь конформаций исследуемого соединения, возникающих для син- и антиположений метильной группы при фиксированных син- или антиориентациях относительно пятичленного цикла C=O-связи и метокси-группы, непосредственно соединенной с индольным ядром.

На уровнях B3LYP/6-31G**, B3LYP/6-31+G**, M062X/6-31+G** и RBVP86/TZVP были получены оптимизированные структуры и рассчитаны

Таблица 2. Экспериментальные и рассчитанные частоты нормальных колебаний (в см⁻¹) наиболее двух наиболее устойчивых конформеров экзо- и эндо-изомеров метил 6-метокси-2,3,4,9-тетрагидро-1H-1,4-этанокарбазол-3-карбоксилата

Эксперимент		Анти-син-син-	(C DEC)	Анти-син-син-	07 DELO
ИК	KP	экзо-1	<i>%</i> F115	эндо-1	///115
3397 (оч. сильн.)		3576 (54.6); (146.8) 3133 (6.4); (46.2)	100(qNH-1) 100(qCH-1)	3577 (54.2); (136.7) 3134 (6.4); (46)	100(qNH-1) 100(qCH-1)
		3131 (5.5); (217.6)	92(qCH-2)7(qCH-3)	3131 (5.5); (208.2)	92(qCH-2)7(qCH-3)
		3102 (12.8); (116.5)	92(qCH-3)7(qCH-2)	3102 (12.3); (111.6)	92(qCH-3)8(qCH-2)
		3092 (12.5); (71)	82(qCH-4) 10(qCH- 7)9(qCH-8)	3091 (13.1); (65.8)	80(qCH-4) 12(qCH- 7)8(qCH-9)
		3064 (27.5); (178.9)	93(qCH-5)4(qCH- 17)4(qCH-18)	3063 (27.4); (176.8)	93(qCH-5)4(qCH- 17)3(qCH-18)
		3054 (19.1); (60.3)	51(qCH-7) 49(qCH-8)	3056 (18.8); (47)	51(qCH-7) 49(qCH-9)
3051 (слаб.)	3055 (45%)	3033 (21.4); (146.3)	34(qCH-11) 30(qCH-14) 10(qCH-10)8(qCH-9)	3036 (15.9); (69)	94(qCH-6)3(qCH-8)
3030 (слаб.)		3031 (38.5); (60.7)	27(qCH-10) 18(qCH-12) 16(qCH-15) 14(qCH-11)	3035 (10); (88.4)	75(qCH-8) 19(qCH- 13)4(qCH-6)
		3024 (15.6); (91.2)	94(qCH-6)	3026 (48.1); (131.7)	40(qCH-10) 33(qCH-11) 12(qCH-14) 12(qCH-15)
		3011 (1.3); (47.9)	36(qCH-12) 26(qCH-10) 21(qCH-16) 16(qCH-15)	3007 (7); (45.5)	41(qCH-11) 37(qCH-10) 10(qCH-14)7(qCH- 15)
		3008 (3.6); (61.6)	85(qCH-9) 10(qCH-14)	3003 (61.8); (273)	88(qCH-12)5(qCH- 14)3(qCH-13)
	2950 (100%)	3003 (63.9); (240.4)	88(qCH-13) 4(qCH-16)	2981 (33.4); (139.1)	43(qCH-9) 37(qCH- 7) 19(qCH-4)
		2985 (55.7); (168.6)	45(qCH-15) 27(qCH-10) 13(qCH- 16)9(qCH-12)	2979 (55.9); (320.6)	58(qCH-13) 18(qCH-8) 17(qCH- 16)5(qCH-12)
		2983 (14.3); (156.3)	45(qCH-11) 43(qCH- 14)6(qCH-13)	2976 (44.3); (51.2)	51(qCH-17) 49(qCH-18)
		2981 (36.2); (138.5)	42(qCH-8) 39(qCH-7) 18(qCH-4)	2975 (65.2); (236.8)	40(qCH-14) 31(qCH-15) 16(qCH-11) 8(qCH-10)
2948 (оч. сильн.)		2978 (42.6); (51.1)	51(qCH-17) 50(qCH-18)	2964 (18.9); (71.4)	79(qCH-16) 16(qCH-13)
		2974 (24.3); (76.4)	45(qCH-16) 29(qCH-12) 14(qCH- 15)8(qCH-10)	2962 (18.7); (54)	49(qCH-15) 31(qCH-14) 10(qCH- 10)8(qCH-11)
2866 (сильн.)	2868 (17%)	2923 (55.8); (169.4)	47(qCH-18) 46(qCH-17)7(qCH-5)	2922 (56.3); (166)	48(qCH-18) 45(qCH- 17)7(qCH-5)
1725 (оч. сильн.)		1719 (178.8); (27.9)	88(qCO-1)4(qCC-11)	1729 (161.8); (8.1)	88(qCO-1)4(qCC-11)

Таблица 2. Продолжение

Эксперимент		Анти-син-син-	%РПЭ	Анти-син-син- эндо- 1	%РПЭ
ИК КР		экзо-1			
1616 (сильн.)	1617 (7%)	1610 (83.3); (28.5)	22(qCC-4) 14(qCC-3) 13(qCC-5) 12(qCC-2)	1610 (75.1); (29.8)	22(qCC-4) 14(qCC-3) 13(qCC-5) 12(qCC-2)
1580 (слаб.)	1579 (11%)	1569 (49.5); (24.7)	15(qCC-6) 10(qCC- 2)9(qCC-5)7(qCC-7)	1570 (46.3); (19.2)	15(qCC-6) 10(qCC- 2)9(qCC-5)7(qCC-7)
	1560 (19%)	1539 (1.1); (283.2)	29(qCC-1) 11(qCC- 4)7(qCC-9)6(a15)	1538 (0.8); (227.7)	29(qCC-1) 11(qCC- 4)7(qCC-9)6(a15)
1479 (сильн.)	1480 (8%)	1475 (19.6); (33.2)	16(qCC-8)7(a69)6 (qCC-2)5(qCC-10)	1475 (19.9); (31.3)	17(qCC-8)8(a69) 7(qCC-2)6(qCC-3)
		1469 (36.4); (7.3)	15(qCN-1) 10(a59)8(a25)6(a2)	1469 (31.8); (10.5)	16(qCN-1) 11(a59)7(a25)7(a2)
		1461 (2.3); (4.5)	48(a78) 11(a47)6(a59)5(a76)	1461 (2.1); (4.3)	54(a78)7(a47)6(a59) 5(a80)
1449 (оч. сильн.)		1458 (3.4); (20.2)	30(a47) 17(a78) 13(a59)3(qCC-3)	1458 (2.4); (16)	29(a47) 20(a59) 12(a78)
		1450 (10.4); (10.4)	71(a56)7(a57)7(a58) 7(a54)	1452 (9.4); (7.1)	71(a56)7(a53)7(a58) 7(a57)
	1449 (10%)	1447 (116.6); (30.5)	11(qCC-2)9(a45) 6(qCC-3)6(a65)	1447 (113.2); (29.1)	11(qCC-2)9(a45) 7(qCC-3)6(a65)
1435 (сильн.)		1445 (9.4); (5.7)	53(a25) 19(a47)4(a29)3(a28)	1444 (11.9); (5.4)	57(a25) 18(a47)4(a27)3(a26)
		1438 (8); (17.1)	48(a75) 47(a76)3(a80)	1438 (5); (25.5)	46(a75) 36(a76)6(a59)3(a79)
		1435 (4.1); (17.6)	31(a54) 28(a53) 18(a59)6(a47)	1438 (4.4); (3.4)	37(a59) 22(a47) 10(a25)6(a76)
		1435 (5.7); (5.7)	31(a59) 19(a54) 15(a53) 11(a47)	1435 (7.9); (12.2)	49(a54) 44(a53)4(a58)3(a57)
		1421 (25.5); (2.9)	19(a75) 17(a76) 15(a77) 11(a79)	1421 (22.7); (2.1)	23(a76) 15(a77) 14(a75) 11(a80)
		1419 (14.3); (0.6)	28(a53) 22(a55) 20(a54) 12(a57)	1419 (10.6); (1.2)	26(a53) 22(a55) 22(a54) 12(a57)
1385 (слаб.)	1387 (3%)	1377 (2.7);(18.8)	15(qCC-6)6(qCC-5) 6(qCC-7)6(qCC-9)	1378 (4.4); (15.9)	16(qCC-6)7(qCC-7) 6(qCC-5)6(qCC-9)
		1355 (21.4);(35.6)	11(qCC-10)6(qCC- 5)6(qCC-2)6(a50)	1360 (12.5); (27.8)	12(qCC-10)7(qCC- 5)7(a19)6(qCC-2)
1332 (сильн.)		1328 (35.9); (7.3)	20(a5) 17(a4)9(a28)6(a21)	1330 (10.9); (2.3)	21(a4) 16(a26) 14(a5) 11(a27)
1319 (оч. сильн.)		1311 (13.8); (21.5)	14(a26) 12(a27)8(a48)7(a49)	1308 (40); (9.6)	8(a29)7(a28)7(a1)5(a32)
1309 (слаб.)		1306 (31.9); (3.8)	10(a62)9(a63)8(a34) 7(a65)	1302 (12.9); (6.8)	16(a48) 11(a49)8(a4)5(a20)
1299 (слаб.)		1301 (1.8); (8)	14(a60) 12(a61)6 (qCN-2)4(a6)	1297 (3); (7.2)	22(a60) 17(a61)7(a63)6(a62)
	1290 (4%)	1292 (9.1); (20.1)	11(a26) 11(a27)8(a50)7(a51)	1290 (16.2); (48.5)	8(a50)8(qCC- 8)6(a28)5(a51)
1274 (слаб.)		1266 (10.8); (3.8)	7(a68)7(a44)6(a6)5 (a65)	1275 (10.4); (24.3)	11(a6) 10(a48) 10(a21)7(a49)
		1261 (24.9); (2.6)	28(a6) 18(a21)7(a4)5(a20)	1260 (9.8); (14)	11(a27)8(a62)6(a60) 6(a26)
ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 11 2020					

Таблица 2. Продолжение

Эксперимент		Анти-син-син-	07 DE 2	Анти-син-син-	«рпэ
ИК	KP	экзо-1	,01110	эндо-1	/01115
		1249 (33.4); (61.2)	11(a60) 11(a48)9 (a27)6(qCN-2)	1236 (9.5); (1.3)	14(a51)9(a63)8(a20) 6(a34)
		1235 (12.5); (8.1)	13(a51)9(a63)8(a49)6 (a50)	1225 (12.4); (1.5)	8(a45)8(qCC- 5)8(a6)7(qCN-2)
		1214 (1.6); (2)	16(a19) 10(qCN- 2)5(a21)5(a63)	1214 (1.3); (17.5)	10(a19) 10(a21) 7(qCN-2)7(a32)
1209 (оч. сильн.)		1209 (2.6); (15.1)	11(a33) 10(a29)9(a28)7(a1)	1205 (15.4); (5.6)	15(a49) 11(a20)9(a4)6(a6)
		1198 (101); (24.1)	13(qCO-3) 10(a66)6(a33)5(a61)	1195 (197.3); (5.3)	24(qCO-3) 15(a66) 6(qCO-4)5(a77)
		1193 (120.8); (9.2)	12(qCO-3)8(a28) 6(a21)6(a29)	1177 (5.5); (15.3)	15(a1) 11(a2)6(qCN- 1)6(a77)
1178 (оч. сильн.)		1174 (26.6); (7.3)	11(a1)8(a77)8(a2)5 (a51)	1172 (34.4); (1.5)	9(a55)7(qCO- 2)6(a50)6(a26)
		1165 (13.1); (6.5)	48(a55) 13(a57) 13(a58)6(a56)	1164 (0.6); (3.6)	40(a55) 10(a58)9(a57)5(a56)
		1163 (7.5); (1.6)	38(a77)7(a80)6(a79) 4(a78)	1162 (11.7); (1.5)	39(a77)7(a79)6(a80) 4(qCO-3)
		1149 (5.7); (10.3)	13(a32) 11(a50) 10(a63) 10(a62)	1147 (16.9); (5.9)	16(a34)9(a26)8(a21) 7(a33)
1138 (сильн.)	1139 (3%)	1135 (280.9); (7.1)	31(qCO-2) 11(qCC- 11) 10(a4)9(a10)	1144 (248.5); (2.3)	33(qCO-2) 11(qCC- 11) 10(a10)8(a5)
		1129 (30); (3.8)	44(a58) 40(a57)4(a53)	1136 (1.1); (5.7)	15(a19)7(a28)7(a5) 6(a32)
		1127 (0.2); (4.7)	47(a79) 46(a80)	1131 (0.8); (3.7)	45(a57) 44(a58)3(a54)3(a53)
		1124 (32.7); (2.9)	7(qCC-9)5(qCC- 7)5(a68)5(qCC-10)	1127 (0.1); (4.6)	48(a80) 46(a79)
		1121 (19.2); (2)	9(a34)9(a20)8(a6)7 (a61)	1119 (25.8); (6.5)	10(a68) 10(a32)9 (a44)6(qCC-7)
1109 (оч. слаб.)	1111 (3%)	1106 (27.8); (3.1)	18(a68) 15(a44) 14(a69)9(qCC-2)	1106 (27.7); (5.2)	15(a68) 12(a44) 12(a69)7(qCC-2)
1056 (сильн.)		1038 (37); (5.2)	13(qCO-5) 10(qCC- 13)8(a60)5(a62)	1037 (37.5); (8.2)	17(qCC-12) 14(qCO-5) 10(qCC- 16)5(qCC-17)
1037 (слаб.)		1032 (41.8); (9.6)	39(qCO-4)9(qCC-13) 6(qCO-5)4(qCC-11)	1035 (11.1); (2.7)	15(qCO-4)5(a62) 5(qCO-5)5(a48)
		1021 (10.5); (0.5)	32(qCO-4)6(qCC- 6)6(qCC-13)3(a48)	1026 (28.7); (1.4)	50(qCO-4)6(qCC-6) 5(qCC-16)4(qCC-15)
1010 (слаб.)	1010 (3%)	1013 (1.8); (10.7)	20(qCC-15) 20(qCC-16)8(qCC- 12)8(qCC-14)	1017 (3.4); (4.6)	14(qCC-14) 11(qCC-15)9(qCC- 12)7(a48)
997 (оч. слаб.)		992 (4.2); (4)	13(qCC-12) 11(a27)6(a34)5(a22)	996 (0.7); (6.3)	18(qCC-13) 12(qCC- 17)9(qCC-16)8(a27)
993 (оч. слаб.)		988 (5); (3.8)	8(qCC-16)7(a70)6 (a65)6(a41)	988 (1); (2.8)	9(a70)8(a65)7(a41)7 (a45)
960 (оч. слаб.)		970 (2.4); (22.9)	41(qCO-5) 14(qCC-17) 10(qCC-11)6(qCC-13)	968 (5.7); (10)	52(qCO-5)8(qCC-14) 5(qCC-11)5(qCC-17)

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 11 2020

Таблица 2. Продолжение

Эксперимент		Анти-син-син-	(C DED)	Анти-син-син-	07 DEC
ИК	KP	экзо-1	/01113	эндо-1	///115
		941 (1.1); (3.5)	16(qCC-14) 10(a29)9 (qCO-5)6(a7)	908 (9.9); (24.8)	8(a9)7(a3)6(qCO-5) 4(a52)
		904 (18.1); (33.4)	8(a3)7(a52)6(qCO- 5)5(a64)	907 (0.7); (0.7)	10(qCC-13)9(qCC-15) 9(a29)8(qCC-17)
879 (слаб.)		875 (4.2); (11.2)	9(qCO-2)8(qCO-5) 6(qCC-11)5(qCC-14)	882 (4.6); (10.8)	7(qCC-17)7(qCC- 13)5(a36)4(XCO)
861 (слаб.)		852 (0.4); (0.5)	41(T4a) 26(X3a) 22(X2a)9(T5a)	865 (12.1); (5)	16(qCC-14) 12 (qCC-16)9(qCC-12) 8(qCO-5)
835 (слаб.)		847 (3.9); (3)	12(qCC-16) 12(qCC- 14) 10(qCC-13)9 (qCC-12)	854 (0.1); (0.3)	40(T4a) 25(X3a) 24(X2a) 10(T5a)
	835 (3%)	841 (3.2); (2)	19(qCC-15) 10(qCC- 12)9(XCO)8(qCC- 17)	850 (2.3); (3.6)	7(a51)5(qCC- 15)5(qCC- 11)4(qCO-2)
		822 (13.5); (3.8)	8(qCO-2)8(qCC- 16)4(qCC- 11)4(qCO-3)	821 (2.6); (23.9)	12(qCC-15)7(qCC- 16)5(qCN-2)4(qCO- 2)
800 (слаб.)		812 (0.4); (30.3)	10(qCN-2)6(qCC- 5)6(qCC-4)5(a73)	808 (1.2); (2.9)	15(qCC-15) 13(qCC- 16)7(qCC- 14)6(qCC-4)
		797 (14.3); (2.2)	6(Tcd1)6(qCO- 3)6(a63)6(a61)	806 (25); (7)	11(qCO- 3)6(a18)5(a71)4(a17)
		788 (7.2); (14.6)	14(qCC-15) 12(qCC- 14) 10(qCC- 12)8(XCO)	784 (19.4); (0.3)	60(X1a) 18(T1a)4(Xmox)4(T 2a)
772 (слаб.)	772 (2%)	787 (16.7); (0.4)	70(X1a) 20(T1a) 5(Xmox)3(T2a)	783 (1.1); (5.5)	9(X1a)9(Tcd3)8(Tcd 1)7(qCC-14)
753 (сильн.)	759 (2%)	754 (32.3); (0.6)	45(X2a) 40(X3a) 9(Xmox)5(T5a)	756 (32.7); (0.7)	42(X2a) 40(X3a) 9(Xmox)6(T5a)
745 (оч. сильн.)	737 (5%)	740 (1.3); (12.2)	15(XCO) 14(qCC- 17)9(a10)5(a31)	748 (4.6); (11.7)	16(XCO) 11(a23) 8(qCC-13)8(a10)
728 (оч. сильн.)		726 (0.8); (6.1)	14(T2a) 12(a23) 11(a36) 10(XCO)	723 (1.5); (2.4)	16(a35) 12(a22) 12(T2a) 12(T2b)
696 (слаб.)		715 (4); (16.7)	8(a46)5(qCO- 3)5(qCC-6)5(a3)	710 (1.5); (11.5)	7(a46)5(qCO- 3)4(XCO)4(a36)
		662 (4.5); (1.1)	19(T1b) 13(Tc1) 13(T2a)9(X3a)	660 (3.6); (0.7)	18(T1b) 14(T2a) 14(Tc1) 10(XNH)
660 (оч. слаб.)		655 (4.3); (9)	11(a10) 10(qCC- 11)9(a11)8(XCO)	645 (1.5); (2.1)	6(XCO)5(qCC- 11)5(a10)5(a24)
617 (слаб.)		624 (5.4); (5.8)	7(qCC-17)5(a67) 5(a46)4(a41)	615 (1.5); (3.2)	11(XCO)8(qCC- 17)5(qCC-11)4(a67)
		603 (5.8); (0.2)	10(XCO)7(qCC- 9)6(Td2)5(a24)	587 (7.1); (0.5)	7(qCC-9)5(a64) 5(a52)4(a73)
587 (слаб.)		585 (11.3); (0.8)	59(Xmox) 20(T3a) 7(X3a)4(T1a)	585 (10.5); (0.4)	57(Xmox) 18(T3a) 6(X3a)3(T1a)
566 (оч. слаб.)		539 (6.3); (1.2)	8(a74)6(a64)6(a30) 4(a12)	546 (6.5); (0.8)	11(a30)9(a64)9(a52) 8(T2b)

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 11 2020

Таблица 2. Продолжение

Эксперимент		Анти-син-син-	07 DE 2	Анти-син-син-	<i>о</i> ⁄ рпэ
ИК	KP	экзо-1	%F119	эндо-1	%F119
		532 (2.4); (1.2)	12(a16)7(a72)7(a74)6 (a42)	534 (3.7); (1.4)	17(a74) 12(a16) 10(a71)7(a18)
497 (слаб.)		514 (2.6); (4.5)	7(a73)7(a74)5(a52) 4(a43)	496 (3.3); (4.7)	8(qCC-10) 7(a73)6(a43)5(a72)
461 (оч. слаб.)		463 (0.6); (2.6)	17(a74)9(a15)8(a36)5 (T1b)	465 (3.8); (1)	12(a74) 10(a35)7(a22)5(a15)
436 (оч. слаб.)		448 (1.1); (1)	15(a35) 12(a22) 11(a36)9(T1b)	459 (0.9); (1.2)	15(a36)9(a74)8(a23) 8(T1b)
410 (оч. слаб.)		416 (18.9); (3.7)	9(T2a)9(T1b)8(T4a) 6(Tc2)	416 (15.3); (0.7)	14(T1b)9(T2a) 8(T4a)7(T3b)
		405 (5.3); (3.2)	12(T4a) 10(X2a)6(T2a)6(a72)	403 (2.6); (1.5)	13(X2a) 13(T4a)8(Xmox)5(T 2a)
		398 (2.9); (0.9)	13(T5a)9(Xmox)9(X 2a)8(T1b)	396 (3.3); (6.1)	7(T5a)6(T1b)5(a37)5 (a72)
		365 (4.1); (1.1)	19(a31) 14(a11)6(a12)5(T1b)	374 (2.1); (2.6)	11(a31) 10(T1b) 10(a11) 10(Tab)
		337 (12.5); (0.6)	20(a7) 12(a31)8(a10)7(Td3)	342 (9.7); (1.9)	21(a7) 13(a31) 10(a10)7(a11)
		309 (30.7); (1.6)	40(XNH) 35(T2b) 7(T3a)4(T2a)	310 (35.5); (1.5)	43(T2b) 41(XNH) 8(T3a)4(Tmox1)
		286 (5.5); (0.5)	22(a31) 10(Td3) 8(Tcd3)7(a74)	286 (2.8); (1)	23(a31) 10(qCC- 11)8(a8)8(a24)
		271 (6.7); (4.6)	10(qCC-11)9(XNH) 7(a23)6(a37)	281 (5.4); (1.6)	14(a37)9(a31)8(a24) 7(Td3)
		251 (1); (0.3)	70(Tmox1)4(T2b) 4(Tc1)4(T5a)	252 (1.8); (1.6)	29(Tmox1) 15(a74)8(a71)6(a72)
		240 (0.4); (1.5)	19(a74) 12(a71) 11(a31)7(a72)	249 (4.7); (1)	36(Tmox1) 13(a74)7(a71)4(Tbc)
		210 (5.1); (0.3)	26(Tac2) 16(Tcd2) 14(a8) 12(Tcd1)	211 (2.1); (1.8)	19(Tcd1) 15(Tcd3) 10(Tmox1)7(Tc1)
		202 (0.1); (2)	14(Tmox1) 10(Tac2) 9(T3a)8(T2a)	202 (6.7); (1.4)	27(XNH) 14(T3a) 9(Tmox1)9(Tc2)
		186 (9.3); (1.8)	25(XNH) 16(Tab) 11(T1a)6(T3a)	178 (1.2); (0.5)	16(Tcd3) 13(Tcd1) 13(a7) 12(a12)
		165 (1.9); (1.7)	16(T1a) 15(XNH) 6(Tcd3)6(Tab)	166 (2.1); (1.2)	34(Tac2) 14(T1a) 13(XNH)8(Tab)
		135 (0.7); (1.3)	39(Tac3)7(Tac2) 5(a42)5(XCO)	137 (0.2); (0.6)	87(Tac3)3(a8)
		127 (0.7); (0.6)	32(Tac3) 12(Tmox2) 7(T3b)4(a42)	132 (0); (0.9)	22(Tmox2) 12(T3b) 8(T5a)4(Tc2)
		119 (0.3); (2)	25(Tmox2) 22(Tac3) 16(Tac2) 11(T3b)	122 (0.8); (1.9)	11(a42)9(a40)7(a72) 7(Tac2)
		90 (1.9); (0.4)	27(Tmox2) 18(Tac2) 16(a8)8(XCO)	110 (5.4); (1.4)	25(Tac2) 22(Tmox2) 14(a8)7(Tc2)
		62 (0.3); (1.5)	15(Tc2) 11(Tmox2) 9(Td1)7(a7)	78 (2); (0.4)	38(Tmox2) 11(Td2) 7(Td1)7(Tac1)

Эксперимент		Анти-син-син-	%РПЭ	Анти-син-син-	%РПЭ
ИК	KP	экзо-1		эндо-1	
		56 (2.8); (0.7)	20(Tmox2) 17(Tac1) 10(Tc1)7(T5a)	47 (0.3); (1.8)	32(Tac1) 13(T3b) 10(Tmox2)9(Td2)
		37 (0.3); (2.4)	28(Tc1) 16(Tc2) 13(T1b) 10(Td1)	36 (0.7); (2.1)	37(Tc1) 16(T1b) 12(Tc2)7(T5a)
		28 (0.9); (0.4)	74(Tac1)9(Td2)8 (Td1)	22 (0.6); (1.9)	56(Tac1) 19(Td2) 16(Td1)

Таблица 2. Окончание

гармонические силовые поля и частоты колебаний шестнадцати устойчивых структур.

По результатам расчетов наиболее устойчивыми являются анти-син-син-конформации экзо-1 (а) и эндо-1 (б) изомеров, приведенные на рис. 4. Разность энергий между ними составляет лишь ~0.04 ккал/моль (RBVP86/TZVP) ккал/моль. Разница в энергиях между наиболее устойчивым и следующим по устойчивости син-син-син-конформерами экзо-2 и эндо-2 составляет ~0.6 ккал/моль для экзо-изомера и ~0.5 ккал/моль для эндо-изомера, что соответствует относительному содержанию в смеси 3:1 и 7:3 соответственно. Для наиболее устойчивых конформаций предложена детальная интерпретация колебательного спектра на основе анализа нормальных колебаний (табл. 2).

Сравнение теоретических частот колебаний с экспериментальными (рис. 3, табл. 2) показывает, что уровень BVP86/TZVP удовлетворительно воспроизводит как структурные, так и спектральные данные для исследуемого соединения, что подтверждает возможность использования данного приближения.

Сопоставление теоретических спектров изомеров показывает, что небольшие различия в частотах колебаний наблюдаются в областях 1700— 3000 см⁻¹ и 500—630 см⁻¹. Незначительные различия в области отпечатков пальцев в основном проявляются в относительной интенсивности полос.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 18-33-00826.

СПИСОК ЛИТЕРАТУРЫ

- Stauch B., Johansson L.C., McCorvy J.D. et al. // Nature. 2019. V. 569. P. 284–288.
- Tan D.X., Hardeland R., Manchester L.C. et al. // J. Exp. Botany. 2012. V. 63. № 2. P. 577–597.

- 3. *Беспятых А.Ю., Бродский В.Я., Бурлакова О.В. и др.* Мелатонин: теория и практика. М.: Медпрактика-М., 2009. 99 с.
- 4. Fourtillan J.B., Brisson A.M., Gobin P. et al. // Biopharm. Drug Dispos. 2000. V. 21. P. 15–22.
- Zlotos D.P. // Arch. Pharm. Chem. Life Sci. 2005. V. 338. P. 229.
- 6. Zefirova O.N., Baranova T.Yu., Ivanova A.A. et al. // Bioorganic Chem. 2011. V. 39. P. 67–72.
- 7. Becke A.D. // Phys. ReV. A. 1988. V. 38. P. 3098.
- 8. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
- 9. Frisch M.J., Trucks G.W., Schlegel H.B. et al. GAUSS-IAN03, Gaussian, Inc., Pittsburgh, PA, 2003.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. GAUSS-IAN09, Revision A.1 Gaussian, Inc., Wallingford, CT, 2009.
- Schaefer A., Horn H., Ahlrichs R. // J. Chem. Phys. 1992. V. 97. P. 2571.
- Schaefer A., Huber C., Ahlrichs R. // Ibid. 1994. V. 100. P. 5829.
- 13. *Pomogaev V., Pomogaeva A., Avramov P. et al.* // Theor. Chem. Acc. 2011. V. 130. P. 609.
- Kosenkov D., Kholod Y., Gorb L. et al. // J. Phys. Chem. A. 2009. V. 113. P. 9386.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Gaussian 09, Revision D.01, Gaussian. Inc. Wallingford CT. 2013.
- 16. Bekke A.D. // J. Chem. Phys. 1992. V. 96. P. 2155.
- 17. *Zhao Y., Truhlar D.G.* // Theor. Chem. Acc. 2006. V. 120. P. 215–241.
- Petersson G.A., Bennett A., Tensfeldt T.G. et al. // J. Chem. Phys. 1988. V. 89. P. 2193.
- Petersson G.A., Al-Laham M.A. // J. Chem. Phys. 1991. V. 94. P. 6081.
- 20. *Rassolov V.A., Ratner M.A., Pople J.A. et al.* // J. Comp. Chem. 2001. V. 22. P. 976.
- 21. ChemCraft (Version 1.5) // http://www.chemcraftprog.com
- 22. Kuramshina G.M., Weinhold F.A., Kochikov I.V. et al. // J. Chem. Phys. 1994. V. 100. P. 1414.
- 23. Kochikov I.V., Yagola A.G., Kuramshina G.M. et al. // Spectrochim. Acta. 1985. V. 41A. P. 185.